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Abstract—Cloud platforms can leverage Trusted Platform
Modules to help provide assurance to clients that cloud-based
web services are trustworthy and behave as expected. We discuss
a variety of approaches to providing this assurance, and we
implement one approach based on the concept of a trustworthy
certificate authority. TaoCA, our prototype implementation, links
cryptographic attestations from a cloud platform, including a
Trusted Platform Module, with existing TLS-based authentication
mechanisms. TaoCA is designed to enable certificate authorities,
browser vendors, system administrators, and end users to define
and enforce a range of trust policies for web services. Evaluation
of the prototype implementation demonstrates the feasibility of
the design, illustrates performance tradeoffs, and serves as an
end-to-end, proof-of-concept evaluation of underlying trustworthy
computing abstractions. The proposed approach can be deployed
incrementally and provides new benefits while retaining compat-
ibility with the existing public key infrastructure used for TLS.

I. INTRODUCTION

Users rely on cloud-deployed web services for security-
critical functionality, so users should seek assurance that these
services act only in ways that do not violate their expectations.
Often, user expectations are related directly to the data returned
from a service. For example, we might expect a request to
https://fb.me/react-0.14.3.js will produce a response containing
a specific version of a popular javascript library. In other cases,
users are interested not just in the content of a response, but
in the behavior of a web service before or after it processes
a request. For example, participants in an online poll might
reasonably expect their votes to be counted in aggregate but
kept secret from others. User of an online password generator
would expect the returned passwords to be freshly generated
and not stored or leaked by the service. Similarly, online
password managers are expected to keep data confidential.

A wide variety of techniques can help ensure cloud-
based web services behave, from homomorphic encryption or
model checking, to software privilege separation or hardware-
enforced isolation. But even if a web service employs such
techniques and is, in fact, trustworthy—i.e. always behaves
in the manner users expect—there is no general framework
for providing end users assurance of this fact. TaoCA is
intended to provide such a framework. Before examining the
general case, it is instructive to consider some special cases
addressed by existing mechanisms. A recent W3C proposal
for subresource integrity [1] addresses the javascript library
scenario mentioned previously by embedding an integrity tag,
a list of cryptographic hashes, within an HTML document’s
links to certain external resources. After the linked resource is
fetched, its actual hash is compared against the integrity tag.
Only if a match is found is the resource considered trustworthy.
Several parties are involved: a document author, who defines a
trust policy; a guard within the client-side browser to enforce
the policy; and web services to provide the linked resources.

Here, policy expressiveness is limited as it is defined only
in terms of response content, not behavior, and even then
only exact matches are supported. This scheme also relies
on protecting the integrity—typically using HTTPS—of the
HTML-embedded trust policies as they are sent to the client.

HTTPS relies on TLS to provide users assurance about
the identity of a web service. A browser allows a request
intended for some domain D to proceed only after checking
that the remote TLS endpoint speaks for D. In the common
case, the browser relies on a public key infrastructure (PKI)
to provide a binding between server TLS keys and domain
names. Bindings are encoded in X.509 certificates issued by
certificate authorities (CAs), where a binding is considered
by the browser to be trustworthy if there is a corresponding
chain of certificates leading back to a set of fixed trust anchors
maintained by the browser. The PKI is a significant weakness
in HTTPS-based assurance, since it relies in part on principals
that have repeatedly been found to be untrustworthy [2], [3].

A second weakness in HTTPS-based assurance stems from
the limited notion of principal used by CAs in practice: public
keys and domain names, rather than details about the particular
software or hardware underlying a web service. The later
is directly relevant to evaluating whether a web service is
trustworthy, since it is the software and hardware that most
directly implement the behavior of the web service. A domain
name alone will, at best, only reveal the identity of domain
administrators, adding yet another level of indirection to the
assurance HTTPS was meant to provide. Thus a user seeking
assurance about web service behavior must now also seek
assurance that administrators both safeguard the key and use
properly-configured, trustworthy hardware and software.

We aim to provide more general assurance, beyond that
provided by the above approaches: assurance that the service
itself—its software and hardware implementation, relevant
configuration details, and perhaps even its current execution
state—satisfies some policy. For example, a policy might
stipulate that the service be running a particular trusted im-
plementation of an online voting scheme, with a known-good
configuration, on trusted hardware.

Prior work has examined how to use the capabilities of
a Trusted Platform Module (TPM) to provide assurance to
clients. With some effort, TPM remote attestation can be lever-
aged to bind TLS endpoints to a specific platform configuration
or identity [4]–[6]. Alternatively, the TPM can directly attest to
the static and dynamic content delivered by a web server [7], in
effect linking the content to a specific platform configuration.
A cloud provider can also use TPM attestation to attest the
source code underlying cloud-hosted services [8].

Any system using TPM attestation for web services must
address three challenges. First, the performance of TPM hard-
ware devices is extremely limited, so TPM operations must not
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be in the critical path. It is typically infeasible to involve the
TPM during TLS handshaking or servicing web requests, for
example. Second, the TPM’s notion of principal is not directly
compatible with X.509 certificate subjects. TPM principals
comprise a public key associated with the TPM hardware
device, together with a set of hashes that describe the platform.
Third, information about the TPM principal executing at a
remote endpoint must be securely conveyed to the end user,
or more specifically, to user-trusted software that can evaluate
the information and enforce policies on the user’s behalf.

