College of the Holy Cross
 MATH 135 , section 1
 Exam 3 Solutions - Friday, November 22

I. For each of the following functions find the derivative and simplify.
A. (5) $f(x)=e^{2 x} \cos (4 x)$

Solution: By the product and chain rules,

$$
f^{\prime}(x)=-4 e^{2 x} \sin (4 x)+2 e^{2 x} \cos (4 x)=2 e^{2 x}(\cos (4 x)-2 \sin (4 x)) .
$$

B. (5) $g(x)=\frac{x^{2}+2}{\ln (x)}$

Solution: By the quotient rule,

$$
g^{\prime}(x)=\frac{2 x \ln (x)-\left(x^{2}+2\right) \frac{1}{x}}{(\ln (x))^{2}}=\frac{2 x^{2} \ln (x)-x^{2}-2}{x(\ln (x))^{2}} .
$$

C. (5) $h(x)=\tan ^{-1}(2 x+1)$

Solution: By the derivative rule for inverse tangent and the chain rule,

$$
h^{\prime}(x)=\frac{2}{1+(2 x+1)^{2}} .
$$

D. (10) $k(x)=x^{\sin (x)}$

Solution: Since x appears in the base and the exponent, we must use logarithmic differentiation. Writing $y=x^{\sin (x)}, \ln (y)=\sin (x) \ln (x)$. So then differentiating implicitly,

$$
\frac{y^{\prime}}{y}=\cos (x) \ln (x)+\frac{\sin (x)}{x}
$$

and

$$
y^{\prime}=x^{\sin (x)}\left(\cos (x) \ln (x)+\frac{\sin (x)}{x}\right) .
$$

E. (10) Find y^{\prime} by implicit differentiation if $x^{3} y^{2}+2 y=3 x$.

Solution:

$$
3 x^{2} y^{2}+x^{3} \cdot 2 y y^{\prime}+2 y^{\prime}=3
$$

so

$$
y^{\prime}=\frac{3-3 x^{2} y^{2}}{2 x^{3} y+2}
$$

II. (20) A rocket is launched vertically and is tracked by a ground station 4 miles from the launch pad. What is the vertical speed of the rocket when its height above the ground is 3 miles and its distance to the ground station is increasing at 3300 miles per hour?

Solution: Let y be the height of the rocket above the launch pad as a function of t and z be the distance to the ground station as a function of t. At each time the position of the rocket, the launch pad, and the ground station form a right triangle, so by the Pythagorean theorem we have

$$
16+y^{2}=z^{2}
$$

Differentiating with respect to t :

$$
2 y \frac{d y}{d t}=2 z \frac{d z}{d t} .
$$

The vertical speed of the rocket that we want is $\frac{d y}{d t}$. We know that at the time t when $y=3$, $z=5$ and $\frac{d z}{d t}=3300$. Therefore

$$
\frac{d y}{d t}=\frac{5 \cdot 3300}{3}=5500 \mathrm{~m} / \mathrm{hr}
$$

III. All parts of this question refer to the function $f(x)=-2 x^{3}+24 x+11$.
A. (10) Find the critical numbers of $f(x)$.

Solution: We have $f^{\prime}(x)=-6 x^{2}+24=0$ when $x= \pm 2 . f^{\prime}(x)$ exists for all real x, so the only critical numbers are $x= \pm 2$.
B. (10) What does the Second Derivative Test tell you about the behavior of f at each of these critical numbers?

Solution: $f^{\prime \prime}(x)=-12 x$. We see $f^{\prime \prime}(2)=-24<0$, so by the Second Derivative Test, f has a local maximum at $x=2$. Similarly, $f^{\prime \prime}(-2)=24>0$. Therefore f has a local minimum at $x=-2$.
IV. All parts of this question refer to the function $f(x)=\frac{x}{(2 x+1)^{2}}$, for which the first two derivatives are, in simplified form:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1-2 x}{(2 x+1)^{3}} \\
f^{\prime \prime}(x) & =\frac{8 x-8}{(2 x+1)^{4}}
\end{aligned}
$$

A. (5) What is the domain of $f(x)$?

Solution: Domain of f is all $x \neq-1 / 2$, or $(-\infty,-1 / 2) \cup(-1 / 2, \infty)$.
B. (10) Find all critical numbers and determine where $f(x)$ is increasing and decreasing.

Solution: From the formula for $f^{\prime}(x)$, we see $f^{\prime}(x)=0$ when $x=1 / 2$, and $f^{\prime}(x)$ exists for all $x \neq-1 / 2,1 / 2$. Technical point: $x=-1 / 2$ is not a critical number for f, since critical numbers must be in the domain of the function. So the only critical number is $x=1 / 2$. Looking at the sign of $f^{\prime}(x)$, we see $f^{\prime}(x)<0$ for x in $(-\infty,-1 / 2), f^{\prime}(x)>0$ for x in $(-1 / 2,1 / 2)$, and $f^{\prime}(x)<0$ for x in $(1 / 2, \infty)$. Therefore f is decreasing on $(-\infty,-1 / 2)$ and $(1 / 2, \infty)$ and increasing on ($-1 / 2,1 / 2$).
C. (5) What is the absolute minimum value of $f(x)$ on the interval $[0,3]$?

Solution: The critical number $1 / 2$ is in this interval. We have $f(1 / 2)=\frac{1}{8}, f(0)=0$ and $f(3)=\frac{3}{49}$. The absolute minimum value is $f(0)=0$. (Note that by the First Derivative Test, f has a local maximum at $x=1 / 2$, so the minimum must be at one of the endpoints.)
D. (5) Determine the concavity of $f(x)$, and find all inflection points.

Solution: $f^{\prime \prime}(x)>0$ on $(1, \infty)$ and $f^{\prime \prime}(x)<0$ on $(-\infty,-1 / 2)$ and $(-1 / 2,1)$. The concavity changes at $x=1$, so that is the only inflection point.

