Mechanisms for Mutual Attested Microservice Communication

Kevin Walsh
College of the Holy Cross
Worcester, Massachusetts

ABSTRACT

For systems composed of many rapidly-deployed microservices
that cross networks and span trust domains, strong authentication
between microservices is a prerequisite for overall system trust-
worthiness. We examine standard authentication mechanisms in
this context, and we introduce new comprehensive, automated,
and fine-grained mutual authentication mechanisms that rely on
attestation, with particular attention to provisioning and managing
secrets. Prototype implementations and benchmark results indicate
that mutual attestation introduces only modest overheads and can
be made to meet or exceed the performance of common but weaker
authentication mechanisms in many scenarios.

1 INTRODUCTION

Microservices, small and focused services deployed on independent
containers or virtual machines (VMs), are an increasingly common
way to structure large systems. For such an ensemble to be trustwor-
thy, it’s not enough to secure microservices individually. Commu-
nications channels must also be authenticated. Authentication—the
reliable determination of the endpoints of a channel—is prerequi-
site for reliable logging, for example, and it provides a basis for
authorization or enforcement of other security policies.

Ad-hoc and offline authentication mechanisms are sometimes
appropriate, such as when microservices are few in number, mainly
static, exist within a single administrative domain, and commu-
nicate over an isolated network of fully trusted machines. But
increasingly, systems are composed of many microservices that
are deployed both rapidly and dynamically, spanning multiple ad-
ministrative domains and across networks with varying levels of
trust. Comprehensive, automated, and fine-grained mechanisms
are needed to authenticate microservices in these cases.

Authentication of end-users to cloud services is well-studied
(e.g., [10, 12]), but authentication between microservices less so. In
practice, when authentication within the cloud is used at all, systems
often rely on a patchwork of coarse-grained, ad-hoc mechanisms
that require extensive manual intervention [18]. For example, one
common practice relies on HTTPS to authenticate one endpoint
and HMACs with secret API keys to authenticate the other. This
combination is ill-suited for microservices. HTTPS is unnecessarily
dependent on a historically vulnerable public key infrastructure
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(PKI), run by untrustworthy third parties [5, 13], which only weakly
authenticate microservices, e.g., via DNS. API key protocols vary
widely due to tight coupling with specific REST-oriented protocols,
and API key provisioning usually happens manually out-of-band or
requires additional authentication mechanisms. Further, due to PKI
rate limits and cumbersome API key management, secrets for both
are long lived and must be kept in some secure, durable storage
service, requiring yet other authentication mechanisms.

Reliance on ad-hoc key management moves the locus of trust
from a small number of underlying, cryptographically sound proto-
cols, to a wide variety of weak and unspecified mechanism, and it
makes implicit tradeoffs between performance and security. Worse,
the system is left unnecessarily vulnerable to insider attacks. The
resulting authentication is at best indirect—endpoints do not learn
true unique identifiers or any actual properties of their peers, but
learn only the roles or identifiers an administrator has assigned.

We propose several new mutual authentication mechanisms for
microservices using the attestation services provided by Tao [11],
a platform we are developing for trustworthy cloud computing. By
coupling standard mutual TLS protocols with platform attestations,
e.g. from a trusted platform module (TPM) [16], and by deploy-
ing per-domain key servers, certificate authorities, and attestation
servers, the mechanisms we propose implement a form of direct
authentication, with endpoints securely exchanging globally unique
and semantically meaningful identifiers in the form of platform
attestations. In the next section, we describe these mechanisms
in detail, with specific attention to how all necessary secrets are
provisioned and managed. In Section 3, we describe prototype im-
plementations and compare performance characteristics of all the
mechanisms. We discuss related work and conclude in Section 4.