We propose to address these challenges by implementing
a trustworthy CA on top of Tao [9], a TPM-enabled cloud
computing platform for instantiating secure cloud services and
attesting to properties of those services. Such a trustworthy CA
would in turn produce certificates for web services running on
other Tao platforms. We implemented TaoCA as a prototype
to evaluate this approach. The prototype was further intended
to help inform and evaluate the design of Tao itself. Thus,
while TaoCA was built using Tao interfaces, several of the Tao
features we describe in this paper are, in fact, a direct result
of our experience building TaoCA. The TaoCA implementa-
tion described here is freely available1 under an open-source
license, as is Tao.2

TaoCA uses Tao to securely link TLS keys to the identity
and configuration of the servers implementing a web ser-
vice. TaoCA also conveys platform configuration details about
web services to clients, so that browsers and other software
controlled by end users can evaluate, and enforce policies
about, the trustworthiness of those services. TaoCA only issues
certificates to a server under circumstances that satisfy a
certification policy specified in a formal logic. The logic allows
CA administrators, end users, and other relying parties to
specify and reason about cryptographic attestations—things
principals say—and about trust relationships—when one prin-
cipal can speak for another. Specifically, TaoCA can enforce
policies based on Tao-attested and TPM-attested information
about the principals requesting certificates. Moreover, because
TaoCA itself runs on a TPM-enabled platform, information
about TaoCA’s own code, configuration, and state can also be
conveyed to relying parties in a trustworthy manner.

The formal policies and cryptographic attestations used by
TaoCA are all machine checkable, enabling relying parties to
audit and verify not only the behavior of TaoCA, but also that
of the web services certified by TaoCA. This work focuses
on the problem of securely conveying to end users detailed
information about the web services they use, e.g. software
hashes, configuration data, and fingerprints of cryptographic
keys. Ultimately, this information can be used to bootstrap
enforcement of policies about higher-level properties, though
specifying the form of such client-side policies is outside
the scope of this paper. In combination, these approaches
shift the nexus of trust away from certificate authorities and
domain administrators, and towards relying parties, who can
now enforce a richer set of client-specific certificate policies.

II. ATTESTED CAS FOR TRUSTWORTHY SERVICES

TaoCA functions much as a conventional CA, issuing
certificates that bind the TLS keys used by HTTPS servers to

1https://github.com/kevinawalsh/taoca
2https://github.com/jlmucb/cloudproxy
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Fig. 1. A user invokes a browser to contact an HTTPS web server. The server
holds a TLS key and matching X.509 certificate chain from an intermediate
CA that is subordinate to a root CA, where the root CA is designated as a
trust anchor by the user’s browser vendor.

identifying information about the principals holding those keys.
Certificates convey this identifying information, eventually, to
clients, so that end users can make trust decisions. A hierarchy
of TaoCAs can function alongside conventional CAs, with
some TaoCA instances serving as trust anchors and others
acting as intermediate CAs. TaoCA can also support cross
certification between CAs, though we do not discuss this for
simplicity of presentation. We also omit discussion of certifi-
cate revocation, a complex problem for which TaoCA relies
on existing, standard mechanisms. Figure 1 illustrates some of
the principals involved in a simple scenario, highlighting some
of the trust decisions these principals must make. For a multi-
tiered web service, TaoCA would typically interact only with
front-end servers that terminate HTTPS connections; the front-
end servers would then be responsible for enforcing policies
concerning the back-end servers they rely upon. In that case,
TaoCA provides the means to assure users that such back-end
security policies are in effect.

A. TaoCA Signing Key Management

Each TaoCA instance is associated with a certificate signing
key. TaoCA protects the corresponding private key material
from exposure by encrypting it using the facilities of a TPM-
enabled platform. The hardware TPM then enforces a decryp-
tion policy that governs access to the raw key material, restrict-
ing access to only the specific software that implements TaoCA
on a specific hardware platform. TaoCA in turn was designed
to never expose the raw key material to other principals, not
even to CA administrators.3 An alternative, but less performant
design could arrange for signing keys to be generated and
stored entirely within the boundaries of the TPM device, with
the TPM performing all key operations on behalf of TaoCA.

Whether the key material remains within a TPM or is
exposed to the software implementing TaoCA, it is the TaoCA
software that is responsible for processing certificate signing
requests. These software components must be trusted to prop-
erly vet signing requests and enforce certificate policies. With
software-generated keys, the software must also be trusted to
safeguard the private key material. Thus the trusted computing
base for TaoCA necessarily encompasses not just the TPM, but
also the software for TaoCA, the underlying Tao platform, and
all relevant configuration data.

3Although TPM platforms are only nominally resistant to physical attacks,
Tao could be adapted to use dedicated hardware security modules [10] or
hardened platforms [11]–[13] to achieve better performance or provide greater
assurance for storing raw key material.
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In a conventional CA, some combination of operational
procedures, hardware security modules, and software controls
protects the private key [14]. Even so, administrators and other
insiders typically have either direct access to the raw key
material or privileges sufficient to invoke protected key APIs
that use the key material, so those administrators must be
trusted to not expose or misuse the key. This is in contrast
to TaoCA, which is designed to function autonomously from
local administration once it has been configured and initialized
and before keys have been generated.

B. Domain Control and Attestation-Based Request Validation

A certificate authority issues a certificate in response to a
certificate signing request (CSR) from some principal. Before
issuing a certificate, TaoCA performs various checks to ensure
the principal effectively controls the domains listed within the
request. In keeping with common practice, TaoCA implements
domain control validation strategies using a combination of
email, DNS, and HTTP checks. These steps provide only the
minimal level assurance provided by conventional CA domain-
validated certificates. Email and HTTP validation, for example,
are vulnerable to a variety of simple man-in-the-middle attacks.

Certificates issued by TaoCA are intended to provide ad-
ditional, stronger assurances to relying parties beyond that
provided by domain control validation or even conventional
extended validation. For example, a TaoCA certificate can
provide assurance that a web server’s private TLS key is held
by a specific version of software, in a particular configuration,
on a known, trusted cloud platform. TaoCA can provide
such assurances whenever the principal making (and named
in) a certificate signing request is running on a compatible
TPM-enabled, Tao cloud platform. In this case, TaoCA and
the requesting principal execute a remote attestation protocol
to exchange information about their platform configurations,
using the TPM as a root of trust.

