MATH 135 - Calculus 1
 Sample Questions for Exam 2 - Answers and Solutions
 October 10, 2016

1. An object moves along a straight line path with position given by $x(t)=4 t^{2}+t-7$, (t in seconds, x in feet).
(a) What is the average velocity of the object over the interval $[0,5]$ of t-values? Solution: The average velocity is:

$$
v_{a v e}=\frac{x(5)-x(0)}{5-0}=\frac{98-(-7)}{5}=21 \mathrm{ft} / \mathrm{sec}
$$

(b) Fill in the following table with average velocities computed over the indicated intervals. Using this information, estimate the instantaneous velocity at $t=2$.
Solution:

interval	$[2,2.5]$	$[2,2.05]$	$[2,2.005]$	$[2,2.0005]$
ave.vel.	19.0	17.2	17.02	17.002

It looks as though the average velocity is tending to 17 as the length of the interval goes to 0 .
(c) Construct a similar table for intervals ending at $t=2$ and repeat the calculations in the previous part. If you estimate the instantaneous velocity at $t=2$ using this new information, does your result agree with what you did before (it should!)
Solution:

interval	$[1.5,2]$	$[1.95,2]$	$[1.995,2]$	$[1.9995,2]$
ave.vel.	15.0	16.8	16.98	16.998

It looks as though the average velocity is tending to 17 as the length of the interval goes to 0 again.
2. (a) What is the slope of the secant line to the graph $y=x^{3}+1$ through the points with $x=1$ and $x=2$?
Solution: The slope of the secant line is

$$
m_{s e c}=\frac{\left(2^{3}+1\right)-\left(1^{3}+1\right)}{2-1}=\frac{9-2}{1}=7 .
$$

(b) What is the slope of the secant line to the graph $y=x^{3}+1$ through the points with $x=1$ and $x=1+h$ for a general h ?

Solution: The slope of the secant line is

$$
m_{s e c}=\frac{(1+h)^{3}+1-\left(1^{3}+1\right)}{1+h-1}=\frac{3 h+3 h^{2}+h^{3}}{h} .
$$

(c) The slope of the tangent line to $y=x^{3}+1$ at $x=1$ would be obtained from what limit?

Solution: The slope of the tangent is

$$
m_{t a n}=\lim _{h \rightarrow 0} \frac{3 h+3 h^{2}+h^{3}}{h}
$$

(d) Estimate the limit in the previous part numerically (as in the first question).

Solution:

h	1	.5	.05	.005
$\left(3 h+3 h^{2}+h^{3}\right) / h$	7	4.75	3.1525	3.015025

It seems the limit as $h \rightarrow 0$ is about 3 .
(e) Evaluate the limit exactly using our algebraic techniques.

Solution:

$$
\lim _{h \rightarrow 0} \frac{3 h+3 h^{2}+h^{3}}{h}=\lim _{h \rightarrow 0} \frac{h\left(3+3 h+h^{2}\right)}{h}=\lim _{h \rightarrow 0} 3+3 h+h^{2}=3
$$

(cancelling the h 's top and bottom, then using the continuity of $3+3 h+h^{2}$ as a function of h).
3. The graph of a function f is shown below with several points marked. Find all the marked points at which the following are true, and give explanations for your answers.

(a) f has an infinite discontinuity - Answer: C (from the left)
(b) f has a jump discontinuity (and: If you had a vertical axis with actual y-values to use, how would you find the one-sided limits at each such point?) - Answer: G (The other part of the question: To get the one sided limits, you would try to match the y-coordinates of the left and right sides of the graph with the axis scale. Then the limit $\lim _{x \rightarrow G^{-}} f(x)$ would be the limiting y-coordinate on the left and $\lim _{x \rightarrow G^{+}} f(x)$ would be the limiting value from the right.)
(c) f has a removable discontinuity - Answer: B, because $\lim _{x \rightarrow B} f(x)$ exists, but is different from $f(B)$.
(d) f is continuous - Answer: f is continuous at points A, D, E, F (and all the nonmarked points too)
4. Compute the indicated limits. Show all work for full credit.
(a) $\lim _{x \rightarrow 1} \frac{3 x^{2}-5 x-2}{x^{2}-4 x+4}$

