MATH 135 - Calculus 1
The Squeeze Theorem and Trigonometric Limits
October 3, 2016

Background

In today's video, we saw an additional technique for evaluating limits called the "Squeeze Theorem" and the very important limit:

$$
\begin{equation*}
\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta}=1 \tag{1}
\end{equation*}
$$

Recall that the Squeeze Theorem says: Assume $l(x) \leq f(x) \leq u(x)$ on some interval containing $x=c$ (except possibly at $x=c$) and $\lim _{x \rightarrow c} l(x)=\lim _{x \rightarrow c} u(x)=L$ (we might say " f is squeezed by l and u at $x=c "$ to describe this). Then $\lim _{x \rightarrow c} f(x)$ exists and equals L as well.

Questions

Do the following problems from Section 2.6 in our text:
(1) Suppose the graphs $y=f(x), y=l(x), y=u(x)$ are as in the plot on the back. What can we say about $\lim _{x \rightarrow 1} f(x)$?
(2) Determine $\lim _{x \rightarrow 0} f(x)$ given that $\cos (x) \leq f(x) \leq 1$ for all x.
(3) State whether the given inequality provides sufficient information to determine $\lim _{x \rightarrow 1} f(x)$, and if so, find the limit. (Hint: Draw pictures!)
(a) $4 x-5 \leq f(x) \leq x^{2}$
(b) $2 x-1 \leq f(x) \leq x^{2}$
(c) $4 x-x^{2} \leq f(x) \leq x^{2}+2$

Evaluate the following limits using (1):

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{\sin (t)}{8 t} . \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{\sin (8 t)}{t} . \tag{5}
\end{equation*}
$$

(Hint: For this one let $u=8 t$ and convert the t in the denominator to an equivalent expression in terms of u. Note that $t \rightarrow 0$ implies $u=8 t \rightarrow 0$ also.)

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{\sin (3 t)}{\sin (5 t)} \tag{6}
\end{equation*}
$$

Figure 1: Plot for Question 1, $y=l(x), u(x)$ in blue; $y=f(x)$ in red.
(Hint: Rewrite as follows:

$$
\frac{\sin (3 t)}{\sin (5 t)}=\frac{\frac{\sin (3 t)}{t}}{\frac{\sin (5 t)}{t}},
$$

then proceed as in question (5).
(7)

$$
\lim _{t \rightarrow 0} \frac{1-\cos (t)}{t^{2}}
$$