C. Certificate Policies and Certification Practices Statements

Each CA operates according to a certificate policy (CP),
which defines the conditions under which that CA issues
certificates. The CP details which domain control validation
steps will be taken for different classes of CSR, for example.
Each CA must also publish a certification practices statement
(CPS) detailing these policies and the operating procedures
governing the CA’s behavior.

Certificates often include a CPS pointer URL that leads to
a summary of the CA’s CPS. TaoCA includes a CPS pointer
in each certificate it issues. TaoCA also takes steps to ensure
that the CPS is securely bound to certificates by including
within each certificate a hash of the full CPS document. When
a certificate is conveyed to some relying party—an end user or
a browser vendor, for example—the linked CPS to is meant to
help the relying party make a trust decision. By checking the
hash included by TaoCA in the certificate, the relying party is
assured of the integrity of the document obtained from the CPS
pointer URL. This enables a client to meaningfully evaluate
the suitability of the CPS. By contrast, for a conventional CA,
the CPS pointer refers to a document that may change at any
time, and these changes do not invalidate the certificate. In
fact, it is recommended practice to make ex post facto changes
whenever it is “judged by the policy administrator to have an
insignificant effect on the acceptability of certificates”, [15]

because conventional CA administrators must be trusted in any
case. But for a relying party, the CPS pointer in a conventional
certificate is suspect, at best.

After examining a CPS and deciding whether it is suitable
for some purpose, a relying party still needs assurance that
the CA actually behaves accordingly. For conventional CAs,
this assurance is gained mainly in an ad hoc fashion. For
example, an independent auditor might manually certify CA
practices. Certificate transparency [16] can also provide certain
assurances, e.g. that the CA has not issued certificates for a
domain except when requested by the domain’s administrators.

TaoCA can offer stronger assurances about its behavior to
relying parties, because TaoCA executes on a TPM-enabled
cloud platform. Specifically, TaoCA publishes a TPM attesta-
tion that links its certificate signing key to the values of TPM
platform configuration registers (PCRs). Relying parties can
examine the attestation and PCR values to gain assurance that
the hardware and software implementing the TaoCA instance
is configured as documented in the published CPS. The TPM
attestation will reveal, for example, that a particular TaoCA
instance runs a specific version of the TaoCA software and has
been configured to release a signed certificate to a requester
only after posting the certificate to a public certificate trans-
parency log. Similarly, the attestation includes configuration
details specifying the number and types of domain control
validation checks that TaoCA must perform before issuing a
certificate, and it reveals whether the TaoCA has been config-
ured to allow administrative intervention to manually approve
or deny exceptional certificate signing requests. In effect, the
CPS for a TaoCA instance becomes machine checkable, with
the TPM attestation providing a proof of compliance.

The CPS and CP for a conventional CA are not machine
checkable. Although they are typically developed according to
a common framework [15], this framework is both complex and
informal. Attempts have been made to formalize the structure
and content of these documents [17], but they remain difficult
to parse or evaluate.

D. Client Certificate Policies

When a client establishes a TLS connection to some web
service, the client needs assurance that the web service will
behave as expected by the client. To this end, TaoCA includes
in each certificate information about the subject named in the
certificate, along with details about the circumstances under
which the certificate was issued. In particular, TaoCA can
include PCR hashes describing the platform state, attested by
TPM hardware, for the requesting principal’s platform. For a
simple HTTPS server, this includes complete details about the
server software, its configuration, and the underlying cloud
platform. For a more complex multi-tiered web service, the
information included by TaoCA can extend to cover multiple
servers. For example, if front-end servers that terminate HTTPS
connections are configured to only communicate with specific
back-end databases, caches, or payment gateways, and only
over authenticated connections—as indeed a trustworthy web
service would—then this configuration information would be
included in TaoCA certificates for those front-end servers,
along with a hash of the code that enforces such policies.

TaoCA certificate details can be used by clients to enforce
custom certificate policies. In the simplest case, a client might
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only accept certificates for HTTPS servers if the TaoCA certifi-
cate reveals that the servers execute on previously-vetted Tao
cloud instances, for example, or that the servers execute known
and trusted configurations of specific server software. More
generally, TaoCA certificate details can be used to bootstrap
higher level policies, e.g. that a payment server’s software is
included on a list of software approved by the user’s bank.

By including details about subjects in certificates, TaoCA
enables clients to side-step CA certificate policies, enforce
their own client-specific certificate policies, and reduce the
degree of trust placed in CAs. By contrast, clients that rely on
certificates issued by a conventional CA have little opportunity
to make trust decisions about the subjects of those certificates;
certificate policies are instead dictated and enforced solely by
the CAs. This is reflected in the certificates issued by a con-
ventional CA, which include very little useful information—
typically just a key, a domain name, and perhaps the name and
address of a business.

E. TaoCA Certificate Chains

TaoCA can function either as a root CA or as a subordinate
CA, and TaoCA can in turn issue certificates for subordinate
CAs. When used as a root CA, a TaoCA instance must be
included as a trust anchor before a client can use its certificates.
Operating systems, browsers, and other clients maintain lists of
trust anchors, provided and updated by vendors, perhaps with
modifications made by the user or local system administrators.
Typically, ad hoc mechanisms are used to maintain and update
these lists [18].

The combination of TaoCA features described in the previ-
ous section facilitate a more systematic and less error-prone
procedure for deciding whether a CA should be included
as a trust anchor. A vendor can verify a TPM attestation
to confirm the details of the CPS for that TaoCA instance,
for example, and evaluate the included details about how
that TaoCA issues certificates. Similarly, the extra information
included by TaoCA within certificates, backed by independent
TPM attestations from the subject’s own platform, can provide
a basis for auditing TaoCA behavior. Moreover, the degree of
trust required for including a TaoCA instance as a trust anchor
can, in principle, be lower than for a conventional CA. This is
because TaoCA enables relying parties to directly implement
their own certificate policies.

