College of the Holy Cross, Spring 2014
 Math 136, section 1, Midterm Exam 1
 Friday, February 21

I. Let $f(x)=x^{3}+1$ on the interval $[a, b]=[1,3]$.
A. (10) Evaluate the Riemann sum for f on this interval using $n=4$ and $x_{i}^{*}=$ right endpoints.

Solution: With $n=4$, we have $\Delta x=\frac{3-1}{3}=\frac{1}{2}$. The end points of the intervals are $x_{0}=1, x_{1}=\frac{3}{2}, x_{2}=2, x_{3}=\frac{5}{2}$, and $x_{4}=3$. The right-hand Riemann sum equals:

$$
f(3 / 2) \Delta x+f(2) \Delta x+f(5 / 2) \Delta x+f(3) \Delta x
$$

which equals

$$
(1 / 2)\left[\left((3 / 2)^{3}+1\right)+\left(2^{3}+1\right)+\left((5 / 2)^{3}+1\right)+\left(3^{3}+1\right)\right]=29
$$

B. (10) Now repeat part A, but using the left endpoints.

Solution: Similar to part A, but using the left endpoints:

$$
f(1) \Delta x+f(3 / 2) \Delta x+f(2) \Delta x+f(5 / 2) \Delta x
$$

which equals

$$
(1 / 2)\left[\left(1^{3}+1\right)+\left((3 / 2)^{3}+1\right)+\left(2^{3}+1\right)+\left((5 / 2)^{3}+1\right)\right]=16
$$

C. (5) One of your answers in parts A and B is definitely an overestimate for the value of $\int_{1}^{3} x^{3}+1 d x$. Which is it?
Solution: Since $f(x)=x^{3}+1$ is increasing on its whole domain, the right-hand sum (part A) gives an overestimate of the integral. (The exact value is

$$
\left.\int_{1}^{3} x^{3}+1 d x=\frac{x^{4}}{4}+\left.x\right|_{1} ^{3}=\frac{81}{4}+3-\frac{1}{4}-1=22 .\right)
$$

II. Compute the derivatives of each of the following functions defined by integrals.
A. (5) $f(x)=\int_{1}^{x} e^{t^{2}} d t$

Solution: By the FTC, part 1, $f^{\prime}(x)=e^{x^{2}}$
B. (5) $g(x)=\int_{x^{2}}^{4} \frac{\cos (t)}{t^{2}} d t$

Solution: We must reverse the order of the limits, then use the FTC part 1 and the Chain Rule on this one:

$$
g(x)=-\int_{4}^{x^{2}} \frac{\cos (t)}{t^{2}} d t \Rightarrow g^{\prime}(x)=\frac{-\cos \left(x^{2}\right)}{x^{4}} \cdot 2 x=\frac{-2 \cos \left(x^{2}\right)}{x^{3}}
$$

III. The following graph (made up of straight line segments) shows $y=f(t)$ for $0 \leq t \leq 4$.

Given: $f(1)=2, f(2)=-2, f(3)=-1$, and $f(4)=0$. The function F is defined by $F(x)=\int_{0}^{x} f(t) d t$.
A. (5) Determine the values $F(x)$ for $x=0,1,2,3,4$ and enter them in the following table.

Solution: By finding areas of trapezoids and triangles,

x	0	1	2	3	4
$F(x)$	0	$3 / 2$	$3 / 2$	0	$-1 / 2$

B. (5) Does $F(x)$ have any critical points? If so, say where. If not say why not.

Solution: $F^{\prime}(x)=f(x)$ and this equals 0 when $x=3 / 2$ and (in a sense - see below) again when $x=4$. Of these $x=3 / 2$ is definitely a critical point. Whether or not you call $x=4$ a critical point is sort of a matter of taste (i.e. of the precise way critical points are defined.) Note that $F(x)$ is not defined for $x>4$, so to define $F^{\prime}(4)$, one would have to consider just a one-sided limit of the difference quotient. That does exist and equals zero here. So it is OK to say $F^{\prime}(4)=0$ in that sense.
C. (5) Over which interval(s) is $F(x)$ concave down?

Solution: This is true on intervals where $F^{\prime}(x)=f(x)$ is decreasing, so $(1,2)$
IV.
A. (5) Integrate with a suitable u-substitution: $\int_{0}^{1}\left(4 x^{3}+1\right)^{3 / 5} x^{2} d x$.

Solution: Let $u=4 x^{3}+1$. Then $d u=12 x^{2} d x$, so $\frac{1}{12} d u=x^{2} d x$. When $x=0, u=1$ and when $x=1, u=5$. The definite integral goes over to

$$
\frac{1}{12} \int_{1}^{5} u^{3 / 5} d u=\left.\frac{1}{12} \frac{5}{8} u^{8 / 5}\right|_{1} ^{5}=\frac{5}{96}\left[5^{8 / 5}-1\right] \doteq .6319
$$

B. (10) Integrate with a suitable u-substitution: $\int \frac{x \sin \left(3 x^{2}\right)}{\cos \left(3 x^{2}\right)+1} d x$.

Solution: Let $u=\cos \left(3 x^{2}\right)+1$. Then $d u=-6 x \sin \left(3 x^{2}\right) d x$. So $x \sin \left(3 x^{2}\right) d x=\frac{-1}{6} d u$ and the integral goes over to

$$
\frac{-1}{6} \int \frac{d u}{u}=\frac{-1}{6} \ln |u|+C=\frac{-1}{6} \ln \left|\cos \left(3 x^{2}\right)+1\right|+C .
$$

C. (15) Integrate by parts: $\int x^{2} \sin (5 x) d x$

Solution: We integrate by parts twice, letting $u=$ power of x each time:

$$
\begin{aligned}
\int x^{2} \sin (5 x) d x & =\frac{-x^{2} \cos (5 x)}{5}+\frac{2}{5} \int x \cos (5 x) d x \\
& =\frac{-x^{2} \cos (5 x)}{5}+\frac{2}{5}\left(\frac{x \sin (5 x)}{5}-\frac{1}{5} \int \sin (5 x) d x\right) \\
& =\frac{-x^{2} \cos (5 x)}{5}+\frac{2 x \sin (5 x)}{25}+\frac{2 \cos (5 x)}{125}+C .
\end{aligned}
$$

D. (10) Integrate with any applicable method we have discussed: $\int_{0}^{1} \frac{x}{\sqrt{x^{2}+1}} d x$

Solution: The $x d x$ in the numerator is, up to a constant, the derivative of $u=x^{2}+1$ in the radical:

$$
=\frac{1}{2} \int_{u=1}^{u=2} u^{-1 / 2} d u=\left.u^{1 / 2}\right|_{1} ^{2}=\sqrt{2}-1 .
$$

E. (10) Integrate with any applicable method we have discussed: $\int e^{x} \cos (4 x) d x$

Solution: Use parts twice (letting $d v=e^{x} d x$ each time), then solve for the integral:

$$
\begin{aligned}
\int e^{x} \cos (4 x) d x & =e^{x} \cos (4 x)+4 \int e^{x} \sin (4 x) d x \\
& =e^{x} \cos (4 x)+4\left(e^{x} \sin (4 x)-4 \int e^{x} \cos (4 x) d x\right) \\
\text { so } \int e^{x} \cos (4 x) d x & =\frac{e^{x}}{17}(\cos (4 x)+4 \sin (4 x))+C
\end{aligned}
$$

