MATH 135 - Calculus 1

Higher Derivatives

October 26, 2016

Background

If $f(x)$ is a function, $f^{\prime}(x)$ is often called its first derivative. (In the alternate notation that might be written $\frac{d y}{d x}$ if we're thinking of the graph $y=f(x)$. The reason for this is that it is possible to go on and differentiate $f^{\prime}(x)$ to get another new function. The derivative of $f^{\prime}(x)$, that is, $\left(f^{\prime}\right)^{\prime}(x)$ is also called the second derivative of the original f, and written $f^{\prime \prime}(x)$ or $\frac{d^{2} y}{d x^{2}}$. Continuing in the same way, if we can differentiate $f^{\prime \prime}(x)$, the result is called the third derivative of f, and so forth. The rules for computing these higher derivatives are exactly the same as the rules for computing $f^{\prime}(x)$ to start. Today, we want to practice with these and understand why they are interesting.

Questions

(1) For each function, use the appropriate short-cut rules to find the first derivative, and then differentiate again to get the second derivative:
(a) $f(x)=x^{5}+4 x^{3}+x$. Also find the third derivative $f^{\prime \prime \prime}(x)$, the fourth derivative, the fifth derivative, and the sixth derivative for this one. (What always happens if you differentiate a polynomial function repeatedly enough times?)
(b) $g(x)=\frac{x}{x^{2}-1}$. Your life will be a lot easier here if you simplify the first derivative before differentiating again to get $g^{\prime \prime}(x)$.
(c) $h(x)=\left(x^{2}+x+1\right) e^{x}$. Also find the third derivative $h^{\prime \prime \prime}(x)$ for this one.
(2) So why would we want to be able to differentiate multiple times? The answer is that the second derivative $f^{\prime \prime}$ in particular encodes interesting information about the original function f.
(a) (A physical reason) - If $x(t)$ is the position of a moving object, then the rate of change of position $v(t)=x^{\prime}(t)$ is called the (instantaneous) velocity at t. The rate of change of velocity is $v^{\prime}(t)=x^{\prime \prime}(t)$. What is the physical name for the rate of change of velocity?
(b) Suppose we know $f^{\prime \prime}(x)>0$ on some interval (a, b). Recall that $f^{\prime \prime}=\left(f^{\prime}\right)^{\prime}$. What can we say about f^{\prime} on that interval? Draw pictures illustrating graphs on which $f^{\prime \prime}(x)>0$ for all x. What is the name for the property you are seeing (recall today's video)?
(c) Now, suppose we know $f^{\prime \prime}(x)<0$ on some interval (a, b). Recall again that $f^{\prime \prime}=\left(f^{\prime}\right)^{\prime}$. What can we say about f^{\prime} on that interval? Draw pictures illustrating graphs on which $f^{\prime \prime}(x)<0$ for all x. What is the name for the property you are seeing?
(3) One of the graphs on the back this sheet is $y=f(x)$, and the other two are $y=f^{\prime}(x)$ and $y=f^{\prime \prime}(x)$ for the same function $f(x)$. Which graph is which? (Be careful - these are not polynomial functions, so counting x-axis intercepts or "turning points" might not give the correct result!)

Figure 1: Plot A

Figure 2: Plot B

Figure 3: Plot C

