
Intra-Cloud and Inter-Cloud Authentication
Kevin Walsh

College of the Holy Cross
John Manferdelli

Google, Inc.

Abstract—Authentication mechanisms available in existing
cloud platforms are inadequate for and poorly-suited to modern
cloud-based systems. To support this argument, we describe a
variety of authentication mechanisms commonly used in the
cloud, and we detail how these mechanisms are actually used in
one significant open-source service deployed to a popular cloud
platform. We further report on authentication mechanisms used
and supported by several of the largest cloud platform providers.
The evidence shows that authentication mechanisms currently in
use are too coarse-grained, require manual configuration and
intervention, and are not systematically applied across compo-
nents and services. We identify opportunities for cloud platforms
to support more secure, fine-grained, automated, and systematic
authentication within and between cloud-hosted components.

I. INTRODUCTION

Building a system as a collection of small, mutually-
suspicious components is a well established approach to
scalability, performance, and security. In principle, small com-
ponents are more easily analyzed and verified, and mutual
suspicion is intended to produce a more robust system as
a compromise of one component affects others only to the
degree that components trust each other. In the cloud, these
ideas underlie trends towards micro-services and containers,
for example, in which systems are built as collections of
many semi-independent but interconnected components [1],
[2]. And with Software-as-a-Service, components are not only
architecturally isolated from each other, they also execute
under different administrative domains.

Lack of full trust is—or should be—common. For example,
many VM images available on Amazon EC2 have hidden
vulnerabilities [3], so it would not be prudent to fully trust
these when deploying them inside a cloud domain. Across
administrative domains, the risk cascading failures between
trusting systems is also recognized [4].

When components do not fully trust each other, authentica-
tion, i.e. the reliable determination of the source of a message
or the endpoints of a communication channel, becomes a
critical feature. Authentication is a prerequisite for reliable
logging and debugging, for example, and it provides a basis
for making authorization decisions. Yet, in many systems
that are deployed in the cloud, authentication is severely
lacking. Authentication of end-users to cloud services has
been studied extensively (e.g., [5], [6]), but authentication
between components has received comparatively little atten-
tion. In practice, when components use authentication at all,
they often rely on ad-hoc mechanisms, or they use a variety
of mutually-incompatible authentication mechanisms where a

single mechanism would suffice. With few exceptions, these
mechanisms are not designed for the cloud.

Consider the common case of using a combination of
HTTPS and secret API keys [7] to authenticate messages
between processes in the cloud:
– Copies of the API key are often kept in configuration files

accessible to many (or all) components within a domain.
– Administrators have access to, and must be trusted to

safeguard API keys, placing those administrators squarely
inside the trusted computing base (TCB) and, consequently,
making system security harder to reason about.

– Ad-hoc and insecure channels are used to distribute API
keys, all of which must be trusted.

Such obstacles lead to actual attacks. Developers have inadver-
tently included secret API keys in public repositories [8], for
example. Recently, the CEO of one system misused credentials
to covertly and transparently alter production databases [9].
Similarly, when HTTPS is used for authentication between
components, internal operations are unnecessarily vulnerable
to a weak public key infrastructure (PKI) [10], [11], e.g., as
evidenced by the recent DigiNotar attack [12].

This paper explores authentication mechanisms available
and actually in use in the cloud, and draws from this data
observations and suggestions for cloud authentication that is
both more secure and easier to use. We argue that authen-
tication mechanisms for the cloud should take as an initial
premise that the principals being authenticated are code, not
people, and the differences between these should be explicitly
accounted for. Ultimately, we argue for the use of attestation
of software as a basic building block for cloud authentication,
and for integration with underlying cloud platforms to leverage
pre-existing trust relationships.

In Sections II and III we detail authentication mechanisms
found in the cloud generally and those used by Reddit, a
large and popular web site deployed on Amazon EC2. In
Section IV we explore the mechanisms used and available in
major cloud platforms, both those for authenticating to native
services within the clouds and those useful for authentication
between cloud-hosted components. We conclude in Section V
with a discussion of opportunities for improvement.

II. AUTHENTICATION IN THE CLOUD

It has become common for a system, e.g., a social-media
web site, to be built by interconnecting numerous semi-
independent components, such as databases, logging servers,
load balancers, caches, object managers, and payment gate-
ways. Components may be small, e.g., a specific process



on one VM, or they may be services that encompass many
machines. While some components may be designed in-house,
others are adopted from third parties but deployed within
the same cloud domain. Yet other components are operated
by the cloud provider or by third parties, within the same
cloud or elsewhere. Such a system necessarily spans multiple
administrative and security domains and will make use of a
variety of authentication strategies.

We consider three basic scenarios:
– hosted authentication, when a cloud-hosted component

communicates with a service provided by the underlying
cloud infrastructure;

– intra-cloud authentication, when two cloud-hosted compo-
nents communicate and run on the same cloud platform,
either in the same or separate domains; and

– inter-cloud authentication, when components run on differ-
ent cloud platforms and in separate administrative domains.

These differ primarily in the extent to which the principals
involved have pre-existing trust relationships, and this in turn
influences the kinds of authentication mechanisms used.

With hosted authentication, the cloud-hosted component
necessarily trusts the underlying cloud platform, and the cloud
platform, acting as one endpoint, has unique and privileged
insight into the hosted component’s state and identity. This
could be leveraged by an authentication mechanism, much
like the case of authentication between an operating system
and its processes, and might generally be termed second-party
authentication.

