MATH 135 - Calculus 1
Sample Questions for Exam 1
September 14, 2016
I. Express the set of x satisfying $|2 x-5|>1$ as an interval or union of intervals.
II. The following table contains values for three different functions: $f(x), g(x), h(x)$.

x	0	0.1	0.2	0.3	0.4
$f(x)$	-4.2	-5.9	-7.6	-9.3	-11.0
$g(x)$	10	20	40	80	160
$h(x)$	4	2.3	1.5	2.1	6.1

A) One of these is a linear function. Explain how you can tell which one it is, and give a formula for it.
B) One of these functions is neither linear nor exponential. Explain which one that is and why.
C) Give a possible formula for $g(x)$. (Hint: the values are doubling every time x increases by .1.)
III.
A) Complete the square in the quadratic function $f(x)=-3 x^{2}+12 x+21$.
B) What is the maximum value attained by the function $f(x)$, and for which x is the maximum achieved?
C) Where does the graph $y=f(x)$ cross the x-axis?
D) Sketch the graph $y=-3 x^{2}+12 x+21$ for x in $[-4,4]$ and showing correct scales on both the x - and y-axes.
IV. You start at $x=0$ at time $t=0$ (hours) and drive along the x-axis (x values in miles) at 40 miles an hour for 2 hours. At $t=2$ you stop for one hour. Then starting at $t=3$, you retrace your earlier path and return to your starting position at 80 miles per hour.
A) Sketch the graph of your position as a function of time.
B) Give (piecewise) formulas for your function on the appropriate t-intervals.
V.
A) Express the domain of the function $f(x)=\frac{x}{x^{2}-1}$ as a union of intervals.
B) Figure 1 on the back of this page shows the graph $y=\frac{x}{x^{2}-1}$. Based on this, what can you say about the range of $f(x)$?

Figure 1: Figure for Question V
C) Explain why $f(x)$ (on its default domain) fails to have an inverse function.
D) Give a restricted domain on which $f(x)$ does have an inverse function, and sketch the graph of the inverse.
VI.
A) Sketch the graph $y=3 \sin \left(\frac{x}{2}\right)+2$ for $0 \leq x \leq 8 \pi$.
B) What are the amplitude and period of this sinusoidal function?
C) What would change in your answer to B) if the formula was $y=\frac{1}{3} \sin (2 x)+2$?
VII.
A) Simplify: $\log _{3}(27)+\ln \left(e^{-3}\right)$.
B) Solve for $\mathrm{x}: 2^{x+3}=3^{x / 2}$.
C) The population of a city (in millions) at time t (years) is $P(t)=2.4 e^{0.06 t}$. What is the population at $t=0$? When will the population reach 4 million?
D) (Continuation of C) How long will it take for the population to reach double the number at $t=0$?