When one TaoCA instance issues a certificate for a sub-
ordinate TaoCA instance, information about the subordinate’s
platform is included in the certificate, just as would be the case
for any other certificate subject. These platform attestations
are signed by the TPM hardware underlying the subordinate
TaoCA’s cloud platform. Thus an X.509 certificate chain
involving multiple TaoCA instances essentially includes two
parallel sets of signatures: those on the X.509 certificates, and
an embedded TPM signature on the platform attestations for
each subject. The root certificate in such a chain is self-signed,
so a relying party must independently check the signature
for that certificate’s TPM attestation. This signature check
would normally be done by a vendor or administrator prior to
adding the self-signed TaoCA certificate as a trust anchor. For
intermediate and leaf TaoCA certificates, the issuing TaoCA
checks the TPM signature before issuing the certificate. Thus
standard X.509 certificate chain validation is sufficient to vali-
date the platform attestations included in the intermediate and

TaoCA core server, client 1222
TaoCA policy engines 6326
Tao host and hosted program library 10343
Logging & time-stamping server, client 226
RPC discovery server, client 445
Static file web service 220
Password web service 1060
Log viewer web service 221

Total 20063

TABLE I. APPROXIMATE LINES OF CODE

leaf certificates, without further signature checks. Alternatively,
and departing from standard X.509 certificate chain handling, a
relying party could re-verify the TPM signatures by duplicating
the checks performed when the certificate was issued.

III. PROTOTYPE IMPLEMENTATION DETAILS

TaoCA runs on a Tao platform that has been modified and
extended beyond what has been described in prior work [9].
In this section we detail both the TaoCA prototype implemen-
tation and the extensions we made to Tao. We also provide a
brief overview of core Tao features.

A Tao host launches and manages hosted processes, which
can take the form of simple Linux processes, docker containers,
or CoreOS instances running within a KVM virtual machine. A
Tao host provides a variety of trustworthy-computing services
to TaoCA and other hosted processes, such as a CSPRNG, key
generation and management, sealed storage for opaque secrets,
and attestation services. The interface a Tao host exports is
designed to be stackable, such that one Tao host instance
can execute as a hosted process on a parent Tao host, with
the parent Tao serving as a root of trust for the hosted Tao.
Alternatively, Tao hosts can execute directly on a TPM-enabled
platform and make use of the hardware TPM to provide a
root of trust. Several Tao hosts can be managed together as
a single Tao domain, so that a domain administrator can set
domain-wide policies. These include a policy describing which
programs are authorized to execute as hosted processes (or
nested Tao hosts) within the domain, along with authentication
and authorization policies to be used when the domain’s hosted
processes attempt to communicate with each other or with
external principals.

Beyond providing support for TaoCA, Tao also serves
as a platform for auxiliary TaoCA services, including an
authenticated network logging and time-stamping service and
an RPC discovery service. For testing, we also used Tao to
prototype a variety of user-facing HTTPS services, including
a basic web server for static files, a password generator and
checking service, and a web-based log viewer for TaoCA’s
logging facility. Work is in progress on a simple secure voting
service and a certificate transparency log service. TaoCA, Tao,
and all of the services we implemented are written in Go and
were deployed on Linux servers. Table I shows the approximate
amount of code written for various components in our system.

TaoCA supports two modes of execution: manual or au-
tomated. In manual mode, TaoCA relies on an administrator
to vet and approve certificate signing requests. In automated
mode, TaoCA relies on a formal certificate policy, specified
as an ACL or as a set of Datalog rules. In both execution
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modes, TaoCA relies on Tao for generating and storing the
certificate signing key. At no point is the raw key material
exposed outside of the boundaries of TaoCA. This boundary
includes the TaoCA code itself running as a Tao hosted process,
parent Tao hosts, and so on, up to some root Tao host, along
with the TPM and local platform hardware upon which this
software depends for correctness.

A. TaoCA and Tao Principals

TaoCA makes extensive use of a formal logic, derived
from Nexus Authorization Logic [19], for naming principals,
describing the trust relationships between them, and reasoning
about the attestations issued by principals. We integrated this
logic into the underlying Tao platform by implementing Tao
principal names, thereby enabling such names to be used
within Tao, within TaoCA, and across all Tao-hosted services.

A Tao principal name is a unique identifier for an instance
of a Tao host, Tao hosted process, cryptographic key, or any
other principal that might authenticate to Tao components
or be named in authorization policies. A simple, key-based
principal name has the form key(k). This name identifies the
principal holding a particular private key, where k encodes the
corresponding public key material and algorithm parameters.
Key-based principals can sign statements in a credentials-based
authorization logic, with the resulting attestation conveying
a says relationship within the logic. Formally, statement S,
signed by key k, conveys that key(k) says S. This logic also
supports a speaksfor relation between principals, such that
from (a says (b says S)) and (a speaksfor b) we can derive
(b says S). The speaksfor relation can be used as a form of
delegation between independent principals.

TaoCA’s authorization logic supports hierarchical sub-
principal names for principals that do not necessarily hold
unique private keys. For example, a Linux process hosted on a
Tao instance may be identified as key(k).Process(h). Here, the
parent principal key(k) is the name of the Tao host, uniquely
identified by a public key k, and the extension Process(h)
includes a hash h of the program binary being executed. Tao
includes additional details for its hosted processes, such as a
process ID and a timestamp, but for brevity we omit these.
Principals can also extend their own name with further details.
Each TaoCA instance, for example, incorporates within its
own principal name a hash of its CPS and a hash of its
configuration files, which specify the operating mode—manual
or automated—and certificate policy enforced by that TaoCA
instance. A front-end web server might similarly extend its own
name with a list of dynamically-loaded modules, or a summary
of policies governing its interaction with back-end services.