Solution: This is not an indeterminate form, and the denominator is not zero at 1 , so the answer can be found by continuity:

$$
\lim _{x \rightarrow 1} \frac{3 x^{2}-5 x-2}{x^{2}-4 x+4}=\frac{-4}{1}=-4
$$

(b) $\lim _{x \rightarrow 2} \frac{3 x^{2}-5 x-2}{x^{2}-4 x+4}$

Answer: This is a $0 / 0$ form. To try to evaluate, we aim to factor the bottom and cancel factors of $x-2$:

$$
\lim _{x \rightarrow 2} \frac{3 x^{2}-5 x-2}{x^{2}-4 x+4}=\lim _{x \rightarrow 2} \frac{(x-2)(3 x+1)}{(x-2)(x-2)}=\lim _{x \rightarrow 2} \frac{3 x+1}{x-2} .
$$

This is not indeterminate any more, but the bottom is still 0 at $x=2$. So this limit does not exist. (The function has an infinite discontinuity at $x=2$.)
(c) $\lim _{x \rightarrow \infty} \frac{3 x^{2}-5 x-2}{x^{2}-4 x+4}$

Solution: For this one, we multiply the top and bottom by $\frac{1}{x^{2}}$:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{3 x^{2}-5 x-2}{x^{2}-4 x+4} & =\lim _{x \rightarrow \infty} \frac{\left(3 x^{2}-5 x-2\right) \frac{1}{x^{2}}}{\left(x^{2}-4 x+4\right) \frac{1}{x^{2}}} \\
& =\lim _{x \rightarrow \infty} \frac{3-\frac{5}{x}-\frac{2}{x^{2}}}{1-\frac{4}{x}+\frac{4}{x^{2}}} \\
& =\frac{3-0-0}{1-0+0}=3
\end{aligned}
$$

(d) $\lim _{x \rightarrow 2} \frac{\frac{1}{x^{2}}-\frac{1}{4}}{x-2}$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{\frac{1}{x^{2}}-\frac{1}{4}}{x-2} & =\lim _{x \rightarrow 2} \frac{4-x^{2}}{4 x^{2}(x-2)} \\
& =\lim _{x \rightarrow 2} \frac{(2-x)(2+x)}{4 x^{2}(x-2)} \\
& =\lim _{x \rightarrow 2} \frac{-(2+x)}{4 x^{2}}=\frac{-1}{4} .
\end{aligned}
$$

(e) $\lim _{t \rightarrow 0} \frac{\sin (6 t)}{\sin (7 t)}$

Solution: For this one, we need to use the formula $\lim _{u \rightarrow 0} \frac{\sin (u)}{u}=1$ from Section 2.6. We have

$$
\begin{aligned}
\lim _{t \rightarrow 0} \frac{\sin (6 t)}{\sin (7 t)} & =\lim _{t \rightarrow 0} \frac{6 \cdot \sin (6 t) /(6 t)}{7 \cdot \sin (7 t) /(7 t)} \\
& =6 / 7
\end{aligned}
$$

(f) $\lim _{h \rightarrow 0} \frac{\sqrt{h+9}-\sqrt{9}}{h}$

Solution: Multiply top and bottom by the conjugate radical:

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{\sqrt{h+9}-\sqrt{9}}{h} & =\lim _{h \rightarrow 0} \frac{(\sqrt{h+9}-\sqrt{9})(\sqrt{h+9}+\sqrt{9})}{h(\sqrt{h+9}+\sqrt{9})} \\
& =\lim _{h \rightarrow 0} \frac{(h+9)-9}{h(\sqrt{h+9}+\sqrt{9})} \\
& =\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{h+9}+\sqrt{9})} \\
& =\lim _{h \rightarrow 0} \frac{1}{(\sqrt{h+9}+\sqrt{9})} \\
& =\frac{1}{2 \sqrt{9}}=\frac{1}{6} .
\end{aligned}
$$

5. Suppose you know each of the following conditions. What can you say about $\lim _{x \rightarrow c} f(x)$ for the indicated c ? Why?
(a) $x^{2}+x \leq f(x) \leq x^{3}+3$ for all real x, at $c=0$.