API keys are ubiquitous for authenticating components
acting as clients in this scenario. OAuth [13] is one framework,
though we found many others, both standardized and special-
purpose. HTTPS is commonly used for hosted authentication
as well, but reliance on HTTPS has significant drawbacks.
Notably, the server must store and maintain the secrecy of
a potentially long-lived private key. Clients may also need
to trust the public HTTPS PKI, a system widely recognized
as not particularly trustworthy. Alternatively, a system might
forgo the HTTPS PKI entirely and use custom, ad-hoc means
for distributing certificates, but such schemes are fragile and
often untested. Although HTTPS directly supports mutual
authentication by having servers verify client certificates or
using HTTP digest authentication [14], we found no examples
in which such approaches are used in Reddit. Instead, client
components using HTTPS are authenticated using API keys,
if at all.

For intra-cloud authentication, the two communicating prin-
cipals do not have a direct, pre-established trust relationship,
but both trust a common third party, namely the shared
underlying cloud platform. Thus the cloud platform is ideally
placed to assist in authentication. However, as detailed in
Section IV, cloud providers vary in their level of support for
acting as such a third party. When both components run in
a single cloud domain, a domain administrator may similarly
be trusted by both components, so the domain administrator
can create a third party authentication server where cloud
provider support is lacking. This scenario might generally

be termed special third-party authentication. In addition to
the mechanisms used for hosted authentication, we find some
components perform mutual authentication in this scenario by
using SSH or plain TLS, validating each other’s public key
certificates without the use of a PKI. Certificate distribution
here is usually out-of-band. As with HTTPS, such components
must store and maintain long-lived private keys.

For inter-cloud authentication, the components have neither
direct nor indirect trust relationships with any common, neutral
third parties. Nevertheless, the two cloud providers underlying
the two components could serve as neutral third-parties in
these scenarios as well, as we discuss in Section V. More
generally, components may rely on a variety third parties,
such as certificate authorities, constructed specifically to aid in
authentication. Inter-cloud authentication is thus an example
of general third-party authentication. Curiously, authentication
mechanisms used by Reddit in this scenario include all those
used for intra-cloud authentication, indicating that the unique
trust relationships present in intra-cloud scenarios are not
actually being leveraged for authentication in practice.

III. AUTHENTICATION IN REDDIT’S CLOUD

To explore the extent to which modern cloud-based ser-
vices use (or misuse) various authentication strategies, we
audited the source code1 of Reddit. We chose this particular
service because the code is open-source and its popularity—
reddit.com is ranked2 among the top 25 sites worldwide—
implies the code may be somewhat representative.

A. Reddit Threat Model

Reddit faces numerous threats, but we are specifically
interested in threats due to the component-based nature of the
system. This includes insiders within Reddit with low-level
access to interfere with the operation of one or more compo-
nents, malicious components within Reddit’s own code base
(e.g., a compromised front-end web server), and malicious
external components (e.g., a compromised third-party storage
service or external certificate authority). We assume internal
attackers have full access to monitor or modify traffic on the
local network within Reddit’s cloud domain. We exclude the
cloud platform itself or insiders within that infrastructure (e.g.,
an Amazon employee with access to the EC2 nodes on which
Reddit components execute), because addressing such attacks
typically requires hardware-level support.

Authentication can provide a foundation for defending
against such threats, by allowing the cloud-based components
that comprise the system to distinguish between legitimate
messages sent by trusted components and malicious messages
sent by untrusted principals.

B. Reddit Components and Communications Channels

Reddit includes 71, 881 lines of server-side code, primarily
in Python, and 1600 lines of build and deployment scripts.
We excluded 90, 371 lines of client-side Javascript, HTML,

1http://github.com/reddit/reddit/, version f56e810a4882.
2Alexa Internet Inc. rankings as of July 29, 2016.



CloudFlare CDN

Load Balancer

TLS
Termination

5 Front-end 
Core 

Components

Cassandra

AWS
CloudSearch

PostgreSQL
Masters

PostgreSQL
Slaves

27 Back-end
Core 

Components

RabbitMQ

Third-party
Components

Third-party
Components

Primary AWS EC2
Administrative Domain

Third-party
Components

Third-party
Components

Memcached

AWS S3 AWS Elastic
MapReduce

Clients

AWS EC2 Infrastructure

External Network

Third-party
Components

Third-party
Components

Fig. 1. Reddit architecture. Boxes indicate components executing on top of,
or as part of, the AWS EC2 cloud infrastructure. Arrows indicate primarily
read-only channels.

and CSS code from our analysis. Figure 1 shows an overview
of the system and illustrates interconnections between the most
significant components we identified.

We took each process executing Reddit-specific code to be a
distinct component. Using this definition, the core comprises a
TLS termination server, five additional front-end components
in the critical path for requests from public HTTP and HTTPS
interfaces, and twenty-seven back-end components executing
asynchronously. Front-end components include a central app
server, websockets server, media server, user tracker, and
ad-click tracker. Back-end components are devoted to pre-
rendering pages, generating site-wide statistics, scanning sys-
tem logs, and other maintenance tasks. All core components
share a significant amount of code. Depending on the deploy-
ment configuration, these processes can be co-located on a
few cloud VM instances or spread across many isolated VM
instances. All are deployed within Amazon’s AWS EC2 cloud
infrastructure in a single administrative domain.

