College of the Holy Cross, Fall 2013
 Math 135, Section 1, Midterm 1 Solutions
 Friday, September 20

I. Match the plots below with the following formulas. Note that there is an extra plot.
(5) A) $y=3-(x-1)^{2}$ is Plot: $\underline{3}$ (the $x-1$ shifts the parabola to the right, not the left)
(5) B) $y=\sin (x / 2)$ is Plot: $\underline{2}$ (the $x / 2$ makes the period equal to $4 \pi \doteq 12.6$, so the usual sine graph is stretched horizontally)
(5) C) $y=1-e^{-x}$ is Plot: 1 (think: $y=e^{x}$ reflected across the x - and y-axes, then shifted up)
(5) D) $y=\sin (2 x)$ is Plot: $\underline{5}$ (the $2 x$ makes the period equal to $\pi \doteq 3.14$, so the usual sine graph is compressed horizontally).

Plot 2:

Plot 3:

Plot 4:

II. The manager of a furniture factory has collected the following data for the cost of manufacturing chairs.

\# Chairs (per day) x	Cost (in dollars) y
100	2400
150	3100
250	4500
300	5200

(10) A) Given that y is a linear function of x, determine a formula for it.

The slope is $m=\frac{3100-2400}{150-100}=14$ so by the point slope form, we get $y-2400=$ $14(x-100)$, or $y=14 x+1000$.

$$
\text { Cost function: } \quad y-2400=14(x-100) \text { or } y=14 x+1000
$$

(5) B) What does the slope represent in real-world terms?

The slope represents the cost of manufacturing one additional chair per day, or $C(x+$ 1) $-C(x)$.
(5) C) What does the y-intercept represent in terms of cost?

The y-intercept of 1000 represents the cost per day if no chairs are actually manufactured $(x=0)$. These are often called fixed costs - things like the maintenance costs of the factory, taxes, labor costs, etc.
(5) D) Using your model, determine how much it will cost to produce 350 chairs per day.

$$
\text { Cost: } \quad(14)(350)+1000=\$ 5900
$$

III. Given $f(x)=4-x^{2}$ and $g(x)=\sqrt{3 x-2}$, answer the following questions.
(10) A) Find the domain of $f(x)$ and the domain of $g(x)$.

The domains here are the sets of all real x that can be substituted into the formulas to yield a well-defined result. For f there are no restrictions. For g, we must have $3 x-2 \geq 0$, so $x \geq \frac{2}{3}$.

Domain of f : all real x, or $(-\infty,+\infty)$

Domain of g :

$$
\text { all real } x \geq \frac{2}{3} \text {, or }\left[\frac{2}{3},+\infty\right)
$$

(5) B) What is the domain of the function $g(x) / f(x)$?

Now we must be able to substitute an x that makes sense for g, and that also avoids making $f(x)=0$.

$$
\text { Domain of } g(x) / f(x): \quad\left[\frac{2}{3}, 2\right) \cup(2,+\infty) \text {, or something equivalent }
$$

(5) C) Find the function $g \circ f . \quad(g \circ f)(x)=g(f(x))=\sqrt{3\left(4-x^{2}\right)-2}=\sqrt{10-3 x^{2}}$
IV. Answer the following questions.
(5) A) Find all values of x in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ for which $|\tan x|>1$.

This is true if $\tan (x)>1$ or $\tan (x)<-1$. The first occurs for x between $\frac{\pi}{4}$ and $\frac{\pi}{2}$; the second occurs for x between $-\frac{\pi}{2}$ and $-\frac{\pi}{4}$.

$$
\text { Values of } x: \quad\left(-\frac{\pi}{2},-\frac{\pi}{4}\right) \cup\left(\frac{\pi}{4}, \frac{\pi}{2}\right)
$$

Note: Equivalent answers like: all x with $-\frac{\pi}{4}<x<-\frac{\pi}{4}$ or $\frac{\pi}{4}<x<\frac{\pi}{2}$ are also OK.
(5) B) If $\sin \theta=\frac{2}{3}$ and $\frac{\pi}{2}<\theta<\pi$, give the exact value of $\cos \theta$.

We can use the basic trig identity $\sin ^{2}(\theta)+\cos ^{2}(\theta)=1$ for this: $\left(\frac{2}{3}\right)^{2}+\cos ^{2}(\theta)=1$ so $\cos ^{2}(\theta)=\frac{5}{9}$ and $\cos (\theta)= \pm \frac{\sqrt{5}}{3}$. Since θ is between $\frac{\pi}{2}$ and π, the cosine must be negative, so the correct answer is:

$$
\cos \theta: \quad-\frac{\sqrt{5}}{3}
$$

(5) C) Express as a single logarithm: $\frac{1}{2} \ln 3-3 \ln 2+\ln 6$.

Use the properties of logarithms: $\ln (A)+\ln (B)=\ln (A B), \ln (A)-\ln (B)=\ln (A / B)$, and $p \ln (A)=\ln \left(A^{p}\right)$. Then

$$
\frac{1}{2} \ln 3-3 \ln 2+\ln 6=\ln \left(\frac{3^{1 / 2} \cdot 6}{2^{3}}\right)
$$

Single logarithm:

$$
\ln \left(\frac{3^{1 / 2} \cdot 6}{2^{3}}\right)=\ln \left(\frac{3 \sqrt{3}}{4}\right)
$$

V. Consider the function $f(x)=\frac{1}{2} e^{x+1}+1$.
(15) A) Given that f is one-to-one, find a formula for the inverse function of f.

Set up $y=\frac{1}{2} e^{x+1}+1$ and solve for x :

$$
\begin{aligned}
2(y-1) & =e^{x+1}, \text { so after taking natural } \log \text { of both sides } \\
\ln (2(y-1)) & =x+1 \\
x & =\ln (2(y-1))-1
\end{aligned}
$$

We can swap the variables to write the inverse function as a function of x :

$$
f^{-1}(x)=\ln (2(x-1))-1
$$

(10) B) In the space below, plot the graphs of the functions f and f^{-1} on the same set of axes. Label one point on each graph with its coordinates.

Here are the graphs:

Note that $f(x)>1$ for all x. This means that $y=f(x)$ should be approaching the horizontal line $y=1$ as $x \rightarrow-\infty$. Because of this, the graph $y=f^{-1}(x)$ has a vertical asymptote at $x=1$. It is obtained by reflecting $y=f(x)$ across the line $y=x$. The top (red) curve is $y=f(x)$; it contains the point $\left(0, \frac{e}{2}+1\right) \doteq(0,2.36)$. The bottom (blue) curve is $y=f^{-1}(x)$, obtained by reflecting $y=f(x)$ across the line $y=x$; it contains the point $\left(\frac{e}{2}+1,0\right) \doteq(2.36,0)$.

