MATH 135 - Calculus 1
The Intermediate Value Theorem
October 7, 2016

Background

It's our lucky day, because today we get to discuss some beautiful real mathematics(!) The Intermediate Value Theorem (IVT) is the following statement:

Theorem 1 (IVT) Let $f(x)$ be a function that is continuous at every x in a closed interval $[a, b]$. Then for every M between and $f(a)$ and $f(b)$, there exists at least one $x=c$ in the interval where $f(c)=M$.

What this is saying in intuitive terms is that the graph of a function that is continuous at every point of a closed interval really is one unbroken curve that can be drawn without lifting your pen or pencil from the paper. In the process it goes through every y-value between the y-coordinates of the endpoints ($a, f(a)$) and $(b, f(b))$. This statement has some important and surprising consequences!

Questions

(1) An important consequence: The IVT implies that equations have solutions(!) The IVT implies, for instance, that every cubic polynomial

$$
P(x)=A x^{3}+B x^{2}+C x+D
$$

(where $A \neq 0$) has some real root. Here's why:
(a) Since $A \neq 0$ we can divide both sides of the equation $A x^{3}+B x^{2}+C x+D=0$ by A to get an equation of the form $x^{3}+\beta x^{2}+\gamma x+\delta=0$, where $\beta=B / A$, etc. Explain why, no matter what β, γ, δ are, you can always find a really big $x=b>0$ where $b^{3}+\beta b^{2}+\gamma b+\delta>0$. On the other hand there must also be really negative $x=a<0$ where $a^{3}+\beta a^{2}+\gamma a+\delta<0$.
(b) Then think about what the IVT says about the cubic polynomial $x^{3}+\beta x^{2}+\gamma x+\delta$ on the interval $[a, b]$ between the very negative number a and the very positive number b. (Hint: We want to say $c^{3}+\beta c^{2}+\gamma c+\delta=0$ for some $x=c$ in the interval. Why does that follow?)
(2) A surprising consequence. Take any map and draw a circle on it anywhere. (See Figure 6 on page 103 of our textbook, for example.) I claim that the there are two distinct points on that circle where the temperature at the current instant is exactly the same. Here's the idea: If we put in a coordinate system with the center of the circle at $(0,0)$, then we can measure the counterclockwise angle θ from the positive x-axis to any diameter of the circle. Let $f(\theta)$ be the difference between the temperatures at the two endpoints of the diameter. In other words, if A and B are the two endpoints as in the figure, then $f(\theta)=$ temperature at A minus the temperature at B. It is reasonable to assume that $f(\theta)$ is a continuous function of θ (Why?). Then consider what happens as θ increases from 0 to π radians. How are the values $f(0)$ and $f(\pi)$ related? What does the IVT tell you about f on the interval $[0, \pi]$?

