MATH 131, section 1 - Calculus for Physical and Life Sciences Solutions for Sample Exam Questions - Exam 3

November 19, 2013
I. Find y^{\prime} and simplify.
(a) $y=\ln (x)\left(x^{7}-\frac{4}{\sqrt{x}}\right)$

Solution: By the product rule,

$$
\begin{aligned}
y^{\prime} & =\ln (x)\left(7 x^{6}+2 x^{-3 / 2}\right)+\frac{1}{x}\left(x^{7}-\frac{4}{x^{1 / 2}}\right) \\
& =\ln (x)\left(7 x^{6}+2 x^{-3 / 2}\right)+x^{6}-\frac{4}{x^{3 / 2}}
\end{aligned}
$$

(b) $y=\left(e^{2 x}+2\right)^{3}$.

Solution: By the chain rule (twice),

$$
y^{\prime}=3\left(e^{2 x}+2\right)^{2} \cdot e^{2 x} \cdot 2=6 e^{2 x}\left(e^{2 x}+2\right)^{2}
$$

(c) $y=\frac{x+1}{3 x^{4}-1}$.

Solution: By the quotient rule,

$$
\begin{aligned}
y^{\prime} & =\frac{\left(3 x^{4}-1\right)(1)-(x+1)\left(12 x^{3}\right)}{\left(3 x^{4}-1\right)^{2}} \\
& =\frac{-9 x^{4}-12 x^{3}-1}{\left(3 x^{4}-1\right)^{2}}
\end{aligned}
$$

(d) $y=\frac{\sin (x)}{1+\cos (x)}$

Solution: By the quotient rule,

$$
\begin{aligned}
y^{\prime} & =\frac{(1+\cos (x))(\cos (x))-\sin (x)(-\sin (x))}{(1+\cos (x))^{2}} \\
& =\frac{\cos (x)+\cos ^{2}(x)+\sin ^{2}(x)}{(1+\cos (x))^{2}} \\
& =\frac{1}{1+\cos (x)}
\end{aligned}
$$

(e) $y=\tan ^{-1}\left(e^{5 x}\right)$.

Solution: By the derivative rule for inverse tangent and the chain rule,

$$
y^{\prime}=\frac{1}{1+\left(e^{5 x}\right)^{2}} \cdot e^{5 x} \cdot 5=\frac{5 e^{5 x}}{1+e^{10 x}} .
$$

(f) $x y^{2}-3 y^{3}+2 x^{4}=2$.

Solution: Since the equation involves both x and y we use implicit differentiation. Differentiating thinking of y as a function of x,

$$
2 x y y^{\prime}+y^{2}-9 y^{2} y^{\prime}+8 x^{3}=0
$$

Then solving for y^{\prime} :

$$
y^{\prime}=\frac{-y^{2}-8 x^{3}}{2 x y-9 y^{2}}
$$

(g) $y=\cos (x)^{x^{3}}$.

Solution: For functions of the form $u(x)^{v(x)}$, we use logarithmic differentiation. First take \ln of both sides

$$
\ln (y)=\ln \left(\cos (x)^{x^{3}}\right)=x^{3} \ln (\cos (x))
$$

then differentiate using the product and chain rules:

$$
\frac{1}{y} y^{\prime}=-x^{3} \tan (x)+3 x^{2} \ln (\cos (x))
$$

So

$$
y^{\prime}=y\left(-x^{3} \tan (x)+3 x^{2} \ln (\cos (x))\right)=\cos (x)^{x^{3}}\left(-x^{3} \tan (x)+3 x^{2} \ln (\cos (x))\right)
$$

II. The quantity of a reagent present in a chemical reaction is given by $Q(t)=t^{3}-3 t^{2}+t+30$ grams at time t seconds for all $t \geq 0$.
(a) Over which intervals with $t \geq 0$ is the amount increasing? decreasing?

Solution: We need to determine the intervals where $Q^{\prime}(t)=3 t^{2}-6 t+1$ is positive and negative. By the quadratic formula, $3 t^{2}-6 t+1=0$ when