A hosted processes can invoke its host Tao to obtain an
attestation for a statement S. The host signs S on behalf of
the hosted process, so the resulting attestation might convey,
for example, key(k) says (key(k).Process(h) says S). In the
logic, parents speak for their sub-principals, so a recipient of
this attestation can conclude key(k).Process(h) says S. This
is particularly useful when the hosted process does not have
its own private key.

In cases where a sub-principal has a public key pair, Tao
supports a form of delegation using the speaksfor operator
to bind those keys to the Tao principal name. When a TaoCA
instance, represented by some sub-principal name T , generates
a public key kp, it requests an attestation from its host Tao

to convey a delegation T says (kp speaksfor T ). TaoCA
can subsequently sign its own attestations using kp because,
coupled with the delegation, signing a statement S using kp
conveys the same information as having the parent Tao host
sign S on behalf of the hosted TaoCA process.

Tao hosts can be stacked, so Tao sub-principal names are
often several levels deep, with each level embedding details
relevant to the behavior and security of that level:

key(k).CoreOS (hc).Process(hp).TaoCA(hcp , hcps)

Here, a Tao host executes a CoreOS instance, which in turn
executes a Linux process. The process functions as a TaoCA
instance, enforcing a certificate policy and governed by a
certification practices statement. A Tao host can also run
directly on a TPM-enabled platform, with the TPM signing
attestations on behalf of the Tao host, just as a Tao host
can sign attestations for a hosted process. A TPM-based
platform is identified using a Tao principal name of the
form tpm(k).PCRs(v1, v2, . . . , h1, h2, . . .). Here, k encodes
the public attestation key for the TPM hardware, and each
hash hi specifies the value of TPM platform configuration
register vi. The PCR values identify the platform software and
configuration at the time the attestation was generated. TaoCA
and all related services execute on TPM-enabled platforms, so
all are identified as sub-principals of a TPM.

B. TaoCA and Tao Authenticated Channels

Tao provides an authenticated, encrypted channel abstrac-
tion for hosted processes to communicate. For simplicity,
Tao uses standard TLS protocols as the underlying transport
mechanism to ensure confidentiality, but each TLS connection
is established using self-signed certificates for both endpoints.
The associated key pairs need not be stored long-term: a tran-
sient key can be generated on-demand for each connection or,
to reduce the number of key generating and signing operations,
a transient key can be reused for several connections. We
extended this authenticated channel mechanisms to support
TaoCA’s authentication logic and its notion of principal by
arranging for endpoints to exchange signed delegations at the
start of each TLS connection. This authenticates each side of
the connection using a Tao principal name.

As an example, consider a web server connecting to a
TaoCA instance to obtain or renew an X.509 certificate.
Suppose the web server executes as a Linux process with
hash hp, executing within a CoreOS container with hash hc,
executing on a TPM-enabled Tao host with TPM attestation key
k and platform configuration registers x and y having values
hx and hy . The web server first generates a transient TLS
key kp and a matching self-signed X.509 certificate, then uses
these to establish a TLS connection with the TaoCA instance.
Separately, the web server requests a delegation from its Tao
host to convey:
kp speaksfor

tpm(k).PCRs(x, y, hx, hy).CoreOS (hc).Process(hp)

The web server sends the resulting signed delegation over
the TLS connection to TaoCA. TaoCA in turn verifies the
delegation signature using public key k, and it checks to
ensure the value of kp appearing within the delegation matches
the value in the self-signed TLS certificate. Together, this
authenticates the web server to TaoCA as the Tao principal
name tpm(k).PCRs(x, y, hx, hy).CoreOS (hc).Process(hp).
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C. TaoCA Certificate Policies

TaoCA certificate policies are written in terms of the
certificate details provided within certificate signing requests,
the outcome of one or more domain control validation steps,
and the Tao principal name p of the requesting process. Before
approving a certificate signing request and issuing a certificate,
TaoCA invokes an authorization guard to enforce the policy.

One type of guard implemented by TaoCA is based on
ACLs. This guard is configured with a list of tuples of the form
(p, s, d, v). The guard approves a certificate signing request
from principal p for domain d, with X.509 subject details s
only if (p, s, d, v) is among the ACL entries, where v is a
subset of the keywords {“http”, “email”, “dns”} and all of
the domain control validation steps in v have been successfully
completed for this request.

The TaoCA prototype includes a second authorization guard
that implements credentials-based authorization by querying a
Datalog policy engine. The guard is configured with a list of
Datalog rules, and it approves a certificate signing request from
principal p for domain d and subject details s only if a predicate
Auth(“ClaimCert”, p, d, s, v) follows from the rules, where v
again is the set of completed domain control validation steps.

Credentials-based authorization allows wide flexibility in
choice of policy. For example, TaoCA might enforce the
following two policy rules:

TrustedPrin(P,D, S) →
Auth(“ClaimCert”, P,D, S, {“email”}) (1)

TrustedPlatform(H)

∧ TrustedHttps(E) ∧ Subprin(P,H,E) →
TrustedPrin(P, “foo.com”, “CN=Foo, Inc.”)

(2)

The first defines a TrustedPrin predicate and dictates that
certificate signing requests from principals satisfying that
predicate can be approved after undergoing email domain
control validation. The second rule says that principals run-
ning TrustedHttps software on a TrustedPlatform satisfy
the TrustedPrin predicate with the given domain name and
X.509 subject details. The TrustedHttps and TrustedPlatform
predicates would be defined by yet other Datalog policy rules.
In the simplest case, for example:

TrustedPlatform(tpm(k).PCRs(x, y, hx, hy)) (3)
TrustedHttps(ext .CoreOS (hc).Process(hp)) (4)

Together, these rules would cause TaoCA to approve certain
certificate signing requests—those specifying X.509 common
name “Foo, Inc.” with domain name “foo.com” and that have
undergone email domain control validation—from a particular
HTTPS server stack and platform.