2 AUTHENTICATION AND ATTESTATION

We consider the problem of mutual authentication between two
principals: A, acting as a client; and B, acting as a server. These
might be individual processes, perhaps executing within a container,
on an operating system (OS) that itself executes on a VM or directly
on hardware. More generally, a principal could be smaller or larger
than a single process, e.g., a single thread, or a service account
executing many processes across a cluster. The underlying system
is responsible for providing sufficient isolation between distrusting
principals. To ensure that an authentication mechanism does not
merely move the fundamental problem of assurance elsewhere,
e.g. to some unspecified key distribution or storage mechanism,
we explicitly account for the generation and provisioning of any
secrets held by A, B, and other participants.

The mechanisms described below rely on TLS as an underlying
transport protocol, with either asymmetric or shared symmetric
keys. This dependence is not fundamental, but serves to clarify our
focus on the distribution and maintenance of secrets and the implicit
and explicit trust assumptions needed by different mechanisms.
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Figure 1: Mutual authentication mechanisms using TLS and attestation, with components holding secrets (¢) as indicated.

2.1 Baseline Mutual TLS

As a baseline, consider TLS with ephemeral keys and certificates,
as illustrated in Figure 1 (a). At deployment, A and B each indepen-
dently generate an asymmetric key, k4 and kg, then obtain signed
X.509 certificate chains for these keys from a domain-specific certifi-
cate authority (CA) over an unauthenticated TCP channel. A and B
next perform a TLS handshake, exchanging certificates for mutual
authentication. Each microservice holds its key for the lifetime of
the instance and uses it for all communication, but the keys are not
persistent. Instead, fresh keys are created on each deployment.

This baseline mechanism is widely used, though it provides no
explicit authentication between microservices and the CA—in prac-
tice, manual or out-of-band mechanisms would be used to ensure
the CA only issues certificates for the keys chosen by A and B, or
conversely, that only A and B have access to keys associated with
issued certificates. The latter approach is essentially that of Istio [9],
a new and widely publicized container and microservice orchestra-
tion framework, except that Istio provisions only long-lived keys,
and it does so only at a coarse, service-account granularity, rather
than for individual microservice instances.

Baseline mutual TLS has significant advantages over HTTPS and
API keys. First, endpoints need not store long-term secrets. And
second, it is application-agnostic, in the sense that this single mech-
anism can accommodate a variety of application-layer protocols on
top of it. However, it still requires the CA be capable of storing a
long-lived private key. Further, it provides only indirect authentica-
tion, since the semantics of names contained within certificates is
entirely outside the scope of the mechanism. Instead, naming de-
pends on the unspecified authentication between endpoints and the
CA and on how keys are generated by (or distributed to) endpoints.

2.2 Attested TLS

To provide for direct authentication, microservices can be executed
on platforms capable of remote attestation, e.g., with a trusted
platform module (TPM) [16]. Much like a certificate from a CA,
remote attestation binds a public key to a name. But names in attes-
tations are computed from properties of the principal holding the

private key and are usually globally unique and have well-defined
semantics. As such, authorization and other security policies can be
enforced directly based on information conveyed by attestations. By
contrast, names carried in certificates are rarely unique and often
represent the outcome of policy decisions, e.g., that a principal is
authorized to act on behalf of some named service account or role.

Figure 1 (b) outlines one way to leverage attestation for authen-
tication. Here, embedded within TPMs are static keys, kjs and k.
A central cloud attestation authority uses a separate key, ka4, to
issue a signed attestation for ky; and kpy detailing properties of
the corresponding hardware platform. As for the CA key used with
baseline mutual TLS, the attestation authority key is long-lived and
must be known to all participants. To establish a channel to B, A
generates an ephemeral key, k4, and makes an attestation request
for that key to the underlying container or OS. In the simplest case,
this request is passed down the software stack, eventually to the
TPM, which signs an attestation for k4 g containing platform details
gathered at each layer of the software stack, including a hash of all
boot and hypervisor code and configuration, along with VM image,
OS kernel, container, and process code and configuration hashes. B
similarly generates kg4 and obtains a matching attestation from
its platform. A and B use their keys to establish a TLS channel.
Then, to achieve direct authentication, they each exchange: their
TPM attestations, bound to their TLS keys and signed by platform
keys Kjr and K ; and the central authority attestations, bound to
platform keys and signed by K4 4.

