
Mathematics 136 – Calculus 2
Exam 3 – Sample Exam Questions – Solutions

April 22, 2014

I. (A) The arclength is

L =

∫ √(
dx

dt

)2

+

(
dy

dt

)2

dt

=

∫ 2

0

√
36t2 + 36t4 dt

=

∫ 2

0

6t
√

1 + t2 dt, so let u = 1 + t2; form is

∫
u1/2 du

= 2(1 + t2)3/2
∣∣2
0

= 2(5
√

5− 1).

(B) The arclength is

L =

∫ √
1 +

(
dy

dx

)2

dx

=

∫ 3

0

√
1 +

(
1

4
(x2 + 4)1/2(2x)

)2

dx

=

∫ 3

0

√
1

4
x4 + x2 + 1 dx (a perfect square under the radical)

=

∫ 3

0

1

2
(x2 + 2) dx

=
x3

6
+ x

∣∣∣∣3
0

=
15

2
.

II. (A) The average value is

fave =
1

2

∫ 2

0

x
√

1 + x4 dx

To evaluate the integral, use the substitution u = x2 and #21 in the table (or a
tangent substitution):

fave =
1

4

∫ 4

0

√
1 + u2 du

=
1

4

u

2

√
1 + u2 +

1

2
ln(u+

√
1 + u2)

∣∣∣∣4
0

=
1

2

√
17 +

1

8
ln(4 +

√
17).
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(B) Let the constant density be ρ. The center of mass is at the point (x, y) =
(My/M,Mx/M), where

M =

∫ 2

0

ρx
√

1 + x4 dx,

and

Mx =

∫ 2

0

ρ
1

2
(x
√

1 + x4)2 dx,

while

My =

∫ 2

0

ρx2
√

1 + x4 dx.

(C) In order for f(x) to be a probability density function, we need
∫∞
−∞ f(x) dx = 1.

Here that means

1 = c

∫ 2

0

x
√

1 + x4 dx.

From the result in part (A), we see

c =
1√

17 + 1
4

ln(4 +
√

17)
.

III. (A) Show that for any constant c, y = x2 + c
x2 is a solution of the differential equation

y′ = 4x− 2

x
y.

Solution: For y = x2+
c

x2
we have y′ = 2x− 2c

x3
and 4x− 2

x
y = 4x− 2

x
(x2+

c

x2
) =

2x− 2c

x3
. Thus y = x2 +

c

x2
is a solution to the differential equation y′ = 4x− 2

x
y.

(B) All parts of this question refer to the differential equation

y′ = y(4− y)

(1) Sketch the slope field of this equation, showing the slopes at points on the
lines y = 0, 1, 2, 3, 4, 5

Solution:
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(2) On your slope field, sketch the graph of the solution of the equation with
y(0) = 1.

Solution: See figure above.

(3) Use Euler’s method to approximate the solution of this equation with y(0) = 1
for 0 ≤ x ≤ 1 using n = 4.

Solution: We have ∆x = 0.25.

x0 = 0 y0 = 1
x1 = .25 y1 = y0 + (y0(4− y0))∆x = 1 + 3(.25) = 1.75
x2 = .5 y2 = y1 + (y1(4− y1))∆x = 2.734375
x3 = .75 y3 = y2 + (y2(4− y2))∆x = 3.599548340
x4 = 1 y4 = y3 + (y3(4− y3))∆x = 3.959909617

(4) This is a separable equation, find the general solution and determine the
constant of integration from the initial condition y(0) = 1.

Solution: After separating the variables we have

∫
1

y(4− y)
dy =

∫
dx.

For the integral in y we use partial fractions:
1

y(4− y)
=
A

y
+

B

4− y
. We find

that A = B = 1/4 and thus

∫
1

y(4− y)
dy =

1

4
ln |y|− 1

4
ln |4−y|. Therefore,

1

4
ln

∣∣∣∣ y

4− y

∣∣∣∣ = x + C. Then

∣∣∣∣ y

4− y

∣∣∣∣ = e4x · e4C and thus
y

4− y
= A · e4x.