We identified non-core components primarily according to
provenance. In some cases we identified smaller components
within a single third-party system when boundaries were
clearly identifiable, particularly for systems that span multiple
VM instances. We identified twenty four types of non-core
components in all, including databases, a content distribution
network, caches, load balancers, search engines, and message
queues. Several of these are deployed within the same EC2
administrative domain as core components, sometimes even
co-located on the same VMs, while others are hosted in
other EC2 domains or outside of EC2. With few exceptions,
all coordination is done through core components—non-core
components generally do not communicate directly.

C. Reddit Authentication Mechanisms

End-users authenticate to Reddit using names and pass-
words, and end-users in turn authenticate Reddit using the
HTTPS PKI. How (or whether) the cloud-based components
of Reddit authenticate each other is less clear. With such a
variety of components, it is not surprising that many different
authentication mechanisms can be found in Reddit’s code base.
Table I summarizes some of these.

1) Implicit Authentication with Ports and Addresses: Many
ostensibly independent components don’t explicitly perform
any authentication at all, instead relying implicitly on OS and
local network routing and firewall policies and, in some cases,
the correctness of DNS and routing in the wider Internet.

Several core components use CloudSearch, an indexing
service provided by AWS. Because a deprecated API is used,
only unencrypted HTTP channels are used, and CloudSearch
authenticates the core components only by IP address. This
means that principals smaller than a single VM instance
can’t be distinguished. Core components do not explicitly
authenticate CloudSearch, relying instead on DNS and local
network routing.

Ten Memcached [15] servers are deployed on VMs within
the same cloud domain as core components, along with
replicas and Memcached routers [16] co-located on core com-
ponent VMs. All communication with core components and
between the various remote replicas is unauthenticated. Mem-
cached does support authentication of clients using SASL [17],
but this isn’t enabled. Core components similarly use two
logging-related components, StatsD [18] and Graphite [19],
and an IP-geolocation service without any explicit authenti-
cation. Core components send UDP packets to remote StatsD
servers, and StatsD instances in turn connect to Graphite using
unauthenticated TCP channels. Core back-end components
access the IP-geolocation service over plain HTTP. All of
these components are hosted on separate VMs, but within the
same cloud domain as core components. For all, authentication
implicitly rests on the security of the cloud local network and,
because high port numbers are used, likely on all software
running on those VMs as well.

Cassandra [20], a distributed data store, is configured to
run replicas on several VMs, with core components acting as
clients. Although Cassandra supports names and passwords
for authenticating clients, and mutual TLS with manually
distributed keys and certificates for both client-replica and
replica-replica communication, none of these mechanisms are
used. Instead, Cassandra is configured to use plain TCP with
high port numbers, again leaving these channels vulnerable
unless the local network and all connected VMs are trusted.

Messages between core components and SMTP daemons
are unauthenticated in Reddit’s default configuration, though
SMTP does support a pluggable architecture [21] for authenti-
cating clients. Because SMTP instances are configured to run
on the same VMs as core components, using low port numbers
and a loopback-only network, OS-level isolation will at least
mitigate some risks from untrusted remote hosts. Even so, all
privileged users and software on the VM instance must be
trusted.

2) HTTPS Authentication and API Keys: The HTTPS PKI
is perhaps the most extensively used authentication mechanism
found within the Reddit code base. In all cases where core
components access other components through REST-oriented
APIs, HTTPS is used for authentication either exclusively or
in combination with other mechanisms. For example, some
core components interact with the CloudFlare CDN by making



Component Description Endpoint / Protocol Authentication Mechanisms
AWS CloudSearch text search service TCP :80 / HTTP DNS, IP, AWS IAM Roles, API Keys
AWS S3 & EMR storage & compute TCP :443 / HTTPS PKI, AWS IAM Roles, API Keys
Cassandra NoSQL database TCP :9160 / binary none, M-TLS, password
CloudFlare content distribution TCP :80 / HTTP shared secret
GeoIP IP-geolocation service TCP :5000 / HTTP none
Google Analytics metrics tracking TCP :80, :443 / HTTP, HTTPS PKI, Public ID
Graphite metrics analysis TCP :2003 / plain text none
Mcrouter Memcached router TCP localhost:5050 / plain text none
Memcached small object cache TCP :11211 / plain text none, SASL
PostgreSQL SQL database TCP :5432 / binary password, M-TLS, Kerberos
RabbitMQ message queues TCP localhost:5672 / plain text password, M-TLS, SASL, Cookies
Reddit Core various TCP :80 / HTTP HMAC
REST APIs various TCP :443 / HTTPS PKI, API Keys
SMTP mail transport server TCP localhost:25 / plain text none, SMTP AUTH
StatsD metrics aggregation UDP :8125 / plain text none
Stripe API payment gateway TCP :443 / HTTPS PKI, API Keys, Public ID
Webhooks various TCP :80, :443 / HTTP, HTTPS PKI, Bearer Tokens, HTTP basic auth, RSA, IP
ZooKeeper admin distributed coordination TCP localhost:2181 / plain text password
ZooKeeper replicas distributed coordination TCP :23888 / binary none, various

TABLE I. Authentication between core and selected components. Italics denotes available, but unused, authentication mechanisms.

requests over HTTPS, so these back-end components authen-
ticate the remote CloudFlare CDN component by checking a
certificate during connection setup. Similarly, HTTPS is used
for authenticating components that provide APIs for newsletter
subscriptions, bug support, DMCA notices, image and video
metadata, and payments. Mutual authentication is achieved for
all of these services using API keys to authenticate the core.