In the mechanism outlined above, microservices use different
keys for different peers, but reuse keys for connections to the same
peer. Alternatively, a microservice could be configured to generate
new ephemeral keys and attestations at any time, e.g. to rotate keys
or to account for changes in software or platform state. Note that,
in all cases, the choice of behavior is reflected in the attestations.

Generating attestations with a TPM is prohibitively expensive.
The cost of generating lower-layer attestations can be amortized
over multiple higher-layer instances by having intermediate layers
of the software stack generate a key and obtain an attestation for it
from lower layers, then use that key for signing later attestation
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requests from layers above. For example, in Tao the TPM only signs
one attestation for each OS and VM, and the OS signs attestations
for the containers and processes it hosts. The resulting attestation
chain is still rooted in the central cloud attestation authority.

Microservices using attested TLS can make authorization deci-
sions directly based on attestation chains exchanged during channel
setup. Such direct authentication provides more opportunities than
traditional certificates for enforcing non-trivial policies, since end-
points have full visibility into the platform details of their peers and
complete control of policy enforcement. A microservice could reject
a connection if the peer’s specific attestation details do not appear
on an access control list. Or, it could evaluate a custom predicate
on peer attestations to determine what level of access to grant.

2.3 Centralized Attested TLS

Placing enforcement at the endpoints of communications channels
has advantages but is not always appropriate. For example, relying
on distributed policy enforcement with attested TLS can be brittle,
since attestations encode more information than is necessarily rele-
vant for any particular policy, and attestation details may change
in difficult to predict ways. Similarly, centralized enforcement can
more easily facilitate auditing, dynamic policies, and revocation.

Figure 1 (d) illustrates a mechanism incorporating a central pol-
icy authority that acts as a CA, issuing certificates for microser-
vice ephemeral keys. Unlike baseline mutual TLS, authentication
between the microservices and the policy CA is explicitly authenti-
cated using attested TLS. In effect, the policy CA is used to trade
attestations chains for a simpler policy-specific certificates. When
a policy CA is used by a microservice to obtain certificates for
many ephemeral keys, there is an opportunity to amortize costs by
reusing keys and attestations when re-authenticating to the policy
CA. As before, the policy CA key is long-lived and well known.

Centralization adds latency during connection setup, to obtain
certificates from the policy CA. But it also reduces verification costs
for endpoints compared to attested TLS, because microservices
need not exchange or verify attestation chains. Also note that only
the policy CA needs to know which cloud attestation authorities
should be trusted, rather than provisioning each endpoint with this
information, as would be required for attested TLS. However, the
policy CA can be a single point of failure and a potential bottleneck,
as it communicates with every microservice.

2.4 TLS Session Resumption

Generating and using short-lived asymmetric keys is computation-
ally expensive, and their size brings transmission overheads. Using
session tokens, TLS session resumption amortizes costs due to asym-
metric keys across multiple connections between two endpoints,
with the handshaking for the second and subsequent connections
using only symmetric cryptography. Enabling session resumption
may make the initial handshake slightly more costly, however, as
the endpoints must generate and exchange a session token.

Session resumption is compatible with all of the mechanisms
described thus far. For centralized attested TLS, session resumption
can be used between microservices and also between a microservice
and policy CA. False start and fast open, available in TLS 1.3, could
be used as well and would likely provide similar benefits.
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2.5 Centralized Attested TLS-PSK

Where TLS session resumption is not appropriate, TLS pre-shared
key (TLS-PSK) mode can eliminate costs associated with asymmet-
ric keys and certificates, relying on shared symmetric keys instead.
The main challenge for microservices is in automatically and se-
curely distributing shared keys only to the appropriate endpoints.

