Mathematics 136 - Calculus 2
Exam 1 - Review Sheet
September 20, 2016

Sample Exam Questions- Solutions

I.
(A) Since the interval is $[0,1]$ and $n=4$, the sums are

$$
\begin{gathered}
L_{4}=f(0)(.25)+f(.25)(.25)+f(.5)(.25)+f(.75)(.25)=.96875 \\
R_{4}=f(.25)(.25)+f(.5)(.25)+f(.75)(.25)+f(1)(.25)=1.328125 \\
M_{4}=f(.125)(.25)+f(.375)(.25)+f(.625)(.25)+f(.875)(.25)=1.71875
\end{gathered}
$$

(B) $f^{\prime}(x)=2 x+2>0$ for all $x \in[0,1]$. Hence f is increasing on this interval. This implies that the left-hand Riemann sum is less than $\int_{0}^{1} x^{2}+2 x d x$, and the right-hand Riemann sum is greater than the value of the integral. Using the Evaluation Theorem, we can check this:

$$
\int_{0}^{1} x^{2}+2 x d x=\frac{x^{3}}{3}+\left.x^{2}\right|_{0} ^{1}=\frac{4}{3} \doteq 1.3333
$$

The left-hand sum is less and the right-hand sum is greater than this value.
(C) The sum is a right-hand Riemann sum for the function $f(x)=\frac{\cos (x)}{x}$ on the interval $[0, \pi]$. So (if the limit exists), it would compute the definite integral

$$
\int_{0}^{\pi} \frac{\cos (x)}{x} d x
$$

(In point of fact, because $\frac{\cos (x)}{x}$ is not defined at $x=0$, this is an "improper" integral and the limit does not exist in this case (it will not be a finite value - Oops!). We will return to this sort of question later in the semester.)
II.
A) The total distance traveled is approximated by

$$
L_{5}=\sqrt{5} \cdot 2+\sqrt{7} \cdot 2+\sqrt{9} \cdot 2+\sqrt{11} \cdot 2+\sqrt{13} \cdot 2 \doteq 29.61
$$

B) The exact value is

$$
\int_{0}^{10} \sqrt{t+5} d t=\left.\frac{2}{3}(t+5)^{3 / 2}\right|_{0} ^{10}=\frac{2}{3}(15 \sqrt{15}-5 \sqrt{5}) \doteq 31.28
$$

III.
A) Compute $\lim _{N \rightarrow \infty} \sum_{i=1}^{N}\left(\frac{5 i}{N}\right)^{2} \frac{5}{N}$ using the power sum formulas from page 265. (Note: If I ask a question like this, I would give those formulas - you don't need to memorize them.)

Solution: This sum equals:

$$
\begin{aligned}
\sum_{i=1}^{N}\left(\frac{5 i}{N}\right)^{2} \frac{5}{N} & =\frac{125}{N^{3}} \sum_{i=1}^{N} i^{2} \\
& =\frac{125}{N^{3}}\left(\frac{N^{3}}{3}+\frac{N^{2}}{2}+\frac{N}{6}\right) \\
& =\frac{125}{3}+\frac{125}{2 N}+\frac{125}{6 N^{2}} \\
\Rightarrow \lim _{N \rightarrow \infty} \sum_{i=1}^{N}\left(\frac{5 i}{N}\right)^{2} \frac{5}{N} & =\lim _{N \rightarrow \infty}\left(\frac{125}{3}+\frac{125}{2 N}+\frac{125}{6 N^{2}}\right) \\
& =\frac{125}{3} .
\end{aligned}
$$

B)

$$
\int_{0}^{5} x^{2} d x=\left.\frac{x^{3}}{3}\right|_{0} ^{5}=\frac{125}{3}
$$

IV. Let

$$
f(x)= \begin{cases}1 & \text { if } 0 \leq x \leq 3 \\ x-2 & \text { if } 3 \leq x \leq 5 \\ 13-2 x & \text { if } 5 \leq x \leq 8\end{cases}
$$

(A) Sketch the graph $y=f(x)$. The graph is made up of segments of three different straight lines. See figure at top of next page.
In the rest of the parts, $F(x)=\int_{0}^{x} f(t) d t$, where f is the function from part A.
(B) Assuming $F(0)=0$, Compute $F(1), F(2), F(3), F(4), F(5), F(6), F(7), F(8)$ given the information in the graph of f.

Using the area interpretation of the definite integral we have

$$
\begin{aligned}
& F(1)=\int_{0}^{1} f(x) d x=1 \\
& F(2)=\int_{0}^{2} f(x) d x=2 \\
& F(3)=\int_{0}^{3} f(x) d x=3
\end{aligned}
$$

Figure 1: Figure for Problem IV.

