College of the Holy Cross, Spring 2014
 Solutions for Math 136, Midterm Exam 3
 May 2

I. Let R be the region bounded by $y=\sin (x)$, the x-axis, and $0 \leq x \leq \pi / 3$.
A. [10 points] Write down (but do not try to evaluate) the integral that would compute the arc-length of the top edge of R.

Solution: The top is the graph $y=\sin (x)$, so $\frac{d y}{d x}=\cos (x)$, and the arclength is

$$
\int_{0}^{\pi / 3} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{0}^{\pi / 3} \sqrt{1+\cos ^{2}(x)} d x
$$

B. [15 points] A thin metal plate of constant density has the shape of R. Find the x coordinate of the center of mass of the plate.

Solution: The x-coordinate of the center of mass is

$$
\frac{\int_{0}^{\pi / 3} x \sin (x) d x}{\int_{0}^{\pi / 3} \sin (x) d x}
$$

The denominator integral is simpler here:

$$
\int_{0}^{\pi / 3} \sin (x) d x=-\left.\cos (x)\right|_{0} ^{\pi / 3}=1-\frac{1}{2}=\frac{1}{2}
$$

For the numerator, we need to integrate by parts (with $u=x, d v=\sin (x) d x$, so $d u=d x$ and $v=-\cos (x))$:

$$
\begin{aligned}
\int_{0}^{\pi / 3} x \sin (x) d x & =-\left.x \cos (x)\right|_{0} ^{\pi / 3}+\int_{0}^{\pi / 3} \cos (x) d x \\
& =-\frac{\pi}{6}+\left.\sin (x)\right|_{0} ^{\pi / 3} \\
& =\frac{\sqrt{3}}{2}-\frac{\pi}{6}
\end{aligned}
$$

So the x-coordinate of the center of mass is

$$
\bar{x}=\sqrt{3}-\frac{\pi}{3} \doteq .6849
$$

II. Both parts of this problem deal with the differential equation $\frac{d y}{d x}=x y$.
A. [15 points] Find the general solution $y(x)$ of the equation by separating variables and integrating.

Solution: This is separable:

$$
\begin{aligned}
\frac{d y}{d x} & =x y \\
\int \frac{d y}{y} & =\int x d x \\
\ln |y| & =\frac{x^{2}}{2}+c \\
y & =k e^{x^{2} / 2} \quad \text { where } \quad k= \pm e^{c} .
\end{aligned}
$$

B. [5 points] Find the particular solution $y(x)$ satisfying the initial condition $y(0)=4$ and compute the exact value of $y(2)$.

Solution: With $y(0)=4$, we get $4=k e^{0}$, so $k=4$. The particular solution is $y=4 e^{x^{2} / 2}$. With $x=2$, we have $y=4 e^{2} \doteq 29.56$.
III. [10 points] A drug is administered to a patient intravenously at a constant rate of 10 mg per hour. The patient's body breaks down the drug and removes it from the bloodstream at a rate proportional to the amount present, with some proportionality constant k. Write a differential equation for the function $Q(t)=$ amount of the drug present (in mg) in the bloodstream at time t (in hours) that describes this situation. Note: You do not need to solve the equation.

Solution: The differential equation comes from analyzing both contributions to the change of the amount of drug in the bloodstream:

$$
\frac{d Q}{d t}=k Q+10
$$

Here $k<0$ is the proportionality constant giving the rate at which the drug is broken down and removed from the bloodstream. The term +10 represents the constant intravenous dose of 10 mg per hour.
IV.
A. [10 points] Does the geometric series $\sum_{n=0}^{\infty} \cdot \frac{2^{n}}{\pi^{n}}$ converge or diverge? If it is convergent, say why and find the sum; if it is not convergent say why not.

Solution: This is a geometric series with $a=1$ and $r=\frac{2}{\pi}$. Since $|r|<1$, it converges to the sum

$$
\sum_{n=0}^{\infty} \frac{2^{n}}{\pi^{n}}=\frac{1}{1-\frac{2}{\pi}}=\frac{\pi}{\pi-2} \doteq 2.752
$$

B. [10 points] Explain why the Integral Test can be applied to the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}+4}$ and use it to determine if the series converges or diverges.

Solution: The nth term of the series is $\frac{1}{n^{2}+4}=f(n)$, for the function $f(x)=\frac{1}{x^{2}+4}$. This function is continuous at all $x>1$, it is decreasing (since $f^{\prime}(x)=\frac{-2 x}{\left(x^{2}+4\right)^{2}}<0$ for all $x>1$), and $\lim _{x \rightarrow \infty} \frac{1}{x^{2}+4}=0$. Hence the Integral Test applies and

$$
\begin{aligned}
\int_{1}^{\infty} \frac{d x}{x^{2}+4} & =\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{d x}{x^{2}+4} \\
& =\left.\lim _{b \rightarrow \infty} \frac{1}{2} \tan ^{-1}\left(\frac{x}{2}\right)\right|_{1} ^{b} \\
& =\lim _{b \rightarrow \infty} \frac{1}{2} \tan ^{-1}\left(\frac{b}{2}\right)-\frac{1}{2} \tan ^{-1}\left(\frac{1}{2}\right) \\
& =\frac{\pi}{4}-\frac{\tan ^{-1}\left(\frac{1}{2}\right)}{2}
\end{aligned}
$$

Since the improper integral converges (is finite), the same is true for the infinite series.
V. All parts of this question refer to the power series

$$
\sum_{n=1}^{\infty} \frac{(x-1)^{n}}{n 3^{n}}
$$

A. [15 points] Use the Ratio Test to determine the radius of convergence.

Solution: Applying the Ratio Test,

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{(x-1)^{n+1}}{(n+1) 3^{n+1}} \cdot \frac{n 3^{n}}{(x-1)^{n}}\right| & =\lim _{n \rightarrow \infty} \frac{n}{3(n+1)}|x-1| \\
& =\frac{1}{3}|x-1|
\end{aligned}
$$

For absolute convergence, we need $\frac{1}{3}|x-1|<1$, so $|x-1|<3$, or $-2<x<4$.
The series is centered at $a=1$, so the radius of convergence is 3 .
B. [10 points] Test convergence at the endpoints of the interval from part A to determine the interval of convergence. Explain your conclusions.

Solution: The inequality $|x-1|<3$ is equivalent to $-3<x-1<3$, or $-2<x<4$. At $x=4$, we substitute and obtain

$$
\sum_{n=1}^{\infty} \frac{1}{n}
$$

This is the harmonic series which diverges. At $x=-2$, we have

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}
$$

The Alternating Series Test implies that this converges. So the interval of convergence is $[-2,4)$, or all x with $-2 \leq x<4$.

