MATH 135 - Calculus 1
Practice on Absolute Values, Intervals, Functions

August 31, 2016

Background

Recall from high school mathematics (also see Section 1.1 in Rogawksi/Adams and the video "lecture" for today on Moodle) that the absolute value of a real number is defined as

$$
|x|= \begin{cases}x & \text { if } x \geq 0 \\ -x & \text { if } x<0 .\end{cases}
$$

There are several different types of intervals in the real number system written as follows:

$$
\begin{align*}
(a, b) & =\{x \mid a<x<b\} \tag{1}\\
{[a, b] } & =\{x \mid a \leq x \leq b\} \tag{2}\\
{[a, b) } & =\{x \mid a \leq x<b\} \tag{3}\\
(a, b] & =\{x \mid a<x \leq b\} . \tag{4}
\end{align*}
$$

Today we will practice on some problems related to these ideas.

Questions

1) Real numbers can all be expressed by (possibly infinite or non-repeating) decimal expansions.

But exactly what does a finite decimal expansion like $\frac{15}{8}=1.875$ mean? (Hint: It's really a way of writing the number as a sum of fractions with denominators of a particular form.) What does an infinite decimal expansion like

$$
\sqrt{2}=1.41421356 \cdots
$$

mean?
2) The set of real numbers x satisfying $|2 x+1|<4$ is an interval. Write it using the appropriate interval notation as in (1)-(4) above. What would change in your interval notation if we changed $<$ to \leq ?
3) Write the interval the interval $\left[-\frac{2}{5}, 3\right]$ in the form: "The set of all x such that $|x-c| \leq r$ " (What are c, r ?)
4) Using the plot of temperature versus time over a 24 -hour period at a particular location (on the back of this page) answer these questions:
(a) From the plot, does it appear that the temperature is a function of time over this period? Why or why not?
(b) Write the collection of all temperatures measured over the 24 hour period as an interval $[a, b]$ for suitable temperature values a, b in degrees Fahrenheit. (There's an unstated assumption behind this question. Can you see what that is? Does it seem reasonable to make that assumption?)

Figure 1: Figure for Question 6
(c) Estimate the interval $[c, d]$ of times in hours for which the temperature was 16.8 degrees or less.
(d) At how many different times does it appear that the temperature was exactly 40 degrees F?

Note: The temperature values at the start of each hour are given in the table at the right.

