1. Compute the indicated limits. Show all work for full credit.
(a) (5) $\lim _{x \rightarrow 1} \frac{x^{2}-6 x+8}{2 x^{2}-2 x-4}$

Solution: This is a rational function, so it is continuous at every x where the denominator is not zero. Since $2 \cdot(1)^{2}-2 \cdot 1-4=-4 \neq 0$ that is true here. The limit is the same as the value of the function at $1:=\frac{3}{-4}=-\frac{3}{4}$. Note: the same conclusion can be reached by using the limit sum, product, and quotient rules.
(b) (5) $\lim _{x \rightarrow 2} \frac{x^{2}-6 x+8}{2 x^{2}-2 x-4}$

Solution: This is a $0 / 0$ indeterminate form. We factor the top and bottom and cancel to obtain

$$
\frac{x^{2}-6 x+8}{2 x^{2}-2 x-4}=\frac{(x-2)(x-4)}{(x-2)(2 x+2)}=\frac{x-4}{2 x+2}
$$

for all $x \neq 2$. This function is continuous at $x=2$, and the limit is $\frac{-2}{6}=\frac{-1}{3}$.
(c) (5) $\lim _{x \rightarrow \infty} \frac{x^{2}-6 x-8}{2 x^{2}-2 x-4}$

Solution: The limit is $\frac{1}{2}$, as can be seen by this calculation (multiply top and bottom by $\frac{1}{x^{2}}$):

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{x^{2}-6 x-8}{2 x^{2}-2 x-4} & =\lim _{x \rightarrow \infty} \frac{1-\frac{6}{x}-\frac{8}{x^{2}}}{2-\frac{2}{x}-\frac{4}{x^{2}}} \\
& =\frac{1}{2}
\end{aligned}
$$

(d) (5) $\lim _{\theta \rightarrow 0} \frac{\sin (3 \theta)}{\theta}$

Solution: This equals

$$
\lim _{\theta \rightarrow 0} 3 \frac{\sin (3 \theta)}{3 \theta}=3 \cdot 1=3
$$

2. The graph of a function f with $f(-1)=-.2$ and $f(2)=-1$ is shown below.

(a) (10) What are $\lim _{x \rightarrow-1^{-}} f(x)$ and $\lim _{x \rightarrow-1^{+}} f(x)$?

Solution: From the graph and the given information, $\lim _{x \rightarrow-1^{-}} f(x)=-.2$ and $\lim _{x \rightarrow-1^{+}} f(x)=2$.
(b) (15) Find all x in $(-3,5)$ where f is discontinuous. Give the types of each of the discontinuities
Solution: $f(x)$ has jump discontinuities at $x=-1$ and $x=2$. It also has an infinite discontinuity (vertical asymptote) at $x=3$. These are the only discontinuities.
(c) (10) Given that $f(x)=x+3$ for $-1<x<0$ and $f(x)=3-x-\frac{x^{3}}{8}$ for $0 \leq x<2$, is f differentiable at $a=0$? Why or why not?
Solution: The answer is no, f is not differentiable at 0 . The easiest way to see this is that $\lim _{h \rightarrow 0^{-}} \frac{f(0+h)-f(0)}{h}$ will agree with the derivative of $x+3$ at $x=0$, and equal 1. On the other hand $\lim _{h \rightarrow 0^{+}} \frac{f(0+h)-f(0)}{h}$ will agree with the derivative of $3-x-\frac{x^{3}}{8}$ at $x=0$, which is -1 . (This is the precise meaning of the apparent "corner" on the graph at $x=0$.) Since the one-sided limits of the difference quotient of f are not the same, $f^{\prime}(0)$ does not exist.
3. Do not use the "short-cut" differentiation rules from Chapter 3 in this question.
(a) (5) State the limit definition of the derivative $f^{\prime}(x)$.

Solution: The derivative $f^{\prime}(x)$ is

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

if the limit exists.
(b) Estimate the derivative of $f(x)=\sqrt{x+3}$ at $a=6$ numerically by computing difference quotients of f with $h= \pm .1$, then $h= \pm .01$. Enter your values in the table below, and then state what your estimate of $f^{\prime}(8)$ is.
Solution: Computing

$$
\frac{\sqrt{6+h+3}-\sqrt{6+3}}{h}=\frac{\sqrt{9+h}-3}{h}
$$

for the given values of h we get the numbers in the table (rounded to 4 decimals):

h	-.1	-.01	.01	.1
difference quotient value	.1671	.1667	.1666	.1662

The limit is apparently around .1666.
(c) (10) Use the definition to compute the derivative function of $f(x)=\sqrt{x+3}$.

Solution: We compute the limit by multiplying top and bottom of the difference quotient by the conjugate radical:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\sqrt{x+h+3}-\sqrt{x+3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{x+h+3}-\sqrt{x+3}}{h} \cdot \frac{(\sqrt{x+h+3}+\sqrt{x+3})}{(\sqrt{x+h+3}+\sqrt{x+3})} \\
& =\lim _{h \rightarrow 0} \frac{(x+h+3)-(x+3)}{h(\sqrt{x+h+3}+\sqrt{x+3})} \\
& =\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h+3}+\sqrt{x+3}} \\
& =\frac{1}{2 \sqrt{x+3}} .
\end{aligned}
$$

(d) (5) Find the equation of the line tangent to the graph $y=\sqrt{x+3}$ at $a=6$.

Solution: By the previous part, the slope of the tangent is $f^{\prime}(6)=\frac{1}{6}$. The point $(6, f(6))=(6,3)$. The tangent line has equation:

$$
y-3=\frac{1}{6}(x-6) \quad \text { or } \quad y=\frac{x}{6}+2 .
$$

4. Use the short-cut rules to compute the following derivatives. You may use any correct method, but must show work for full credit.
(a) (5) $\frac{d}{d x}\left(\frac{3}{\sqrt{x}}-e^{x}+3 x\right)$

Solution: The function can also be written as

$$
f(x)=3 x^{-1 / 2}-e^{x}+3 x
$$

So the derivative is

$$
f^{\prime}(x)=\frac{-3}{2} x^{-3 / 2}-e^{x}+3
$$

(b) (5) $\frac{d}{d v}\left(\left(v^{2}-2 v\right)\left(v^{3}+1\right)\right)$

Solution: Multiply out first. Our function is

$$
g(v)=v^{5}-2 v^{4}+v^{2}-2 v
$$

so the derivative is

$$
g^{\prime}(v)=5 v^{4}-8 v^{3}+2 v-2 .
$$

(c) (5) $\frac{d}{d x}\left(\frac{2^{e}+e^{2}-x^{e}}{4}\right)$

Solution: The first two terms in the sum are constants, hence have derivative equal to zero. The last term is a power so the derivative is $-\frac{e}{4} x^{e-1}$.