$$
\begin{aligned}
& F(4)=\int_{0}^{3} f(x) d x+\int_{3}^{4} f(x) d x=3+\frac{3}{2}=\frac{9}{2} \\
& F(5)=\int_{0}^{4} f(x) d x+\int_{4}^{5} f(x) d x=\frac{9}{2}+\frac{5}{2}=7 \\
& F(6)=\int_{0}^{5} f(x) d x+\int_{5}^{6} f(x) d x=7+2=9 \\
& F(7)=\int_{0}^{6} f(x) d x+\int_{6}^{13 / 2} f(x) d x+\int_{13 / 2}^{7} f(x) d x=9+\frac{1}{4}-\frac{1}{4}=9 \\
& F(8)=\int_{0}^{5} f(x) d x+\int_{5}^{13 / 2} f(x) d x+\int_{13 / 2}^{8} f(x) d x=\int_{0}^{5} f(x) d x=7 \text { (the last two }
\end{aligned}
$$

integrals cancel since they represent equal areas with opposite signs).
(C) By the Fundamental Theorem of Calculus, $F^{\prime}(x)=f(x)$. Since $f(13 / 2)=0$, the point $x=13 / 2$ is a critical point. Since $F^{\prime}=f$ changes sign from positive to negative at the critical point, $x=13 / 2$ is a local maximum.
(D) Since $G(x)=\int_{2}^{x} f(t) d t=\int_{0}^{x} f(t) d t-\int_{0}^{2} f(t) d t=F(x)-2$, the graph $y=G(x)$ is obtained from $y=F(x)$ by shifting down 2 units along the y-axis.
V. Find the derivatives of the following functions
(A) $f(x)=\int_{0}^{x} \sin (t) / t d t$.

$$
f^{\prime}(x)=\frac{\sin x}{x}
$$

(B) $g(x)=\int_{5}^{x^{3}} \tan ^{4}(t) d t$. $g(x)=m\left(x^{3}\right)$, where $m(x)=\int_{5}^{x} \tan ^{4}(t) d t$. Then, $g^{\prime}(x)=m^{\prime}\left(x^{3}\right) \cdot 3 x^{2}=\tan ^{4}\left(x^{3}\right) \cdot 3 x^{2}$. (C)) $h(x)=\int_{-3 x}^{5 x} e^{t^{2}} \sin (t) d t$.
$h(x)=n(x)+l(x)$, where $n(x)=\int_{-3 x}^{0} e^{t^{2}} \sin (t) d t$ and $l(x)=\int_{0}^{5 x} e^{t^{2}} \sin (t) d t$. Then $h^{\prime}(x)=n^{\prime}(x)+l^{\prime}(x)=-\left(e^{(-3 x)^{2}} \sin (-3 x)\right) \cdot(-3)+5 \cdot e^{(5 x)^{2}} \sin (5 x)=3 e^{9 x^{2}} \sin (-3 x)+$ $5 e^{25 x^{2}} \sin (5 x)$.
VI.
(A) Compute $\int 5 x^{4}-3 \sqrt{x}+e^{x}+\frac{2}{x} d x$

$$
\int 5 x^{4}-3 \sqrt{x}+e^{x}+\frac{2}{x} d x=x^{5}-2 x^{3 / 2}+e^{x}+2 \ln |x|+C
$$

(B) Apply a u-substitution to compute $\int x\left(4 x^{2}-3\right)^{3 / 5} d x$
$u=4 x^{2}-3, d u=8 x d x$. Then $\int x\left(4 x^{2}-3\right)^{3 / 5} d x=\int \frac{1}{8} u^{3 / 5} d x=\frac{1}{8} \frac{u^{8 / 5}}{8 / 5}+C=$ $\frac{5}{64}\left(4 x^{2}-3\right)^{8 / 5}+C$
(C) Apply a u-substitution to compute $\int_{1}^{2} e^{\sin (\pi x)} \cos (\pi x) d x$

$$
u=\sin (\pi x), d u=\pi \cos (\pi x) . \text { Then } \int_{1}^{2} e^{\sin (\pi x)} \cos (\pi x) d x=\frac{1}{\pi} \int_{0}^{0} e^{u} d u=0
$$

(D) Let $u=t^{3}+3 t+3$, then $d u=\left(3 t^{2}+3\right) d t=3\left(t^{2}+1\right) d t$. Then given integral is

$$
\int \frac{t^{2}+1}{t^{3}+3 t+3} d t=\int \frac{1}{3 u} d u=\frac{1}{3} \ln |u|+C=\frac{1}{3} \ln \left|t^{3}+3 t+3\right|+C
$$

(E) Let $u=-7 x$ or "guess and check." Answer: $\frac{-1}{7} e^{-7 x}+C$.
VII. Compute each of the integrals below.
(A) Let $u=\sqrt{\sin (x)}$. Then $d u=\frac{\cos (x)}{2 \sqrt{\sin (x)}} d x$ by the Chain Rule. So the given integral is

$$
2 \int e^{u} d u=2 e^{u}+C=2 e^{\sqrt{\sin (x)}}+C
$$

(B) One solution: Let $u=\sin (2 x)$. Then $d u=2 \cos (2 x) d x$, so the given integral is

$$
\int u \cdot \frac{1}{2} d u=\frac{1}{4} u^{2}+C=\frac{1}{4} \sin ^{2}(2 x)+C .
$$

You can equally well let $u=\cos (2 x)$ and then $d u=-2 \sin (2 x) d x$ and the given integral is

$$
\int u \cdot \frac{-1}{2} d u=-\frac{1}{4} u^{2}+C=-\frac{1}{4} \cos ^{2}(2 x)+C .
$$

Both answers are correct, and each differs from the other by an additive constant because of the identity $\cos ^{2}(2 x)+\sin ^{2}(2 x)=1$ for all x.