Solving for y, we obtain y =
4Ae4x

1 + Ae4x
.

The initial condition y(0) = 1 gives 1 =
4A

1 + A
and thus A = 1/3.

(C) Find the general solutions of the following differential equations

(1) y′ =
y

x(x+ 1)

Solution: This is a separable differential equation.

We have

∫
dy

y
=

∫
dx

x(x+ 1)
. For the integral on the right we use partial

fractions.
1

x(x+ 1)
=

1

x
− 1

x+ 1
.

Thus

∫
1

x(x+ 1)
dx = ln |x| − ln |x+ 1|+ C = ln

∣∣∣∣ x

x+ 1

∣∣∣∣+ C.

We have ln |y| = ln

∣∣∣∣ x

x+ 1

∣∣∣∣+ C and thus |y| = eln|
x

x+1 |+C =

∣∣∣∣ x

x+ 1

∣∣∣∣ · eC .

Therefore y = A
x

x+ 1
is the general solution of the given differential equation.
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(2) y′ =

√
1− x2

e2y
.

Solution: This is a separable differential equation.

We have

∫
e2y dy =

∫ √
1− x2 dx. For the integral on the right we use the

trigonometric substitution x = sin θ, dx = cos θ dθ. Thus

∫ √
1− x2 dx =∫ √

1− sin θ cos θ dθ =

∫
cos2 θ dθ =

∫
1 + cos 2θ

2
dθ =

1

2
θ +

1

4
sin 2θ + C =

1

2
θ +

1

4
2 sin θ cos θ + C =

1

2
arcsinx+

1

2
x
√

1− x2 + C

Therefore
1

2
e2y =

1

2
arcsinx+

1

2
x
√

1− x2+C or e2y = arcsinx+x
√

1− x2+D

and we have that y =
1

2
ln(arcsinx + x

√
1− x2 + D) is the general solution

to the given differential equation.

(D) Newton’s Law of Cooling states that the rate at which the temperature of an
object changes is proportional to the difference between the object’s temperature
and the surrounding temperature. A hot cup of tea with temperature 100◦C
is placed on a counter in a room maintained at constant temperature 20◦C. Ten
minutes later the tea has cooled to 76◦C. How long will it take to cool off to 45◦C?
(Express Newton’s Law as a differential equation, solve it for the temperature
function, then use that to answer the question.)

Solution: Let T (t) denote the temperature of the cup at time t measured in
minutes from the time it was placed on the counter. The differential equation

modeling this scenario is
dT

dt
= k(T −20). In fact, this is an initial value problem:

T (0) = 100 and we have the additional information T (10) = 76. This will help us
find the constant of proportionality k. The differential equation is separable and

we have

∫
dT

T − 20
=

∫
k dt. Integrating both sides we obtain ln |T−20| = kt+C

and thus T − 20 = Aekt. Therefore T (t) = 20 + Aekt. Since T (0) = 100, we have

A = 80. Since T (10) = 76, we have 76 = 20 + 80e10k. Thus k =
1

10
ln

56

80
and

T (t) = 20 + 80e1/10 ln(7/10)t. To find the time when the tea has cooled to 45◦C, we
sove 20 + 80e1/10 ln(7/10)t = 45. Thus e1/10 ln(7/10)t = 25/80 = 5/16 and the tea will

be at 45◦C after t = 10
ln(5/16)

ln(7/10)
≈ 32.6 minutes.

IV. (A) Does the infinite series
∞∑
n=1

n ln(1 + n) converge? Why or why not?
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Solution: Since lim
n→∞

n ln(1 + n) 6= 0, the series
∞∑
n=1

n ln(1 + n) diverges (by the

nth Term Divergence Test).

(B) Use the Integral Test to determine whether or not

∞∑
k=1

k

ek

converges.

Solution: The function f(x) =
x

ex
is continuous and positive. Since f ′(x) =

ex − xex

e2x
=
ex(1− x)

e2x
< 0 for x > 1, f(x) is also decreasing for x > 1.