Credentials-based and ACL-based guards can be extended
to support policies that specify additional constraints, such as
maximum validity periods or limitations on X.509 extensions.

IV. TAOCA CERTIFICATE ASSURANCE

To provide greater assurance to relying parties, TaoCA pub-
lishes extensive information about the Tao principals to which
it issues certificates, beyond that normally included in X.509
certificates. Specifically, TaoCA publishes with each certificate
the Tao principal name p obtained from the authenticated Tao

channel over which the certificate signing request was received.
TaoCA also publishes the full certificate policy enforced by its
guard, i.e. the full ACL or Datalog rule set.

TaoCA does not include all details directly within each
X.509 certificate, as that would likely require changes to TLS
clients. Additionally, these documents can be large and may
not be needed by all relying parties. Instead, TaoCA embeds
URLs in the CPS pointer and user notice extensions of each
X.509 certificate. Relying parties can then fetch the documents
as needed. To ensure integrity, TaoCA always includes a
cryptographic hash as the last component of the URL. For
example, the CPS pointer might specify:

http : //foo.com/ca cps/sha256.hcps .txt

where hcps is the hash of the CPS document containing the
Datalog policy rules. The web server’s principal name and
accompanying attestations would be linked with a similar
URL in the user notice extension. The domain serving these
documents need not be trusted to maintain their integrity.

We considered alternative mechanisms for security linking
X.509 certificates to the policy and Tao principal documents
generated by TaoCA. TaoCA could embed HTTPS URLs rather
than HTTP URLs. This alone would be insufficient for assuring
the integrity of the documents, as it requires relying party to
establish trust in the HTTPS software serving the documents,
and such trust is founded upon the same X.509 infrastructure
in which TaoCA participates. Alternatively, subresource in-
tegrity [1] would provide a convenient mechanism for ensuring
integrity. This is not currently defined for use in X.509 CPS
pointer and user notice extensions, however. A third option
employs a web proxy service to verify hashes. Here, the URL
in the certificate extension might be:

http : //hcps .sha.hash/foo.com/ca cps.txt

A server for (hypothetical) domain sha.hash would fetch
the actual URL, http://foo.com/ca cps.txt, and validate the
resulting document’s hash against hcps before returning the
document to the client. Of course, a client would want assur-
ance in the behavior of this web proxy service. Naturally, such
assurance can be provided if the proxy itself is implemented
on Tao and has a certificate from TaoCA. A less trusting client
could instead simply implement such a service entirely locally.

When a relying party trusts a TaoCA instance, the CPS
pointer and user notice help establish trust in the principal
named in a certificate. To bootstrap trust in the TaoCA instance,
a relying party needs assurance that the TaoCA instance
executes on a suitable trusted platform and is configured with a
suitable policy. When operating as a root CA, TaoCA publishes
a self-signed certificate for its signing key. Included within that
certificate is a link to its own certificate policy in the CPS
pointer certificate extension, along with a link to its own Tao
principal name and attestations in the user notice extension.
These alone do not provide assurance, however, since the
certificate is self-signed. But as mentioned previously, when
a TaoCA instance begins execution it incorporates hashes of
its CPS, certificate policy, and other configuration data into its
Tao principal name. The TaoCA can then obtain a delegation
from the host Tao linking its full principal name and its public
certificate signing key. Before installing a TaoCA self-signed
certificate as a trust anchor, a vendor or administrator can verify
the Tao attestation to gain assurance that the certificate signing
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key is actually held by a TaoCA installation configured as
described by the CPS pointer and user notice extensions.

For a TaoCA instance subordinate to another TaoCA, the
signed certificate for the subordinate includes its Tao principal
name and associated attestations, signed by the Tao and TPM
hardware for the subordinate, and verified by the parent TaoCA.
Because the subordinate’s principal name includes a hash of its
own certificate policy and configuration, any party that trusts
the parent TaoCA gains assurance about the certificate policy
enforced by the subordinate as well. Thus a chain of certificate
policies and Tao principal names extends from a leaf certificate
for a web service, through zero or more intermediate TaoCA
instances, up to some root TaoCA instance.

V. PERFORMANCE

TaoCA performs more cryptographic operations in the
course of validating a CSR and issuing a certificate than a
conventional CA. And when a web service obtains a certificate
from TaoCA, the web service and the Tao platform on which
it runs must both perform various cryptographic operations to
provide attestations required by TaoCA, beyond those needed
when using a conventional CA. These cryptographic operations
impose a cost for TaoCA and the web services using it. Note
that existing clients of TaoCA-enabled web services are not
required to perform any cryptographic operations beyond those
needed for standard TLS, so we expect any direct impact
to clients to be minimal. Specifically, the impact on clients
depends primarily on the complexity of client-specific trust
policies; we do not describe or measure such policies here.

To quantify potential performance impacts, we performed
a series of experiments to compare the TaoCA prototype
with the cfssl [20] PKI and TLS toolkit (version 1.1.0). We
selected cfssl because it is popular—it is written and used by
CloudFlare, a large content delivery network, for example, and
it is used by the Let’s Encrypt open source CA project—and
because cfssl is written entirely in Go, like TaoCA. The shared
implementation language allows a more direct comparison of
the performance and designs of TaoCA and cfssl. All software
was compiled using the same Go 1.4.2 compiler.