Communication between CloudFlare CDN and some core
components relies on an unusual variation of API keys, used
when proxying HTTP requests from end-users. The proxying
is mostly transparent and mostly unauthenticated. However,
CloudFlare CDN injects a custom header into each HTTP
request to indicate the end-user IP address, along with an
HMAC tag for the injected headers based on a secret shared
with the core components. This allows the front-end servers
to authenticate CloudFlare as the source of this specific HTTP
header. Note that the HMAC key is generated by the sender,
rather than the recipient as would be more typical for API
keys. Also, unlike CloudFlare’s REST API, authentication here
is not mutual and covers only part of each request, leaving the
channel vulnerable to splicing attacks.

3) Bearer Tokens: Webhooks [22] provide another an ex-
ample of using shared secrets, but with core components acting
as servers and other components acting as clients. Webhooks
are used to notify core components of events monitored by
external, third-party components. For each type of event, a
system administrator registers a URL to receive a webhook
callback. In Reddit, these URLs resolve to one of the core
front-end components. During registration, an administrator
generates a secret which third-party components include with
each subsequent notification. Core front-end components ver-
ify the presence of the secret upon receiving each notification.
These secrets act as bearer tokens to authenticate the external
components as the source of the notifications. HTTPS URLs
are used, so the external components can authenticate the core
components, and to protect the secrecy of the bearer tokens.

This mechanism is used with four separate payment processor
gateways. Some of these gateways support alternative authenti-
cation mechanism as well. Stripe, for example, supports HTTP
basic authentication for notifications, and CoinBase can sign
notifications using an RSA key, the public key for which is
distributed manually out-of-band. Both services suggest that
core components should also verify the IP address of the
external service as a further means of authentication, though
this is not done in Reddit.

Core components use bearer tokens to authenticate web-
hooks from Mailgun, a third-party email-tracking component.
Unexpectedly, the same underlying shared secret is also used
as an API key to authenticate requests from core components
to Mailgun’s REST API. Using a common key for independent
protocols can be a source of vulnerabilities [23].

4) HMAC Authentication: The Reddit code base includes
numerous authentication mechanisms using HMAC or sim-
ilar keyed-hash message authentication codes. One example
involves URLs generated by the front-end app server which,
when clicked by a user, result in HTTP requests to the ad-
click tracking service. Certain of these URLs include a tag
generated using HMAC-SHA256 to authenticate the request
as having originated at the front-end app server. A similar
scheme using HMAC-SHA1 is used for a tracking pixel that
links to a user-tracking server. Neither the ad-click tracker
nor user-tracker are external services. Both execute on VM
instances within the same cloud infrastructure as the front-end
app server, making it simple for the app server and tracking
components to share HMAC keys.

There are several scenarios where the app server must,
essentially, authenticate requests sent to itself. When gen-
erating HTTP cookies for some accounts, the app server
includes an HMAC-SHA256 tag. For other cookies, a non-
standard keyed-hash scheme is used, taking a SHA1 hash
over a sequence number, timestamp, user password, and a
secret key, though many such non-standard schemes are known



to be cryptographically weak [24]. In yet other cases, the
app server includes HMAC tags or keyed-hashes in shareable
URLs that act as capabilities which allow users to access
various protected resources hosted by the same app server,
such as subscription-management settings or images that are
normally private to specific user accounts. Authentication here
relies on either HMAC-SHA1 (two cases), HMAC-SHA256
(three cases), non-standard SHA1-based schemes (two cases)
or, in one case, a non-standard MD5-based scheme.

5) Public IDs: API keys are normally kept secret from
end-users and others. But in some cases, we found so-called
API keys that are treated more as public identifiers than
as secrets. For example, Reddit uses three separate Google
Analytics tracking IDs, each serving as a public identifier
to authenticate the entire system—i.e. all of the server-side
components, together with all end-users—when reporting page
view metrics. Similarly, the Stripe payment gateway has a
public identifier in addition to a private API key. While
the secret API key authenticates core components to the
payment gateway when performing security-critical requests,
like accessing or modifying customer payment data, the public
identifier is used to authenticate the entire system, including
end-users, but only for requests deemed less sensitive.

6) AWS Native Authentication: Reddit makes only modest
direct use of AWS cloud services beyond EC2 VM hosting,
but three AWS services are accessed by core components:
Simple Storage Service (S3), CloudSearch, and the Elastic
MapReduce (EMR) data processing service. For CloudSearch,
a legacy form of AWS authentication is used, as discussed
previously in Section III-C1. For S3 and EMR, mutual authen-
tication is supported by using HTTPS to authenticate the AWS
services, and using native AWS authentication mechanisms to
authenticate the core components. Depending on the deploy-
ment configuration, the later involves either AWS IAM Roles,
which we discuss in Section IV-A1, or API keys. In both cases,
however, the underlying mechanism relies on secret API keys
shared by core components and the AWS services.

7) Names and Passwords: PostgreSQL databases and Rab-
bitMQ message queues are critical to the functionality and
security of the entire Reddit service, since nearly all data is
stored in or passes through these components. Even so, at best,
authentication here is based on only names and passwords.

