1. Compute the indicated limits. Show all work for full credit.
(a) (5) $\lim _{x \rightarrow 1} \frac{5 x^{2}-3 x-2}{x^{2}-7 x+6}$

Solution: The top and bottom are going to zero separately as $x \rightarrow 1$, so we need to do some algebra and try to cancel factors:

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{5 x^{2}-3 x-2}{x^{2}-7 x+6} & =\lim _{x \rightarrow 1} \frac{(5 x+2)(x-1)}{(x-6)(x-1)} \\
& =\lim _{x \rightarrow 1} \frac{5 x+2}{x-6} \\
& =-\frac{7}{5}
\end{aligned}
$$

(b) (5) $\lim _{x \rightarrow 2} \frac{5 x^{2}-3 x-2}{x^{2}-7 x+6}$

Solution: Now, neither the numerator nor the denominator is going to 0 as $x \rightarrow 2$, so the rational function is continuous at $x=2$ and the limit is

$$
\lim _{x \rightarrow 2} \frac{5 x^{2}-3 x-2}{x^{2}-7 x+6}=\frac{12}{-4}=-3
$$

(c) (5) $\lim _{x \rightarrow \infty} \frac{5 x^{2}-3 x-2}{x^{2}-7 x+6}$

Solution: The limit is 5 , as can be seen by this calculation (multiply top and bottom by $\frac{1}{x^{2}}$):

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{5 x^{2}-3 x-2}{x^{2}-7 x+6} & =\lim _{x \rightarrow \infty} \frac{5-\frac{3}{x}-\frac{2}{x^{2}}}{1-\frac{7}{x}+\frac{6}{x^{2}}} \\
& =5
\end{aligned}
$$

2. The graph of a function f with $f(-1)=-.2$ and $f(2)=-1$ is shown below.

(a) (10) What are $\lim _{x \rightarrow 2^{-}} f(x)$ and $\lim _{x \rightarrow 2^{+}} f(x)$?

Solution: From the graph, $\lim _{x \rightarrow 2^{-}} f(x)=0$ and $\lim _{x \rightarrow 2^{+}} f(x)=-1$.
(b) (15) Find all x in $(-3,5)$ where f is discontinuous. Explain.

Solution: $f(x)$ has jump discontinuities at $x=-1$ and $x=2$. It also has an infinite discontinuity (vertical asymptote) at $x=3$. These are the only discontinuities.
(c) (10) Given that $f(x)=x+3$ for $-1<x<0$ and $f(x)=3-x-\frac{x^{3}}{8}$ for $0 \leq x<2$, is f differentiable at $a=0$? Why or why not?
Solution: The answer is no, f is not differentiable at 0 . The easiest way to see this is that $\lim _{h \rightarrow 0^{-}} \frac{f(0+h)-f(0)}{h}$ will agree with the derivative of $x+3$ at $x=0$, and equal 1. On the other hand $\lim _{h \rightarrow 0^{+}} \frac{f(0+h)-f(0)}{h}$ will agree with the derivative of $3-x-\frac{x^{3}}{8}$ at $x=0$, which is -1 . (This is the precise meaning of the apparent "corner" on the graph at $x=0$.) Since the one-sided limits of the difference quotient of f are not the same, $f^{\prime}(0)$ does not exist.
3. Use the sum, product, and/or quotient rules to compute the following derivatives. You may use any correct method, but must show work and simplify your answers for full credit.
(a) (5) $\frac{d}{d x}\left(\frac{5}{\sqrt{x}}-e^{x}+3\right)$

Solution: By the sum, power and exponential rules,

$$
\frac{d}{d x}\left(\frac{5}{\sqrt{x}}-e^{x}+3\right)=\frac{-5}{2} x^{-3 / 2}-e^{x}
$$

(b) (10) $\frac{d}{d u}\left(u^{5 / 3} e^{u}\right)$

Solution: By the product, power and exponential rules,

$$
\frac{d}{d u}\left(u^{5 / 3} e^{u}\right)=u^{5 / 3} e^{u}+\frac{5}{3} u^{2 / 3} e^{u}=u^{2 / 3}\left(u+\frac{5}{3}\right) e^{u} .
$$

(c) (10) $\frac{d}{d v}\left(\frac{v^{3}-2 v}{v^{2}+5 v+1}\right)$

Solution: By the quotient rule

$$
\begin{aligned}
\frac{d}{d v}\left(\frac{v^{3}-2 v}{v^{2}+5 v+1}\right) & =\frac{\left(v^{2}+5 v+1\right)\left(3 v^{2}-2\right)-\left(v^{3}-2 v\right)(2 v+5)}{\left(v^{2}+5 v+1\right)^{2}} \\
& =\frac{v^{4}+10 v^{3}+5 v^{2}-2}{\left(v^{2}+5 v+1\right)^{2}}
\end{aligned}
$$

(d) (5) $\frac{d}{d x}\left(\frac{e^{\pi}+\pi^{e}-x^{\pi}}{4}\right)$

Solution: Since e^{π} and π^{e} are constants, the derivative is just $\frac{-\pi x^{\pi-1}}{4}$.
4. Do not use the differentiation rules from Chapter 3 in this question.
(a) (5) State the limit definition of the derivative $f^{\prime}(x)$.

Solution: The derivative $f^{\prime}(x)$ is

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

if the limit exists.
(b) (10) Use the definition to compute the derivative function of $f(x)=\sqrt{x+1}$. Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\sqrt{x+h+1}-\sqrt{x+1}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{x+h+1}-\sqrt{x+1}}{h} \cdot \frac{\sqrt{x+h+1}+\sqrt{x+1}}{\sqrt{x+h+1}+\sqrt{x+1}} \\
& =\lim _{h \rightarrow 0} \frac{(x+h+1)-(x+1)}{h(\sqrt{x+h+1}+\sqrt{x+1})} \\
& =\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h+1}+\sqrt{x+1}} \\
& =\frac{1}{2 \sqrt{x+1}} .
\end{aligned}
$$

(c) (5) Find the equation of the line tangent to the graph $y=\sqrt{x+1}$ at $x=8$.

Solution: By the previous part, the slope of the tangent is $f^{\prime}(8)=\frac{1}{6}$. The tangent line has equation:

$$
y-3=\frac{1}{6}(x-8)
$$