Figure 1 (e) illustrates a mechanism using a central key server
that generates and distributes shared symmetric keys, on demand,
to microservices over attested TLS channels. First, A creates an
attested TLS channel to the key server and sends it a hash, Hg, of
B’s attestation details. The key server obtains A’s verified attesta-
tion details from the TLS channel and locally computes their hash,
Hy. The key server then generates a random secret key, s4p, and
associates it with a tag consisting of the unordered set {Ha,Hp}.
Key sap is returned to A, which initiates a TLS-PSK handshake with
B. B similarly sends Hy to the key server using attested TLS, which
looks up and returns the same key, ssp, previously associated with
tag {H4,Hp}. B now completes its handshake with A. This mutually
and directly authenticates A and B, since their handshake succeeds
only if both use the same shared key, which only occurs if both
invoke the key server with matching attestation details.

As with central attested TLS, the key server here can centrally en-
force policies, e.g. by issuing keys only for certain tags and thereby
allowing only certain microservices to mutually authenticate.

For n microservices, the key server may need to manage O(n?)
keys—one for each of pair of microservices—or more if keys are
rotated. One strategy is to generate a random key upon first encoun-
tering a tag, storing the key for only a short time. Alternatively, the
key server can derive keys based on the tags and a long-lived master
key. This requires maintaining a long-lived secret, but eliminates
the need to hold shared secrets and allows microservices to obtain
keys proactively, well before initiating a connection to a peer.

It is natural to consider distributing the work of the key server to
address the potential bottleneck it introduces. In fact, several novel
schemes are described in the literature for distributed generation
of pairwise shared secrets among a set of participants (e.g. [2, 4]).
We do not evaluate such schemes as they rely on non-standard
cryptographic primitives or assumptions.

2.6 Local Attested TLS-PSK

When microservices are co-located on a common platform, reliance
on remote third-parties can be avoided. Instead, we can leverage
the local platform for attestation, with some common, shared layer
of the software stack acting in place of a central key server. The
platform and shared layers of the software stack are typically fully
trusted already, as they underlie both channel endpoints, so relying
on them for mutual attestation adds no additional trust assumptions.
It may also be more efficient than using remote servers.

With local attested TLS-PSK, shown in Figure 1 (f), A and B
each invoke a parent software layer to request a shared key. These
requests propagate down the software stack until they reach a
common ancestor, such as a shared hypervisor. Each request carries
ahash of its peer’s attestation details, and each layer adds attestation
details for the principal making the request. The common ancestor
can then create the appropriate tag and secret s4p, then return s4p
up the stack so A and B can complete their TLS-PSK handshake.
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Heterogeneous software stacks present a challenge for local
attested PSK. If microservices are simple processes on a common
OS, each can simply request a shared key using a system call. More
typically, microservices execute in different containers, on different
VMs, or even on nested VMs. Discovering which layers might serve
as a common ancestor for an arbitrary pair of microservices may
not be trivial, and all intervening layers must implement a common
API to pass requests, attestations, and keys between layers.

2.7 TFederated Attested TLS-PSK

For microservices hosted on a set of federated, mutually trusting
platforms, the platforms together can act as a distributed key server,
as shown in Figure 1 (c). The goal of federation is for some com-
mon software layer on each platform to establish a shared master
secret with corresponding layers on all other platforms. Each can
then use this shared secret to generate TLS-PSK keys for microser-
vices hosted above that layer. Federation can be implemented easily
using essentially the same central key server as for centralized
attested TLS-PSK, but here the secrets are distributed to lower lay-
ers, rather than microservices, and used as master key-generating
secrets rather than TLS-PSK keys. Here, tags contain hashes of attes-
tation details for platforms and layers, rather than for microservice
endpoints. The cost of using a central key server is amortized across
all microservices on each platform.

One drawback to federation is the potential management com-
plexity of establishing federation at the appropriate layers of the
software stack. In our prototype implementation, described in the
next section, each software layer can federate with only one group
of peer platforms, and the configuration is managed manually.