Core components authenticate to eight independent Post-
greSQL databases using a common name and password. Core
components do not explicitly authenticate the databases in any
way, and all communication is over plain TCP connections.
For databases configured with a hot standby, communication
between master and standby servers again relies on a common
name and password, sent in the clear and without mutual
authentication. This leaves credentials vulnerable to even pas-
sive attackers on the local network, and the use unprivileged
port numbers bypasses even the meager isolation provided by
operating systems.

Authentication for RabbitMQ in Reddit’s default configura-
tion is similar, with names and passwords to authenticate core
components, no mutual authentication, and communication

over plain-text TCP connections and high port numbers.
Both PostgreSQL and RabbitMQ support more sophisti-

cated authentication mechanisms. PostgreSQL supports Ker-
beros [25] for authenticating clients, and it supports mutual
authentication between clients, servers, and hot standby servers
via TLS with manually distributed keys and certificates, for
example. RabbitMQ can use TLS mutual authentication with
manually distributed keys and certificates, both for communi-
cation between clients and servers and between servers within
a cluster. Authentication between RabbitMQ replicas can also
be configured to use SASL or cookie-based authentication.

D. Reddit Configuration and Deployment

Many components must be configured with secrets, such
as passwords, API keys, bearer tokens, and private TLS
keys. Based on the deployment scripts included in the Reddit
distribution, these secrets are provisioned as follows. First,
an administrator writes all secrets into a single configuration
file, along with various other less sensitive configuration
parameters. Next, the administrator pushes the configuration
file to a ZooKeeper [26] replica. Finally, during startup,
core components contact a local ZooKeeper replica to obtain
all necessary secrets before establishing channels with other
components. These steps are among the most security-sensitive
ones an administrator will take, where a single mistyped
command or a single well-targeted attack could compromise
the security of all components, Surprisingly, there appears to
be relatively little attention to security here.

When publishing secrets to ZooKeeper, the administrator
does not explicitly authenticate the local ZooKeeper replica.
Zookeeper authenticates the administrator with a password,
but the password is sent in the clear over an unauthenticated
TCP socket. In the default configuration, a ZooKeeper daemon
runs on the local host, so the password does not traverse
the network, but even so, the daemon uses a high port
number that is accessible to any user on the local machine. In
effect, Reddit’s default configuration trusts all user accounts
on the local machine, since they could easily intercept the
ZooKeeper password and all other secrets. Furthermore, while
ZooKeeper supports a variety of authentication mechanisms
for communication between replicas, none is enabled. This
means ZooKeeper replicas, while handling the most security
sensitive data in the system, communicate over unencrypted,
unauthenticated TCP channels with high port numbers. This
renders moot all intra-cloud authentication performed by Red-
dit components, and it makes all other authentication more
coarse-grained than would otherwise be possible.

IV. NATIVE AUTHENTICATION IN CLOUD PLATFORMS

Given the lack of strong authentication seen within Reddit—
and there is little reason to suspect that many other significant
cloud-deployed systems have stronger authentication—it is
natural to ask whether cloud providers can play a role in
providing strong, comprehensive authentication mechanisms
for these systems. Ideally, such a mechanism would allow
for direct authentication of software components, without



requiring developers, administrators, or the components them-
selves to manage API keys, bearer tokens, password, or other
difficult-to-contain secrets. Direct authentication associates a
unique identifier with each component, which may involve
taking a hash of all the software and configuration underlying a
component, or it may rely on other means for choosing unique
identifiers for processes, VMs, and tenants. Any mechanism
must accommodate not just hosted authentication, but intra-
cloud and inter-cloud authentication as well, and it should
support components both larger and smaller than a single VM.

A. Amazon Web Services

AWS services support authentication using HTTPS, API
keys, network-level names and, for user-facing services, TLS
or SSH with manually-distributed public keys. Although
network-level names are easily spoofed on the wider inter-
net, EC2 VM instances are prevented from spoofing IP and
MAC addresses [27], and firewalls can be configured to filter
incoming traffic with spoofed addresses. This mitigates some
risk of using network-level names for authentication within
the confines of a trusted cloud local network.

1) AWS IAM Roles: Many native AWS resources support
authentication using AWS Identity and Access Management
(IAM) roles, opaque names associated with an EC2 VM
instance during deployment and included on access control
lists maintained by AWS services.

Superficially, AWS IAM roles appear to have many prop-
erties of the ideal mechanism outlined above. For example,
components need not explicitly maintain secret keys, making
them immune to the types of secret-management challenges
seen in Reddit. Similarly, developers can be removed from the
TCB by granting them sufficient privileges to deploy specific
VM instances in specific roles, without giving developers
privileges to access protected services directly. Associating a
role with a VM instance is a privileged and audited operation,
so it is feasible to identify all VM instances, hence all software,
that can access critical services.

Unfortunately, the full benefits of IAM roles are not real-
izable in practice because roles are implemented as a series
of rotating API keys created and distributed by the AWS
cloud infrastructure and managed directly by VM instances.
Actually, these keys are directly accessible to all software
running on a VM instance associated with a role, through
a special HTTP-based instance metadata service interface.
This means principals using IAM role authentication can’t be
smaller than a VM instance, and all software executing on the
VM must be trusted to safeguard the keys. Additionally, any
component that accepts DNS names or IP addresses from an
untrusted source must take special care to avoid the confused
deputy problem [28], in which access to data from the instance
metadata service is inadvertently exposed.