Consider ∫ ∞
1

x

ex
dx = lim

b→∞

∫ b

1

xe−x dx.

Using integration by parts, u = x, du = dx, dv = e−xdx, v = −e−x, the improper

integral equals lim
b→∞

(
−be−b + e−1 +

∫ b

1

e−x dx

)
= lim

b→∞

(
−be−b + e−1 − e−b + e−1

)
.

Since
lim
b→∞

e−b = 0

and

lim
b→∞

be−b = lim
b→∞

b

eb
l′H
= lim

b→∞

1

eb
= 0,

the improper integral converges to 2e−1. By the Integral Test, the series
∞∑
k=1

k

ek

converges.

(C) Use the Ratio Test to determine whether or not

∞∑
k=0

3n

n!

converges.

Solution:

lim
n→∞

3n+1

(n+1)!

3n

n!

= lim
n→∞

3

n+ 1
= 0 < 1.

By the Ratio Test, the series converges.

(D) Determine (with justification!) whether or not the following series converge:

∞∑
k=1

1√
k
,

∞∑
n=0

(−1)n
3n

π2n
,

∞∑
n=1

1

n1.01
.
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Solution: The series
∞∑
k=1

1√
k

is the p-series with p = 1/2 and thus it diverges.

The series
∞∑
n=0

(−1)n
3n

π2n
is the geometric series with ratio

−3

π2
. Since the ratio

is less than 1 in absolute value, the series converges. (The sum of the series is
1

1 + 3
π2

.)

The series
∞∑
n=1

1

n1.01
is the p-series with p = 1.01. Since p > 1, the p-series

converges.

(G) For each of the given power series, find the interval of convergence.

f(x) =
∞∑
k=0

xk, f(x) =
∞∑
n=1

(2x)n√
n
, g(x) =

∞∑
n=1

(−1)n−1 (x− 5)n

n · 3n
.

(In particular, give the radius of convergence, and investigate convergence at the
endpoints.)

Solution: For f(x) = f(x) =
∞∑
k=0

xk, we see that this is a geometric series with

ratio x. The series converges if and only if |x| < 1. The radius of convergence is
1, the series does not converge for either x = ±1. The interval of convergence is
(−1, 1). (Note: all of this could also be derived through use of the Ratio Test.)

For g(x) =
∞∑
n=1

(2x)n√
n

, consider the Ratio Test.

lim
n→∞

∣∣∣∣∣∣
(2x)n+1
√
n+1

(2x)n
√
n

∣∣∣∣∣∣ = lim
n→∞

2|x|
√
n√

n+ 1
= 2|x|.

The series converges if |x| < 1/2 and it diverges if |x| > 1/2. Since the series is
centered at 0 the radius of convergence is 1/2.

If x = 1/2, the series equals
∞∑
n=1

1√
n

which is the p-series with p = 1/2. Since

p < 1, the series diverges.

If x = −1/2, the series equals
∞∑
n=1

(−1)n√
n

. Since the sequence
1√
n

is decreasing

and it converges to 0 as b → ∞, the series converges by the Alternating Series
Test.
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The interval of convergence for the first series is [1/2, 1/2).

We consider the Ratio Test for h(x) =
∞∑
n=1

(−1)n−1 (x− 5)n

n · 3n
.

lim
n→∞

|x−5|n+1

(n+1)3n+1

|x−5|n
n·3n

= lim
n→∞

|x− 5| · n
3(n+ 1)

=
|x− 5|

3
.

The series converges if |x− 5| < 3 and it diverges if |x− 5| > 3. Thus the radius
of convergence is 3.

If x− 5 = 3, i.e., x = 8, the series becomes the alternating harmonic series and it
converges.

If x − 5 = −3, i.e., x = 2, the series equals g(x) =
∞∑
n=1

(−1)n−1 (−1)n

n
= −

∞∑
n=1

1

n

which is the negative of the harmonic series and thus it diverges.

The interval of convergence for the third series is (2, 8].
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