3 IMPLEMENTATION AND PERFORMANCE

We implemented prototypes for all the mechanisms described above
and used micro-benchmarks to compare costs. The implementa-
tions are freely available, as is the Tao platform upon which they
build!. Benchmark microservices were implemented as individual
processes, running variously within Docker containers, on CoreOS,
on KVM virtual machines, and on Debian GNU/Linux 9 instances
on either a hypervisor in the Google Compute Engine (GCE) cloud
or on dedicated TPM-capable hardware.

All mechanisms were implemented in Go with TLS 1.2, using
third-party? TLS-PSK support. Elliptic-Curve Diffie-Hellman key
exchange is used, with NIST P-256 or 256-bit TLS-PSK keys, 128-bit
AES-GCM, and SHA256. While we have attempted to avoid imple-
mentation vulnerabilities, the prototypes have not yet undergone
formal security evaluation; they are intended to investigate mecha-
nism performance rather than serve as a basis for deployment.

3.1 Tao APIs for Attested Authentication

Tao was used to augment each layer of the software stack—Docker,
CoreOS, Linux, and KVM—to provide trustworthy computing ser-
vices, i.e., generating shared keys and attesting to software hosted
by each layer. Here, we sketch core features of Tao and describe
extensions we made to implement attested authentication mecha-
nisms. Further details on Tao can be found in prior work [17].

Ihttps://github.com/kevinawalsh/taoca/ and https://github.com/jlmucb/cloudproxy/
Zhttps://github.com/mordyovits/golang-crypto-tls/
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The first Tao API needed for attested authentication is invoked
by microservices to obtain an n-byte secret key for TLS-PSK.

GetKey(tag,i,n) — []bytes

Here, tag is a set of Tao principal names, each a globally unique,
hierarchically-structured description of the software stack imple-
menting some principal. These are the principals that are intended
to share the resulting secret, i.e., the microservices at the endpoints
of a TLS-PSK channel. In simple cases, the Tao layer underlying the
endpoint first checks that the caller’s attestation details match one
of those in tag. Tao then generates and returns s;qq, ), @ secret of n
bytes that depends on both tag and i. Crucially, the same secret will
be returned if GetKey() is later invoked with the same parameters
from other microservices, but only if those later callers are in tag.
Parameter i is an arbitrary identifier to allow key rotation.

To support local microservices on heterogeneous software stacks,
Tao examines all principal names in tag. If the principal name
representing the Tao layer itself is a prefix of those names, then
the Tao layer is a common ancestor, and s(y4g,;) is derived using an
ephemeral master secret chosen at random during instantiation of
that Tao-enabled layer. Otherwise, the Tao layer invokes GetKey()
on the next lower layer of the software stack. Ultimately, the request
will reach a suitable ancestor of the principals in tag, if one exists.

We extend GetKey() to support federation by having some Tao
layers open attested TLS channels with a central key server to obtain
a master secret. This shared secret is used to derive s(;4q, ;) When
the names in tag have no common prefix, i.e. when microservices
use federated attested TLS-PSK from distinct platforms.

A second Tao API is used as part of our implementation of at-
tested TLS and all mechanisms that rely on it.

Attest(stmt) — att

Encoded in stmt is an assertion in a formal logic defined by Tao, and
att is a signed message conveying, essentially, P says stmt, where
P is the caller’s principal name. For attested TLS, after creating
an ephemeral TLS key, each endpoint invokes Attest() with stmt
containing a hash of the public half of its ephemeral key, thereby
linking that key to the Tao principal name for that endpoint. De-
pending on the Tao layers involved, att usually contains a chain of
signatures with each layer attesting to details of the next: the TPM
attests to hypervisor details, the hypervisor attests to details of the
OS, etc. Because public clouds do not generally provide access to
a hardware TPM, we configured bottom-most Tao layers in GCE
benchmarks to use software-based attestation instead.