Both TaoCA and cfssl use the same underlying Go crypto
libraries. Both servers acted as intermediate CAs, one level
below a separate, offline root CA. Domain control validation
was disabled for all experiments. All certificates and TLS con-
nections use 256-bit ECDSA keys. The TPM used by TaoCA
uses 2048-bit RSA keys for signing attestations. Experiments
were carried out on a small cluster of Linux machines acting
as load generators and one machine running a TaoCA or cfssl
server, all equipped with TPM 1.2 chips. The server included
dual quad-core 3.40 GHz Intel Haswell i7 processors, 8 GB
of memory, and 1 GbE network interface. TaoCA and cfssl
are primarily compute-bound services; when called for by the
experiments, the modest computational resources of this server
were easily saturated by the load generators.

A. CA Certificate Issuing Throughput

The performance impact of our approach can most readily
be observed by measuring CA throughput, the rate at which
the CA can validate certificate signing requests and issue
certificates. For some CAs, even a very modest throughput
is sufficient. For example, during it’s first 31 days of public

throughput CPU e2e latency (ms)
(certs/sec) utilization WAN LAN

TaoCA 249.6 93.59% 542.5 26.57
cfssl/HTTP 1158.3 94.40% 212.2 5.44
cfssl/TLS 621.4 94.19% 428.1 13.50
cfssl/MTLS 365.3 97.08% 430.7 16.64

TABLE II. PERFORMANCE OF A SINGLE TAOCA OR CFSSL INSTANCE.

testing, the Let’s Encrypt CA issued 204,435 certificates,4
averaging about five certificates per minute. This CA rec-
ommends certificate renewal after 60 days; other CAs have
more clients but typically much longer renewal intervals. By
comparison, TaoCA certificates are tied to specific web service
instances, so TaoCA may be expected to issue certificates much
more frequently, perhaps each time a web service restarts or
undergoes a security-relevant configuration change.

We measured the maximum throughput of TaoCA using
open-loop load generators to submit increasing numbers of
CSRs. We measured end-to-end latency separately, using a
single closed-loop load generator, averaged over 1000 runs
on local and emulated wide-area networks. As a baseline
for comparison, we performed the same experiment for cfssl
using a default HTTP-based API configuration. The results,
summarized in the first rows of Table II, reveal that TaoCA
can issue about 250 certificates per second, compared to almost
1160 per second for cfssl. In this experiment, the server CPU
was nearly saturated for all configurations.

We attribute the reduction of observed TaoCA throughput
to two causes: TaoCA accepts each CSR over a mutually-
authenticated TLS connection; and before issuing a certificate,
TaoCA verifies two attestations—one issued by the requester’s
TPM and a second issued by the requester’s Tao host—and
invokes the Datalog policy engine to enforce the certificate pol-
icy. By contrast, cfssl in its default configuration accepts CSRs
over an unauthenticated HTTP connection, and it does no CSR
validation. To quantify how these differences affect throughput,
we ran experiments for two additional cfssl configurations: a
TLS configuration in which each CSR is submitted to cfssl over
an HTTPS-based API and requesters verify the server’s API
certificate; and a mutually-authenticated TLS configuration
(MTLS), in which both requester and cfssl verify certificates
when establishing a connection.5 The results, shown in Table II,
reveal that simply enabling TLS reduces cfssl throughput by
46%, and having cfssl validate a client TLS certificate for each
request further reduces cfssl throughput to within a factor of 1.5
of the TaoCA prototype. We attribute the remaining difference
in throughput to the cost of checking attestations and enforcing
the Datalog certificate policy in TaoCA.

B. Certificate Issuing Latency

Traditionally, obtaining a signed certificate has not been
part of the critical path for a web service. However, recent
trends may change this. For example, many cloud platforms
can automatically and very rapidly deploy and launch new

4http://letsencrypt.org/stats/
5Supporting MTLS required minor changes to cfssl. It may seem unusual to

require that a requester use one X.509 certificate to establish a TLS connection
in the course of submitting a request for another X.509 certificate. However,
this situation is no less unusual than requiring a requester to use a secret “API
key”, a common practice supported by cfssl and other CA software.
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server instances, and TaoCA could be called upon to issue
a fresh certificate for each newly instantiated server. In such
scenarios, low latency would be beneficial. Moreover, part
of the end-to-end latency observed for obtaining a certificate
stems from work done on the requester’s platform, and this
work differs between TaoCA and a conventional CA. With
cfssl, the requester generates a key and matching CSR, then
signs and submits the CSR. With TaoCA, before submitting
a CSR, the requester must also obtain attestations from the
underlying Tao host and TPM. To quantify these costs, we
measured the end-to-end latency for a single closed-loop load
generator to prepare and submit a certificate signing request
then obtain a signed certificate in response. Both LAN and
WAN configurations were tested, using a 1 GbE switched
network with negligible delay and an emulated 128 MBit/s
wide area network with 100ms average round trip delay.

In the wide area, end-to-end latency is dominated by round-
trip time, as shown in the third column of Table II. Using
HTTP, cfssl requires two round trips. TLS adds two more round
trips to negotiate session keys and exchange certificates. The
Tao-authenticated channels used by TaoCA also use TLS, but
require one additional round trip to exchange Tao and TPM at-
testations. TaoCA WAN performance could be improved using
TLS session resumption or TLS false start, or by embedding
Tao and TLS attestations within TLS extensions.