Solution: $f(x)$ is not "squeezed" in this case because $l(x)=x^{2}+x$ has the value $l(0)=0$, which is strictly less than $u(0)=3$ for $u(x)=x^{3}+3$. The limit of $f(x)$ as $x \rightarrow 0$ could be any number between 0 and 3 , or it might not exist at all.
(b) $-x^{2}+2 x \leq f(x) \leq x^{4}-4 x^{3}+6 x^{2}-4 x+2$ for all real x, at $c=1$

Solution: Now we have $l(1)=1$ and $u(1)=1$. So $f(x)$ is "squeezed" and the Squeeze Theorem says $\lim _{x \rightarrow 1} f(x)=1$ also.
(c) $f(x)=x \sin \left(\frac{1}{x}\right)$ for all real $x \neq 0$, at $c=0$.

Solution: This one is trickier because we are not given $l(x)$ and $u(x)$. However, note that for all $x \neq 0,-1 \leq \sin \left(\frac{1}{x}\right) \leq 1$. Therefore, $-x \leq f(x) \leq x$ for all $x \neq 0$. Hence the Squeeze Theorem does apply and we can see $\lim _{x \rightarrow 0} f(x)=0$. (This $f(x)$ has a graph that looks like the picture from Exercise 56 B on page 71.)
(a) What is the definition of the derivative of a function f at $x=a$ in its domain? Solution: $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$, if the limit exists. The limit $\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$ also computes $f^{\prime}(a)$. These can be seen to be equivalent if you let $x-a=h$ in the second form.
(a) Using the definition (not the shortcut rules), find $f^{\prime}(x)$ for $f(x)=3 x^{3}-2 x^{2}+1$ at a general $x=a$.
(b) Solution:

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{h \rightarrow 0} \frac{\left(3(a+h)^{3}-2(a+h)^{2}+1-\left(3 a^{3}-2 a^{2}+1\right)\right.}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 a^{3}+9 a^{2} h+9 a h^{2}+3 h^{3}-2 a^{2}-4 a h-2 h^{2}+1-3 a^{3}+2 a^{2}-1}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(9 a^{2}-4 a+9 a h-2 h+3 h^{2}\right) h}{h} \\
& =\lim _{h \rightarrow 0} 9 a^{2}-4 a+9 a h+2 h+3 h^{2} \\
& =9 a^{2}-4 a .
\end{aligned}
$$

(c) Using the definition (not the shortcut rules), find $f^{\prime}(x)$ for $f(x)=x^{1 / 2}$ at a general $x=a>0$.
Solution:

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{h \rightarrow 0} \frac{\sqrt{a+h}-\sqrt{a}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{a+h}-\sqrt{a}}{h} \cdot \frac{\sqrt{a+h}+\sqrt{a}}{\sqrt{a+h}+\sqrt{a}} \\
& =\lim _{h \rightarrow 0} \frac{a+h-a}{h \cdot(\sqrt{a+h}+\sqrt{a})} \\
& =\lim _{h \rightarrow 0} \frac{1}{\sqrt{a+h}+\sqrt{a}} \\
& =\frac{1}{2 \sqrt{a}} .
\end{aligned}
$$

(b) Using the definition (not the shortcut rules), find $f^{\prime}(x)$ for $f(x)=\frac{1}{x^{2}}$ at a general $x=a \neq 0$.

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{h \rightarrow 0} \frac{\frac{1}{(a+h)^{2}}-\frac{1}{a^{2}}}{h} \\
& =\lim _{h \rightarrow 0} \frac{a^{2}-(a+h)^{2}}{h a^{2}(a+h)^{2}} \\
& =\lim _{h \rightarrow 0} \frac{-2 a h-h^{2}}{h a^{2}(a+h)^{2}} \\
& =\lim _{h \rightarrow 0} \frac{-2 a-h}{a^{2}(a+h)^{2}} \\
& =\frac{-2 a}{a^{4}}=\frac{-2}{a^{3}} .
\end{aligned}
$$