IAM roles work for hosted authentication but are unsuitable
for intra-cloud or inter-cloud authentication. In particular,
while AWS native services can validate IAM role keys, there is
no mechanism for third parties to validate the keys or messages
signed with them.

2) AWS Instance Identity Documents: The AWS instance
metadata service exposes an instance identity document, de-
scribing certain details of the instance, along with a signature
of that data using a per-region AWS public key. In contrast
to IAM roles, the public key signature allows an instance
identity document to be verified by third parties, making it
seem attractive as a means for directly authenticating software
components in intra-cloud or inter-cloud scenarios. Without
the inclusion of a nonce, however, the instance identity docu-
ment is not directly usable for authentication. Several attempts
have been made to work around the lack of nonce, though
these are somewhat convoluted and not yet complete.3

B. Microsoft Azure

Services provided by or hosted within the Microsoft Azure
cloud, like AWS, make use of a wide variety of authentication
mechanisms. For hosted authentication scenarios, many Azure
services use a combination of HTTPS and API keys. API keys
are typically used with HMAC to authenticate messages sent
to Azure services or, in some cases, as part of a proof-of-
knowledge challenge-response protocol. Some Azure services
support shared access signature tokens, which act as capabil-
ities that can either reference or directly embed policies. The
tokens are minted using HMAC with a master secret API key.
The policy contained in (or referenced by) these tokens can
include IP addresses, expiration time, user names, and other
factors, and they support revocation.

1) Azure API Management Service: Azure provides an API
Management service to simplify the creation of APIs and
associated back-end servers, specifically targeting APIs that
allow intra-cloud and inter-cloud communication. As a trusted
Azure service, the API Management gateway has the ability
to validate Azure tokens on behalf of the API implementation
without exposing the secret tokens to the API’s back-end
servers. This would be a convenient place to support the
direct authentication of software components, but the API
Management service only supports authentication using API
keys, tokens, and IP addresses.

2) Azure Active Directory: Azure Active Directory (AD)
provides an identity management service that can be used
to authenticate users, VM instances, applications, or other
principals within or outside the Azure cloud. Once authen-
ticated to AD, the principal can obtain from it a variety of
authentication tokens. These tokens are signed with a private
key and can be verified by any third party that holds Azure’s
public key certificate. Tokens can be restricted for use at a
specific service, making them useful for intra-cloud and inter-
cloud authentication. For example, consider how component
A, executing on a VM instance within Azure’s cloud, could
authenticate some component B that executes elsewhere. B
would first authenticate to AD to obtain a restricted token

3See: https://github.com/hashicorp/vault/issues/828, http://ryandlane.com/
blog/2015/06/16/custom-service-to-service-authentication-using-iam-sts,
http://ryandlane.com/blog/2015/06/16/custom-service-to-service-
authentication-using-iamkms, and https://aws.amazon.com/blogs/apn/identity-
federation-and-sso-for-saas-on-aws.



identifying A by name. B can then send the token along
with requests to A. A can then authenticate the requests
as coming from B : first, verify the token using Azure’s
public key certificate; then check to ensure the token includes
the appropriate restriction to A’s service. Because the token
restrictions identify A explicitly, A can’t then use this token to
impersonate B at some other service. However, ultimately any
such use of Azure AD is rooted in secrets—either a private key
or a password—that must be maintained by the component B
to authenticate to AD itself. Thus Azure AD does not currently
support direct authentication of software components.

C. Rackspace and OpenStack

Rackspace runs a version of the OpenStack cloud infrastruc-
ture that uses a common mechanism for all hosted authentica-
tion. Principals first authenticate to an identity service, which
then returns a bearer token that can be used for authentication
to other services. For hosted authentication, a component
would typically use HTTPS to first authenticate the service,
then include the bearer token verbatim in the HTTP headers
of each subsequent request.

In the current implementation, each bearer token is gener-
ated using an authenticated encryption scheme and contains
all associated metadata such as timestamps, user and tenant
IDs, and some restrictions on token use. Encrypted tokens
are validated using Rackspace’s public key, but a database of
revoked tokens is also maintained by the identity service and
must be checked during each token validation.

Unfortunately, Rackspace bearer tokens can’t be restricted
for use at a single service, so they can’t easily be used for inter-
cloud or intra-cloud authentication. For example, if a compo-
nent B were to use a bearer token to authenticate to component
A, A would need to be trusted to not use the token to later
impersonate B by using that token. Additionally, the entire
scheme is rooted in secrets managed directly by components,
since components must authenticate to the Rackspace identity
service itself using either passwords or API keys.

D. Google Cloud Platform

Google Cloud Platform (GCP) uses API keys for certain
hosted authentication scenarios. GCP also supports IAM and
role-based access controls in a manner similar to AWS, signed
policy documents, and signed URLs that act as capabilities to
access restricted resources.

GCP provides extensive support for the use of short-lived
OAuth 2.0 [13] bearer tokens. Components running on a GCP
VM instance obtain these tokens through an instance metadata
service, as follows. Each VM is associated at creation with one
or more service accounts containing key pairs. The service
account public key, or an email address linked to it, can be
used as a principal in authorization policies, and the private
key is installed in the instance metadata service. A component
running within a VM instance sends a request to the metadata
service and obtains in response a JWT [29] token signed by
the private key. It then sends the JWT token to a GCP OAuth

server to obtain an OAuth bearer token that can be used to
authenticate to GCP services.

