MATH 135 - Calculus 1 Answers for Sample Questions for Exam 1

September 19, 2016
I. Express the set of x satisfying $|2 x-5|>1$ as an interval or union of intervals. Answer: $(-\infty, 2) \cup(3, \infty)$ (that is, all $x<2$, together with all $x>3$).
II. The following table contains values for three different functions: $f(x), g(x), h(x)$.

x	0	0.1	0.2	0.3	0.4
$f(x)$	-4.2	-5.9	-7.6	-9.3	-11.0
$g(x)$	10	20	40	80	160
$h(x)$	4	2.3	1.5	2.1	6.1

A) One of these is a linear function. Explain how you can tell which one it is, and give a formula for it.

Answer: $f(x)$ is the linear one, since each change of .1 in x changes $f(x)$ by -1.7 . The formula is $f(x)=-17 x-4.2$
B) One of these functions is neither linear nor exponential. Explain which one that is and why.

Answer: Exponential and linear functions are either increasing for all x or decreasing for all x. That is not true for $h(x)$.
C) Give a possible formula for $g(x)$. (Hint: the values are doubling every time x increases by .1.) Answer: $g(x)=102^{t / 1} \doteq 10(1024)^{t}$
III.
A) Complete the square in the quadratic function $f(x)=-3 x^{2}+12 x+21$.

Answer: $f(x)=-3\left((x-2)^{2}-11\right)=33-3(x-2)^{2}$
B) What is the maximum value attained by the function $f(x)$, and for which x is the maximum achieved?

Answer: Maximum is 33 , attained when $x=2$.
C) Where does the graph $y=f(x)$ cross the x-axis?

Answer: $x=\frac{-12 \pm \sqrt{144+252}}{-6}=2 \pm \sqrt{11} \doteq-1.317,5.317$.
D) Sketch the graph $y=-3 x^{2}+12 x+21$ for x in $[-4,4]$ and showing correct scales on both the x - and y-axes.

Answer: The graph is a parabola opening down from the vertex $(2,33)$ like this:

Figure 1: Figure for Question III, part D
IV. You start at $x=0$ at time $t=0$ (hours) and drive along the x-axis (x values in miles) at 40 miles an hour for 2 hours. At $t=2$ you stop for one hour. Then starting at $t=3$, you retrace your earlier path and return to your starting position at 80 miles per hour.
A) Sketch the graph of your position as a function of time.

Answer:
B) Give (piecewise) formulas for your function on the appropriate t-intervals.

Answer:

$$
x(t)= \begin{cases}40 * t & \text { if } 0 \leq t \leq 2 \\ 80 & \text { if } 2<t \leq 3 \\ 80-80(t-3) & \text { if } 3 t \leq 4\end{cases}
$$

V.
A) Express the domain of the function $f(x)=\frac{x}{x^{2}-1}$ as a union of intervals.

Answer: It is all $x \neq-1,1$, so $(-\infty,-1) \cup(-1,1) \cup(1, \infty)$
B) The figure for this problem shows the graph $y=\frac{x}{x^{2}-1}$. Based on this, what can you say about the range of $f(x)$?

Figure 2: Figure for Question IV,A

Figure 3: Figure for Question V

Figure 4: Figure for Question V,D

Answer: Seems to be all real numbers: \mathbb{R}, or $(-\infty, \infty)$
C) Explain why $f(x)$ (on its default domain) fails to have an inverse function.

Answer: The graph does not pass the horizontal line test, so $f(x)$ is not one-to-one.
D) Give a restricted domain on which $f(x)$ does have an inverse function, and sketch the graph of the inverse.

Answer: The interval of x-values $(-1,1)$ is one such. (The intervals $(1, \infty)$ and $(-\infty,-1)$ would be others.)
VI.
A) Sketch the graph $y=3 \sin \left(\frac{x}{2}\right)+2$ for $0 \leq x \leq 8 \pi$.
B) What are the amplitude and period of this sinusoidal function?

Answer: Amplitude $=3$, period $=4 \pi$.
C) What would change in your answer to B) if the formula was $y=\frac{1}{3} \sin (2 x)+2$?

Answer: The amplitude would change to $\frac{1}{3}$ and the period would change to π :

Figure 5: Figure for Question VI, A

Figure 6: Figure for Question VI, C
VII.
A) Simplify: $\log _{3}(27)+\ln \left(e^{-3}\right)$.

Answer: 0
B) Solve for $\mathrm{x}: 2^{x+3}=3^{x / 2}$.

Answer: $x=\frac{6 \ln (2)}{\ln (3)-2 \ln (2)}$.
C) The population of a city (in millions) at time t (years) is $P(t)=2.4 e^{0.06 t}$. What is the population at $t=0$? When will the population reach 4 million?

Answer: Population at time $t=0$ is $P(0)=2.4$ million. The population reaches 4 million at $t=\frac{\ln (4 / 2.4)}{.06} \doteq 8.5$ years .
D) (Continuation of C) How long will it take for the population to reach double the number at $t=0$?

Answer: $t \doteq 11.6$ years.