Although a WAN is traditionally used to contact a CA, we
envisage co-locating TaoCA instances and web services within
the same Tao clouds. Indeed, Amazon has recently [21] begun
moving to this CA deployment model for their cloud platform.
Results for the LAN configuration, shown in the fourth column
of Table II, indicate that end-to-end latency is low—well under
30 ms for all configurations tested—though much higher for
TaoCA (26.57 ms) than for cfssl’s default HTTP configuration
(5.44 ms). The latency for cfssl with MTLS reveals that about
53% of the difference, 11.2 ms of 21.1 ms, can be attributed
to TaoCA’s use of mutually-authenticated TLS connections to
submit CSRs. We attribute the remaining difference to two fac-
tors. First is TaoCA’s verification of attestations and certificate
policy enforcement. We measured this by instrumenting TaoCA
and found this accounts for about 2.9 ms, or 14% of the added
latency of TaoCA. The remaining 7.03 ms, or 33% of the added
latency, is due to work performed by the requester to obtain
attestations before submitting the CSR. In this experiment, the
requester obtains one attestation from Tao and one from the
TPM. The TPM attestation is generated only once, before the
experiment begins, because it is bound only to the state of the
Tao host and not the state of the web service executing as a Tao
hosted process. The Tao attestation is generated fresh for each
requester, however, and we include this cost in our results.

VI. DISCUSSION AND RELATED WORK

TaoCA supports incremental deployment, as an unmodified
TLS stack is sufficient to connect to TaoCA-certified web
services. Legacy clients pay no direct cost for TaoCA, but
all users benefit from increased CA transparency. Further, by
examining TaoCA certificates and the embedded URLs within
the CPS pointer and user notice fields, even users with TaoCA-
oblivious clients can obtain new information to help judge the
trustworthiness of the web services on which they rely. In our
current prototype, users must manually download the docu-
ments linked by these URLs, verify their hashes, then inspect
the included certificate policies and Tao principal names to

decide if each TaoCA instance in the chain is trustworthy and,
ultimately, whether the web service is trustworthy. We intend
to automate this process by defining and enforcing formal,
machine-checkable policies at the client. Our TaoCA prototype
already provides much of the requisite implementation in
the form of ACL and Datalog guards, and the information
conveyed and attested by TaoCA provides the foundation to
bootstrap higher-level client-side policies about web services.

Although we have focused on how a certificate authority
can leverage TPM-based attestation to provide assurance to
end users about the behavior of cloud-based services, prior
systems have examined how cloud users and customers might
directly leverage the TPM for the same purpose. Bouchenak
et al. [22] review recent progress in this area. Spork [7] uses
a TPM to attest to the content of responses from a cloud-
based web server, allowing end users to verify the integrity of
the server at the time the content was generated. That system
also uses a novel batch signature scheme to reduce the cost of
generating attestations. TaoCA avoids TPM overhead instead
by performing attestation at the level of processes, rather than
individual responses. Brown and Chase [8] perform attestation
at the level of processes as well, relying on a trusted Eucalyptus
cloud platform. That work side-steps the need for binding
attestations to web service TLS keys by allowing clients to ob-
tain attestations directly from the trusted Eucalyptus platform
through an out-of-band channel. Eucalyptus and other cloud
platforms have also been extended [23]–[26] to provide direct
assurances to those deploying code or data to the cloud.

TaoCA relies on Tao for attestation and key management,
and Tao in turn uses the facilities of the TPM, a device that
is only nominally resistant to physical attacks. Anderson et
al. [10] survey a variety of tamper-resistant hardware security
modules (HSMs) that may offer higher levels of assurance.
Recently, Amazon [27], Microsoft [28], and other providers
have incorporated HSM devices into their cloud offerings.
While an HSM can be useful for key management, these are
special-purpose devices with rigid APIs and, in general, they
are not suitable for directly executing network-facing services
like TaoCA. Current HSM devices do not provide attestation
for code hosted outside the HSM and, thus far, no public cloud
provider offers attestation services for the processes they host.

Chhabra et al. [11] discuss hardening general purpose
servers in a manner suitable for hosting and attesting TaoCA
and web services. Haven [12] and MiniBox [13] rely on new
SGX extensions for Intel CPUs to provide fine-grained attes-
tation, isolation from cloud provider software, and protection
against some physical attacks to platform hardware. Tao and
TaoCA could use either to replace the TPM as a root of trust.

To facilitate efficient and meaningful attestation, services
intended to be deployed to a trusted cloud need not be treated
as black boxes. Twin Clouds [29] proposes the use of privilege
separation to reduce the amount of code that needs to be
attested, for example, while Lyle [30] uses a trusted cloud-
based Java compiler and model checker to attest to properties
of web services running in the cloud.

TaoCA requires few changes to clients because it links
attestations to standard X.509 certificates and browsers can
still use standard TLS and X.509 algorithms. Prior work [4],
[5] modifies or extends TLS to integrate TPM-based endpoint
attestation. Stumpf [6] analyzes a number of such protocols.

The 2nd IEEE Workshop on Security and Privacy in the Cloud (SPC 2016)



TaoCA leverages cloud platform support for CA and web
services attestation. Some recent efforts focus instead on client-
side validation of web service and CA behavior. Strict transport
security and public key pinning [31] counteract attacks that
strip or substitute rogue TLS credentials in HTTPS connec-
tions. Subresource integrity [1] allows a client to directly mea-
sure the integrity of resources linked from a trusted document.
Certificate transparency [16] defines a mechanism for clients
and web service administrators to audit the behavior of certifi-
cate authorities. DANE [32] and DNS Certification Authority
Authorization [33] completely or partly eliminate the need for
clients to trust the conventional TLS CA infrastructure, instead
locating trust in DNSSEC. These client-focused approaches can
work in concert with the approach we have taken in TaoCA.

VII. CONCLUSION

We propose the use of TPM-enabled cloud platforms to
implement certificate authorities for cloud-based web services.
To demonstrate the feasibility of our approach we implemented
TaoCA, a prototype CA for the Tao cloud computing platform.
Both TaoCA and the web services using it are attested by Tao,
with a root of trust located in underlying Trusted Platform
Modules. The combination of attested CAs and attested web
services provides enhanced assurance to end users. Moreover,
it enables clients to systematically enforce their own trust
policies beyond what is possible with conventional certificate
authorities.
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