$$
t=\frac{6 \pm \sqrt{24}}{6}=\frac{3 \pm \sqrt{6}}{3}
$$

which are both positive numbers. By making a sign chart for Q^{\prime} we see $Q^{\prime}(t)>0$ for t in $\left[0, \frac{3-\sqrt{6}}{3}\right) \cup\left(\frac{3+\sqrt{6}}{3},+\infty\right)$. (Note the problem just said look at $t \geq 0$.) $Q^{\prime}(t)<0$ for t in $\left(\frac{3-\sqrt{6}}{3}, \frac{3+\sqrt{6}}{3}\right)$.
(b) Over which intervals is the rate of change of Q increasing? decreasing? The rate of change is increasing (decreasing) when $Q^{\prime \prime}(t)=6 t-6$ is positive (negative). This is increasing for $t>1$ and decreasing for $0 \leq t<1$ (again, the problem said look only at $t \geq 0$ so we are ignoring $t<0$).
III. A spherical balloon is being inflated at 20 cubic inches per minute. When the radius is 6 inches, at what rate is the radius of the balloon increasing? At what rate is the surface area increasing? (The volume of a sphere of radius r is $V=\frac{4 \pi r^{3}}{3}$ and the surface area is $4 \pi r^{2}$.)

Solution: This is a related rates problem. From the volume formula, since V and r are changing with time t,

$$
\frac{d V}{d t}=4 \pi r^{2} \frac{d r}{d t}
$$

We are given that $\frac{d V}{d t}=20$, so when $r=6$:

$$
20=4 \pi(6)^{2} \frac{d r}{d t}
$$

so

$$
\frac{d r}{d t}=\frac{20}{144 \pi}=\frac{5}{36 \pi}
$$

(inches per minute). The surface area is changing at the rate

$$
\frac{d A}{d t}=8 \pi r \frac{d r}{d t}=8 \pi \cdot 6 \cdot \frac{5}{36 \pi}=\frac{20}{3}
$$

(square inches per minute).
IV. All parts of this question refer to $f(x)=4 x^{3}-x^{4}$.
(a) Find and classify all the critical numbers of f using the First Derivative Test.

Solution: The first derivative is $f^{\prime}(x)=12 x^{2}-4 x^{3}=4 x^{2}(3-x)$, so f has critical numbers at $x=0$ and $x=3$. The first derivative is positive for $x<0$, positive for $0<x<3$, and negative for $x>3$. Hence $x=3$ is a local maximum, and $x=0$ is neither a local max nor a local min.
(b) Over which intervals is the graph $y=f(x)$ concave up? concave down?

Solution: For concavity, we need $f^{\prime \prime}(x)=24 x-12 x^{2}=12 x(2-x)$. This is negative for $x<0$ and $x>2$, and positive for $0<x<2$. Hence $y=f(x)$ is concave up on $(0,2)$ and concave down on $(-\infty, 0) \cup(2,+\infty)$. (Since the graph changes concavity at $x=0,2$, these are points of inflection.)
(c) Sketch the graph $y=f(x)$.

Solution: Omitted - Ask Gopal to sketch in the review session.
(d) Find the absolute maximum and minimum of $f(x)$ on the interval [1, 4].

Solution: On this closed interval, we have a critical number at $x=3$. The critical value is $f(3)=4 \cdot 27-81=27$. The values at the endpoints are $f(1)=4-1=3$ and $f(4)=4 \cdot 64-256=0$. Hence the maximum value on the interval is $f(3)=27$ and the minimum is $f(4)=0$.
V. All three parts of this question refer to the function $f(x)=x^{2 / 3}-\frac{1}{5} x^{5 / 3}$.
(a) Find all the critical numbers of $f(x)$.

Solution: The derivative is

$$
f^{\prime}(x)=\frac{2}{3} x^{-1 / 3}-\frac{1}{3} x^{2 / 3}=\frac{1}{3} x^{-1 / 3}(2-x)
$$

The function has critical numbers at $x=0\left(f^{\prime}(0)\right.$ is undefined - the graph has a cusp point there), and $x=2\left(f^{\prime}(2)=0\right)$.
(b) Find all the inflection points of $f(x)$.

Solution: For this we need

$$
f^{\prime \prime}(x)=\frac{-2}{9} x^{-4 / 3}-\frac{2}{9} x^{-1 / 3}=-\frac{2}{9} x^{-4 / 3}(1+x)
$$

There is just one point of inflection at $x=-1$. Since $x^{-4 / 3}=\frac{1}{\left(x^{1 / 3}\right)^{4}}$, that term is positive whenever it is defined, so the sign of $f^{\prime \prime}$ changes only at $x=-1$.
(c) For which of the critical numbers here is the Second Derivative Test applicable? Why? Determine the type of each such critical number using the Second Derivative Test.

Solution: The Second Derivative Test is applicable at critical numbers where the first derivative is equal to zero; here only at $x=2$. We have $f^{\prime \prime}(2)=-\frac{2}{9} \cdot 2^{-4 / 3}(1+2)=$ $-\frac{2}{3} \cdot 2^{-4 / 3}<0$. Hence f has a local maximum at $x=2$ since the graph is concave down there.