GCP’s use of service accounts is specifically meant to
allow for direct authentication of software, since “service
accounts are special accounts that represent software rather
than people.”4 Private keys associated with service accounts
are not directly exposed to components during execution, but
are instead maintained by the metadata service, a trusted third
party. Service accounts can be used for intra-cloud and inter-
cloud authentication as well, since GCP provides an API
for validating OAuth tokens derived from a service account
and, much like Azure AD tokens, GCP OAuth tokens can
include the names of both endpoints when components are
authenticating each other. Still, service accounts do not directly
authenticate specific software components, but are instead
opaque identifiers. Moreover, they can’t be associated with
principals smaller than a VM instance, and developers can
request that additional key pairs be generated for a service ac-
count, with the private key managed directly by the developer,
making it more difficult to audit the system.

V. DISCUSSION

Authentication in Reddit and other cloud-deployed systems
is hampered by the need to provision components with secrets,
such as passwords, API keys, bearer tokens, and TLS keys.
One approach to address this problem relies on a dedicated
key-management service (KMS) or hardware security module
(HSM). AWS provides a KMS, for example, and has more
recently introduced a CloudHSM service. Tutament [30] and
a variety of industry solutions have recently been proposed
along similar lines. AlBelooshi et al. [31] survey recent work
in this area. However, while these services can play a vital role
in safeguarding secrets, they don’t addresses the fundamental
problem of how to bootstrap authentication of components in
the cloud. They instead only shift the problem to authentication
between components and the KMS or HSM itself.

Hatman [32] is a alternative reputation-based approach to
dealing with components within a cloud that are not fully
trusted. Component topology can also be engineered to be
more tolerant to some failures [4], reducing the need for
components to trust each other.

We argue for direct authentication of software components,
without reliance on administrators, developers or components
managing API keys, passwords, TLS keys, or other secrets. In
this scheme, cloud providers, by acting as trusted third parties,
would play a central role in inter-cloud and intra-cloud authen-
tication of components hosted in the cloud. This is essentially a
call for remote attestation in a manner similar to that provided
by a trusted platform module [33] or various software-based
attestation schemes [34]. But here, we can leverage the fact
that components running within a cloud platform typically
already trust the cloud platform infrastructure. In fact, the
cloud infrastructure already has unique and privileged insight
into the specific software and configuration for every VM

4https://cloud.google.com/storage/docs/authentication



instance, along with information about tenant, machine, VM,
and even process identity. This information could be the basis
for strong authentication between components. Yet while some
cloud platforms expose some of this information, even going
so far as signing it so it can be verified by third parties,
none of the cloud platforms we examined appear to allow this
information to be used as part of an authentication mechanism.

We envision two possible mechanisms: a certificate-based
approach, and a token-granting service. In the first, a cloud
provider would issue certificates to hosted components, on
demand, attesting to details about the components, such as
a hash of the VM image or a tenant ID. These certificates
could be bound to transient secrets generated by the com-
ponents, e.g., temporary API keys to sign HTTP requests or
a temporary TLS key to authenticate an HTTPS session, or
the certificates could include nonces generated as part of an
online authentication protocol. For inter-cloud authentication,
the cloud provider key used to sign certificates can be installed
in remote components, either manually or through a PKI.

A token-granting approach provides each cloud-hosted com-
ponent a means for obtaining from the cloud provider a token
detailing information about the component itself. But unlike
with existing cloud identity servers, components would not
need to authenticate to the token-granting services using a
secret. Instead the cloud platform would leverage its privileged
position to directly attest to the information in a token.

Either of the above approaches would serve to allow soft-
ware components to be directly authenticated, independently
of developers and the administrators responsible for deploying
and managing the components, thus allowing for a smaller
TCB that is easier to audit and analyze. In fact, by replacing
many disparate, ad-hoc mechanisms, it could serve to reduce
the TCB substantially. In the case of Reddit, it would remove
from many TCBs all of the domain name system and the
HTTPS PKI, IP routing on the internet and within the cloud,
and network firewalls, and it would allow for the security of
each component to be analyzed independently of most others.

VI. ACKNOWLEDGMENTS

Tom Roeder suggested the classification in Section II and
provided invaluable comments on this manuscript.

REFERENCES

[1] H. Kang, M. Le, and S. Tao, “Container and microservice driven
design for cloud infrastructure devops,” in Proc. Int. Conf. on Cloud
Engineering (IC2E), Apr. 2016.

[2] D. Bernstein, “Containers and cloud: From LXC to docker to kuber-
netes,” IEEE Cloud Computing, vol. 1, no. 3, pp. 81–84, Sep. 2014.

[3] M. Balduzzi, J. Zaddach, D. Balzarotti, E. Kirda, and S. Loureiro, “A
security analysis of Amazon’s Elastic Compute Cloud service,” in ACM
Symp. on Applied Comput., 2012, pp. 1427–1434.

[4] K. M. Lhaksmana, Y. Murakami, and T. Ishida, “Cascading failure
tolerance in large-scale service networks,” in IEEE Int. Conf. on Services
Comput., 2015, pp. 1–8.

