College of the Holy Cross
 MATH 135, section 1 - Calculus 1
 Solutions for Practice Final Exam - December 8, 2016

I. The graph $y=f(x)$ is given in blue (more like cyan) in Figure 1 (see top of next page). Match each equation with one of the numbered pink (actually, magenta) graphs.
A) $y=f(x-4)$ is plot number 3 (shifted 4 units right)
B) $y=f(x)+3$ is plot number: 1 (shifted 3 units up)
C) $y=\frac{1}{3} f(x)$ is plot number: 4 (compressed vertically)
D) $y=-f(x+4)$ is plot number: 5 (shifted left 4 units and reflected across the x-axis.
E) $y=2 f(x+6)$ is plot number: 2 (shifted left 6 units and stretched vertically)
II. A cup of hot chocolate is set out on a counter at $t=0$. The temperature of the chocolate t minutes later is $C(t)=70+80 e^{-t / 3}$ (in degrees F).
A) What is the temperature of the chocolate at $t=0$?

Answer: $C(0)=70+80 e^{-0 / 3}=150$ degrees F .
B) What is the rate of change of the temperature at $t=10$ minutes?

Solution: The (instantaneous) rate of change at $t=10$ is $C^{\prime}(10)$. Since $C^{\prime}(t)=\frac{-80}{3} e^{-t / 3}$ by the chain rule, $C^{\prime}(10)=\frac{-80}{3} e^{-10 / 3} \doteq-.95$ degrees F per minute.

Comment: Since the question says "at $t=10$ " you should think: "instantaneous rate of change." The average rate of change from $t=0$ to $t=10$ is not the same!
C) How long does it take for the temperature to reach $100^{\circ} \mathrm{F}$?

Solution: The time is the solution of $100=70+80 e^{-t / 3}$, or $t=-3 \ln (30 / 80) \doteq 2.9$ minutes.
III. Compute the following limits. Any legal method is OK.
(A) $\lim _{x \rightarrow 3} \frac{x^{2}+x-12}{x^{2}-5 x+6}$.

Solution: Since $x^{2}+x-12=(x-3)(x+4)$ and $x^{2}-5 x+6=(x-3)(x-2)$, for $x \neq 3$, the function is

$$
\frac{x^{2}+x-12}{x^{2}-5 x+6}=\frac{x+4}{x-2}
$$

Hence the limit equals

$$
\lim _{x \rightarrow 3} \frac{x+4}{x-2}=7
$$

by the limit quotient rule.

Figure 1: Figure for problem I
(B) $\lim _{x \rightarrow 1^{-}} \frac{|x-1|}{x^{2}-1}$.

Solution: The denominator is $x^{2}-1=(x-1)(x+1)$. The numerator is $x-1$ if $x>1$ and $-(x-1)$ if $x<1$. Hence the function equals

$$
\begin{cases}\frac{-1}{x+1} & \text { if } x<1 \\ \frac{1}{x+1} & \text { if } x>1\end{cases}
$$

This shows that the one-sided limit exists and equals

$$
\lim _{x \rightarrow 1^{-}} \frac{-1}{x+1}=\frac{-1}{2}
$$

(The overall limit does not exist since the limit from the other side exists but equals a different value, namely $\frac{+1}{2}$.)
(C) $\lim _{x \rightarrow 0} \frac{\tan (x)}{x}$

Solution: We recall $\tan (x)=\frac{\sin (x)}{\cos (x)}$. So

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\tan (x)}{x^{1 / 2}} & =\lim _{x \rightarrow 0} \frac{\sin (x)}{x} \cdot \frac{1}{\cos (x)} \\
& =\lim _{x \rightarrow 0} \frac{\sin (x)}{x} \cdot \lim _{x \rightarrow 0} \frac{1}{\cos (x)} \\
& =1 \cdot 1=1
\end{aligned}
$$

(D) This is an ∞ / ∞ indeterminate form limit, so we can use L'Hopital's Rule (twice):

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{x^{2}+3 x}{e^{x}} & =\lim _{x \rightarrow \infty} \frac{2 x+3}{e^{x}} \quad(\text { still } \infty / \infty) \\
& =\lim _{x \rightarrow \infty} \frac{2}{e^{x}} \\
& =0
\end{aligned}
$$

IV.
A) Using the limit definition, and showing all necessary steps to justify your answer, compute $f^{\prime}(x)$ for $f(x)=5 x^{2}-x+3$.

Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{5(x+h)^{2}-(x+h)+3-5 x^{2}+x-3}{h} \\
& =\lim _{h \rightarrow 0} \frac{10 x h+5 h^{2}-h}{h} \\
& =\lim _{h \rightarrow 0} 10 x-1+5 h \\
& =10 x-1 .
\end{aligned}
$$

IV. (continued) Using appropriate derivative rules, compute the derivatives of the following functions. You do not need to simplify your answers.
B) $g(x)=4 x^{3}+\sqrt{x}+\frac{2}{\sqrt[4]{x}}+e^{2}$.

Solution: We can rewrite $g(x)$ as

$$
g(x)=4 x^{3}+x^{1 / 2}+2 x^{-1 / 4}+e^{2} .
$$

So by the power and sum rules for derivatives

$$
g^{\prime}(x)=12 x^{2}+\frac{1}{2} x^{-1 / 2}-\frac{1}{2} x^{-5 / 4}+0 .
$$

C) $h(x)=\frac{\sin (x)+x}{\sec (x)}$.

Solution: By the quotient rule,

$$
h^{\prime}(x)=\frac{\sec (x)(\cos (x)+1)-(\sin (x)+x) \sec (x) \tan (x)}{\sec ^{2}(x)} .
$$

D) $i(x)=\left(x^{2}+4 e^{x}\right) \ln \left(x^{3}+3\right)$.

Solution: By the product and chain rules,

$$
i^{\prime}(x)=\frac{\left(x^{2}+4 e^{x}\right) 3 x^{2}}{x^{3}+3}+\left(2 x+4 e^{x}\right) \ln \left(x^{3}+3\right) .
$$

E) $j(x)=\tan ^{-1}(12 x+2)$

Figure 2: Figure for problem V.

Solution: By the derivative rules for the inverse tangent and the chain rule,

$$
j^{\prime}(x)=\frac{12}{1+(12 x+2)^{2}}
$$

F) Find $\frac{d y}{d x}$ by implicit differentiation if

$$
x y^{3}+3 x^{2} y^{4}+y=1
$$

and find the equation of the tangent line to this curve at $(x, y)=(1,-1)$.
Solution: Taking derivatives with respect to x, thinking of y as an implicitly defined function of x, we have

$$
3 x y^{2} \frac{d y}{d x}+y^{3}+12 x^{2} y^{3} \frac{d y}{d x}+6 x y^{4}+\frac{d y}{d x}=0
$$

So solving for $\frac{d y}{d x}$,

$$
\frac{d y}{d x}=\frac{-y^{3}-6 x y^{4}}{3 x y^{2}+12 x^{2} y^{3}+1} .
$$

The equation of the tangent line is found like this. The slope is $\frac{d y}{d x}$ at $(x, y)=(1,-1)$, which equals $\frac{-5}{-8}=\frac{5}{8}$. Then by the point slope form the equation is

$$
y+1=\frac{5}{8}(x-1)
$$

V. The graph in Figure 2 shows the derivative $f^{\prime}(x)$ for some function $f(x)$ defined on $0 \leq x \leq 4$. Note: This is not $y=f(x)$, it is $y=f^{\prime}(x)$. Using the graph, estimate
A) The interval(s) on which $f(x)$ is increasing.

Figure 3: Figure for problem VI.