3.2 Channel Setup Latency

Latency for setting up communications channels is important for
short-lived and rapidly deployed microservices. We measured la-
tency for channel setup and a small, 32-byte message exchange
between microservices executing on independent VMs in the same
GCE zone. Central servers were deployed to the same GCE zone. A
client for each mechanism was instrumented to measure latency
in three scenarios, in sequence: (a) an initial connection and ex-
change with one peer; (b) a connection and exchange with a second
peer; and (c) a final re-connection and exchange again with the first
peer. Experiments for all scenarios were performed both with, and
without, TLS session resumption.
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Bars are medians, whiskers show 5™ and 95t percentiles.

We report the median of at least 10,000 trials for each experiment,
with variance indicated by 5t and 95th percentiles. Artifacts from
VM migration and other factors caused high, unpredictable latency
in fewer than 1% of trials. As a reference and lower-bound, in GCE
zones where tests were performed, channel setup and message
exchange using unauthenticated TCP required 0.18 ms, split evenly
between TCP handshake and message exchange.

Figure 2 shows a breakdown of latency for non-centralized mech-
anisms, revealing that attested TLS without resumption is 16% faster
than baseline mutual TLS on the initial connection, down 0.7 ms
from 4.25 ms, but it also imposes a 9% penalty on subsequent connec-
tions. This reflects the fact that using Attest() locally is faster than
obtaining a certificate from a remote CA, even over an unauthen-
ticated TCP channel, but handshaking for attested TLS is slower,
as it adds an extra round trip to exchange attestations and peers
must also verify the signature chains within those attestations. We
exclude costs for servers to generate keys and obtain certificates or
attestations, as this is done well before or concurrently with clients.

Baseline and attested TLS benefit similarly from session resump-
tion in scenario (c). Session resumption does impose a small but
measurable cost in scenarios (a) and (b), as the server must generate
a cryptographic token during the initial handshake.

Federated attested TLS-PSK has much lower latency than either
baseline or attested TLS in all scenarios because of its reduced hand-
shake, using only symmetric keys and without need to obtain or ex-
change certificates or attestations. The latency for generating keys
is increased—0.7 ms, versus 0.4 ms for baseline and attested TLS—
because the keys for TLS-PSK are generated by invoking GetKey()
on the underlying Tao over an IPC or system call channel, rather
than locally within each microservice process. Session resumption
with TLS-PSK shows only marginal effects, as the handshakes are
quite similar. These results do not include costs for underlying Tao
layers to obtain shared keys, which itself uses centralized attested
TLS, since this occurs well before microservice instantiation and
the cost is amortized over multiple microservices.

Figure 3 shows results for the two centralized mechanisms. Over-
all, these are roughly twice as slow as their non-centralized coun-
terparts, due mainly to the cost of establishing an initial connection
to the central policy CA or key server. Both client and server use
attested TLS for this, incurring that mechanism’s full cost in sce-
nario (a) (we only include client costs here). In centralized attested
TLS, the policy CA is contacted only once. For centralized attested
TLS-PSK, the key server is contacted by a microservice once for
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each destination endpoint, but here session resumption reduces
the cost of authenticating to the CA, and even without session
resumption the same keys and attestations can be reused.

Centralized attested TLS-PSK is faster than its non-PSK coun-
terpart in most scenarios. Here, we include the cost for obtaining
shared keys for both client and server, because these keys are ob-
tained as part of the TLS handshake and are tied to specific endpoint
pairs. Still, the efficiency gains from TLS-PSK more than compen-
sate for the extra cost of obtaining multiple keys from the central
server. When centralized attested TLS-PSK is used to connect re-
peatedly to the same peer, in scenario (c), latency reduces to that
of just TLS-PSK itself. This is significantly faster than any other
mechanism or scenario we tested.