[5] J. Oh, J. Park, S. Park, and J.-J. Won, “TAaaS: Trustworthy authentica-
tion as a service,” in IEEE Int. Conf. Cloud Comput., 2016.

[6] H. K. Lu, “Keeping your API keys in a safe,” in IEEE Int. Conf. Cloud
Comput., 2014, pp. 962–965.

[7] S. Farrell, “API keys to the kingdom,” Internet Computing, vol. 13,
no. 5, pp. 91–93, Sep. 2009.

[8] V. S. Sinha, D. Saha, P. Dhoolia, R. Padhye, and S. Mani, “Detecting
and mitigating secret-key leaks in source code repositories,” in Proc.
Working Conf. on Mining Software Repositories, May 2015, pp. 396–
400.

[9] “TIFU by editing some comments and creating an unneces-
sary controversy,” https://www.reddit.com/r/announcements/comments/
5frg1n/, Nov. 2016.

[10] S. B. Roosa and S. Schultze, “Trust darknet: Control and compromise
in the internet’s certificate authority model,” IEEE Internet Comput.,
vol. 17, no. 3, pp. 18–25, Feb. 2013.

[11] Z. Durumeric, J. Kasten, M. Bailey, and J. A. Halderman, “Analysis of
the HTTPS certificate ecosystem,” in Proc. Internet Measurement Conf.,
Oct. 2013.

[12] N. Leavitt, “Internet security under attack: The undermining of digital
certificates,” Computer, vol. 44, no. 12, pp. 17–20, 2011.

[13] D. H. (Ed.), “The OAuth 2.0 authorization framework,” Internet Eng.
Task Force RFC 6749, 2012.

[14] R. T. F. (Ed.) and J. F. R. (Ed.), “Hypertext transfer protocol (http/1.1):
Authentication,” Internet Eng. Task Force RFC 2617, 2014.

[15] B. Fitzpatrick, “Distributed caching with memcached,” Linux Journal,
vol. 2004, no. 124, Aug. 2004.

[16] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, , and
V. Venkataramani, “Scaling memcache at Facebook,” in Proc. Networked
Syst. Design & Implementation, 2013, pp. 385–398.

[17] A. Melnikov and K. D. Zeilenga, “Simple authentication and security
layer (SASL),” Internet Eng. Task Force RFC 4422, 2006.

[18] I. Malpass, “Measure anything, measure everything,” Feb. 2011.
[19] C. Davis, “Graphite,” in The Architecture of Open Source Applications,

A. Brown and G. Wilson, Eds., 2014, ch. 7.
[20] M. Y. Becker and P. Sewell, “Cassandra: Flexible trust management,

applied to electronic health records,” in Proc. IEEE Comput. Security
Found. Workshop, Jun. 2004.

[21] J. Myers, “SMTP service extension for authentication,” Internet Eng.
Task Force RFC 2554, 1999.

[22] H. Lampesberger, “Technologies for web and cloud service interaction:
A survey,” Service Oriented Computing and Applications, vol. 10, no. 2,
pp. 71–110, Jun. 2016.

[23] J. Kelsey, B. Schneier, and D. Wagner, “Protocol interactions and the
chosen protocol attack,” in Security Protocols, ser. Lecture Notes in
Comput. Sci., B. Christianson, B. Crispo, M. Lomas, and M. Roe, Eds.,
vol. 1361, 1998, pp. 91–104.

[24] “MDx-MAC and building fast MACs from hash functions,” in
Crypto’95, 1995.

[25] J. G. Steiner, B. C. Neuman, and J. I. Schiller, “Kerberos: An authen-
tication service for open network systems,” in Proc. USENIX Winter,
Feb. 1988, pp. 191–202.

[26] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “ZooKeeper: Wait-
free coordination for internet-scale systems,” in Proc. Annu. Tech. Conf.,
2010.

[27] “Amazon Web Services: Overview of security processes,” https://d0.
awsstatic.com/whitepapers/Security/AWS Security Whitepaper.pdf,
Oct. 2016.

[28] N. Hardy, “The confused deputy: (or why capabilities might have been
invented),” ACM Operating Syst. Review, vol. 22, 1988.

[29] B. Campbell, C. Mortimore, and M. Jones, “JSON web token (JWT)
bearer token profiles for OAuth 2.0,” IETF Network Working Group
Draft Standard, 2012.

[30] “Tutamen: A next-generation secret-storage platform,” in ACM Symp.
on Cloud Comput., 2016.

[31] B. AlBelooshi, E. Damiani, K. Salah, and T. Martin, “Securing crypto-
graphic keys in the cloud: A survey,” IEEE Cloud Computing, vol. 3,
no. 4, pp. 42–56, 2016.

[32] S. M. Khan and K. W. Hamlen, “Hatman: Intra-cloud trust management
for Hadoop,” in IEEE Int. Conf. Cloud Comput., 2012, pp. 494–501.

[33] Trusted Computing Group, “Trusted platform module (TPM) specifica-
tion, version 1.2,” https://www.trustedcomputinggroup.org/specs/TPM/,
Mar. 2011.

[34] A. Ghosh, A. Sapello, A. Poylisher, C. J. Chiang, A. Kubota, and
T. Matsunaka, “On the feasibility of deploying software attestation in
cloud environments,” in IEEE Int. Conf. Cloud Comput., 2014, pp. 128–
135.