Solution: $f(x)$ is increasing on intervals where $f^{\prime}(x)>0$. Here that is true for x in $(0,1)$ and $(2,3)$.
B) The critical points of $f(x)$ in the open interval $(0,4)$. Say what the behavior of $f(x)$ is at each critical number (local max, local min, neither).

Solution: The critical numbers in this interval are the places where $f^{\prime}(x)=0$, so $x=1,2,3$. By the First Derivative Test, f has local maxima at $x=1$ and $x=3\left(f^{\prime}\right.$ goes from positive to negative), while f has a local minimum at $x=2\left(f^{\prime}\right.$ goes from negative to positive).
C) The interval(s) on which $y=f(x)$ is concave down.

Solution: f is concave down on intervals where $f^{\prime \prime}(x)<0$, or equivalently where $f^{\prime}(x)$ is decreasing. That is true here for x in $(.4,1.3)$ and again for x in $(2,4,3.3)$ (approximately).
VI. A town wants to build a pipeline from a water station on a small island 2 miles from the shore of its water reservoir to the town. One possible route is shown dotted in red. The town is 6 miles along the shore from the point nearest the island. It costs $\$ 3$ million per mile to lay pipe under the water and $\$ 2$ million per mile to lay pipe along the shoreline.
A) Give the cost $C(x)$ of constructing the pipeline as a function of x.

Solution: By the Pythagorean theorem and the given information about cost per mile, we have

$$
C(x)=3 \sqrt{4+x^{2}}+2(6-x)
$$

1. B) Where along the shoreline should the pipeline hit land to minimize the costs of construction?

Solution: To find the minimum of $C(x)$, we can restrict to x in the closed interval $[0,6]$, since it clearly does no good to take $x<0$ or $x>6$. The function $C(x)$ has a critical number for $x>0$ at the positive solution of $C^{\prime}(x)=0$:

$$
\begin{aligned}
0 & =\frac{3 x}{\sqrt{4+x^{2}}}-2, \text { or } \\
3 x & =2 \sqrt{4+x^{2}} \\
9 x^{2} & =16+4 x^{2} \\
5 x^{2} & =16 \\
x & =\frac{4}{\sqrt{5}} \doteq 1.79
\end{aligned}
$$

We have $C(0)=18, C(6)=3 \sqrt{40} \doteq 19.0$, and $C\left(\frac{4}{\sqrt{5}}\right) \doteq 16.47$. So the minimum cost is attained at $x=\frac{4}{\sqrt{5}} \doteq 1.79$ miles.
VII. A block of dry ice (solid CO_{2}) is evaporating and losing volume at the rate of 10 $\mathrm{cm}^{3} / \mathrm{min}$. It has the shape of a cube at all times. How fast are the edges of cube shrinking when the block has volume $216 \mathrm{~cm}^{3}$?

Solution: Call the side of the cube x. Then $V=x^{3}$. Taking time derivatives, we have $\frac{d V}{d t}=3 x^{2} \frac{d x}{d t}$. From the given information, when $V=216, x=6$ and $\frac{d V}{d t}=-10$. Therefore the rate of change of the side of the cube is

$$
\frac{d x}{d t}=\frac{-10}{3 \cdot 6^{2}}=\frac{-5}{54} \doteq-.093
$$

(units $\mathrm{cm} / \mathrm{min}$). The side of the cube is decreasing at about $.09 \mathrm{~cm} / \mathrm{min}$.
VIII. True or false: The graph obtained by stretching $y=e^{-x}$ vertically by a factor of 2 can also be obtained from $y=e^{-x}$ by a horizontal shift. Explain your answer.

Solution: This is TRUE, because

$$
2 e^{-x}=e^{\ln (2)} e^{-x}=e^{-(x-\ln (2))}
$$

So exactly the same graph is obtained if we stretch $y=e^{-x}$ vertically by a factor of 2 , or shift $y=e^{-x}$ to the right by $\ln (2)$ units. This seems counterintuitive, but it is a general property of exponential functions that this sort of thing is true(!)