3.3 Sensitivity to Network Latency

To explore the extent to which the mechanisms are sensitive to
network conditions, relative to fixed computational costs, we per-
formed benchmarks with all participants on the same VM, in the
same GCE zone, in disjoint GCE zones within a single region, and
spread across a variety of GCE regions. Figure 4 shows how mecha-
nism efficiency varies over this range of network conditions, where
efficiency is defined as the time taken to perform mutually attested
channel setup and message exchange relative to using unauthenti-
cated TCP. In scenarios (a) and (b), computational costs for keys
and signatures lead to relative insensitivity to network latency. But
in scenario (c) much of the computational costs are avoided, re-
sulting in higher network sensitivity. Peak efficiency is achieved
when network latency is high: at 133 ms network latency, both
mechanisms in scenario (c) achieve nearly 50% efficiency, meaning
their latency is only about twice that of TCP.
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are medians, whiskers show 5" and 95th percentiles.

3.4 Heterogeneous Software Stacks

Local attested TLS-PSK is restricted to microservices co-located
on the same platform, so it is unaffected by network conditions.
Instead, performance depends on how many layers are crossed
when using Tao APIs and TCP. For example, communication may
involve channels from a client microservice, down to a Docker
container, to CoreOS on KVM, to an underlying Linux OS, then back
up to a different container, and finally up to a server microservice.

We measured latency for local attested TLS-PSK channel setup
and message exchange between microservices separated by a vary-
ing number of software layers. The results, shown in Figure 5, reveal
that as the number of layers increases, the cost to obtain keys grows
more rapidly than other phases of channel setup. This is likely be-
cause Tao-related inter-platform communication is not as efficient
or optimized as cross-layer TCP, unsurprising given the importance
of TCP for existing Docker and KVM-hosted microservices. Still,
local attested TLS-PSK can complete a message exchange, with
full mutual authentication and attestation across six layers, in well
under 2 ms, and only 43% of this cost is due to attestation.

4 RELATED WORK AND CONCLUSIONS

The attested mechanisms we describe are built on top of standard
TLS channels and certificates. Prior work (e.g. [1, 7, 15]) examines
the feasibility of modifying TLS to directly integrate TPM-based
endpoint attestation. Stumpf [15] analyzes many such protocols.

Gasmi et al. [6] link TPM attestations to TLS channels, but further
isolate keys from endpoints to enable dynamic attestation, in which
channel state can be updated or revoked without endpoint partici-
pation, e.g., in case of compromise. By contrast, microservices using
our attested mechanisms have direct access to key material and
must participate in revocation. Alternatively, TLS and per-endpoint
keys could be eliminated entirely by arranging for lower layers
of the software stack to provide directly-attested, authenticated
channels—perhaps federated across multiple platforms—much as
an OS provides built-in IPC facilities.

We use Tao for attestation and secret key generation, and Tao
in turn relies on a hardware TPM where available. Thus far, public
clouds have been slow to provide APIs for hardware-based attes-
tation, though Google’s recently-announced Titan chip [8] may
eventually enable such capabilities. Coker et al. [3] discuss a variety
of hardware and software remote attestation primitives, including
timing-based techniques, that may apply to microservices in the
cloud regardless of cloud provider support.

Kevin Walsh and John Manferdelli

The centralized attested TLS mechanism described here closely
mirrors the scheme used in keylime [14], which also relies on TPM
attestations, a central cloud CA for platforms, and a policy CA
for tenant applications. That work did not consider TLS session
resumption or mechanisms using TLS-PSK, however.

All of the attested communications mechanisms we describe
would provide tangible trustworthiness benefits for systems com-
posed of multiple short-lived or rapidly deployed microservices.
Benchmarks results reveal tradeoffs between policy centralization,
in the form of key servers and policy CAs, and latency for key
provisioning and handshaking. We find that for all mechanisms,
the computational and network overheads involved are modest for
many typical scenarios and, in many scenarios, performance of
some attested mechanisms can meet or exceed that of a common,
but only weakly-authenticated, baseline TLS configuration.
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