MATH 135 - Calculus 1
Discussion Day - "Derivative Practice"
October 24, 2015

## Background

We have now seen the sum and product rules for derivatives. The goals for today are:
(1) To introduce another rule called the quotient rule.
(2) To practice using these rules, and
(3) To think about some of the information about a function that we can get from the derivative.

The quotient rule for derivatives says: If $f, g$ are differentiable and $g(x) \neq 0$ then $f / g$ is differentiable at $x$ and

$$
\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{(g(x))^{2}}
$$

("bottom times derivative of top minus top times derivative of bottom, all over bottom squared"). For instance

$$
\frac{d}{d x}\left(\frac{x^{2}+3}{x^{4}+x}\right)=\frac{\left(x^{4}+x\right)(2 x)-\left(x^{2}+3\right)\left(4 x^{3}\right)}{\left(x^{4}+x\right)^{2}}=\frac{-2 x^{5}-4 x^{3}+2 x^{2}}{\left(x^{4}+x\right)^{2}}
$$

(This could be simplified even farther by factoring $x^{2}$ out of the numerator and denominator. But notice that $x=0$ is not in the domain of the original function, so it's not in the domain of the derivative either. Even though you could cancel $x^{2}$ between the top and bottom in the derivative, our function is not differentiable at $x=0$.)

## Questions

(1) Differentiate each of these with respect to the indicated variable. Note: you will want to think first about which rule(s) you need to apply, and then apply them. Don't worry too much about simplifying your answers - any correct form is OK for this.
(a) $f(x)=\frac{x^{2}+e^{x}}{\sqrt{x}}$
(b) $g(t)=e^{t}\left(1+\frac{t^{2}}{1+t^{2}}\right)$
(c) $h(z)=\frac{3}{z^{2 / 3}}-z\left(e^{z}+4 z\right)$
(2) Section 3.4 in our book builds on the way we motivated the study of derivatives by considering instantaneous velocities and slopes of tangent lines. If $f$ is any function and $f^{\prime}(a)$ exists, then we can think of $f^{\prime}(a)$ as an (instantaneous) rate of change of $f$ with respect to the variable in $f$, at $a$. The units of an instantaneous rate of change are always (units of $f$-values)/(units of
the input variable in $f$ ). For instance, if we had a function $P(R)$ giving the electrical power (in units of watts) delivered to a device by a battery, as a function of the resistance of the device (in units of ohms), then the units of $P^{\prime}(R)$ would be watts/ohm. So suppose we have a battery delivering power to a device with

$$
P(R)=\frac{2.25 R}{(R+.5)^{2}}=\frac{2.25 R}{R^{2}+R+.25}
$$

where $R \geq 0$.
(a) What is the instantaneous rate of change of the power with respect to resistance when $R=3$ ohms? (Give your answer with correct units.)
(b) What is the power delivered to a device with $R=5$ ohms? What is the instantaneous rate of change of the power with respect to resistance when $R=5$ ohms? Give each answer with the correct units.)
(c) Is the instantaneous rate of change of the power with respect to resistance ever equal to zero? What does that mean? Generate a sketch of the graph of $P(R)$ ( $R$ on the horizontal axis, $P$ on the vertical axis) and show any points where $P^{\prime}(R)=0$.

## Assignment

One writeup of solutions to these problems from each group, due at the end of class.

