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Nexus Authorization Logic (NAL) provides a principled basis for specifying and rea-

soning about credentials and authorization policies. It extends prior access control logics

that are based on “says” and “speaks for” operators. NAL enables authorization of access

requests to depend on (i) the source or pedigree of the requester, (ii) the outcome of any

mechanized analysis of the requester, or (iii) the use of trusted software to encapsulate or

modify the requester. To illustrate the convenience and expressive power of this approach

to authorization, a document-viewer application suite was implemented for the α-Nexus

operating system. One of the viewers enforces policies that concern the integrity of ex-

cerpts a document contains; another viewer enforces confidentiality policies specified by

labels tagging blocks of text; and a third viewer enforces policies that impose chain-of-

custody restrictions on stages of an image-editing pipeline. To study how compatible this

approach to authorization is with existing principles for building trustworthy systems, a

filesystem that pervasively instantiates a number of well-known security principles was

implemented for α-Nexus. The design and overall performance of this filesystem was

compared to a Linux filesystem that largely ignores the security principles.
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CHAPTER 1

INTRODUCTION

Authorization is the process of deciding whether a given principal (e.g., a user) should

be allowed to perform some specified action (e.g., read a file). Authorization is imple-

mented in a software system by a guard, which checks requests from a principal to per-

form actions. The guard decides whether to authorize or deny a request, usually based

on which principal made the request, the nature of the request, and perhaps the system

state.

Authorization thus often requires a means for attributing each request to the principal

that made the request. If a valid user name and password is entered on the keyboard,

for example, then we might attribute each subsequent request from the keyboard to the

user with that name. And if a digitally signed request arrives over some channel, and the

signature can be verified using some public key, then we might attribute the request to a

principal that knows the corresponding private key. The process of attributing requests

to principals is known as authentication.

Support for audit—the ability to record, review, and evaluate past system actions—is

important for establishing accountability. Audit can be facilitated by recording in an audit

log all actions that are performed. The audit log is used by administrators to diagnose

problems or verify compliance with some security policy. An audit log is most useful

if it records not only which actions were performed but which principal requested that

they be performed and why they were allowed to be performed. If an administrator, for

example, discovers while reviewing an audit log that a file was accessed inappropriately,

then it is essential to know which principal accessed the file and, ideally, why the access

request was authorized. Authorization helps to create a comprehensive audit framework

by recording decisions made by guards, along with the inputs used to make those deci-

sions.
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Authorization, authentication, and audit—collectively dubbed the gold standard [80]

because Au is the atomic symbol for gold—are widely considered essential for computer

security. This dissertation explores new approaches to authorization and its implementa-

tion in computer systems.

1.1 A Model

In the model we adopt in this dissertation for authorization, a subject is a principal that

makes requests. Some authorization policy, which is a set of rules, prescribes which re-

quests are authorized. And an object is an entity on which operations are performed. For

authorization intended to safeguard the integrity or confidentiality of data in a filesystem,

for example, the subjects might be users, and the objects might be files and directories,

with operations that include read, write, enumerate, delete, etc.

There is considerable flexibility in the choice of subjects. A user is a subject, as dis-

cussed previously; users make requests by employing a keyboard or other input devices

or by running programs that make requests on that user’s behalf. A process executing

above an operating system kernel also could be a subject; it makes requests by invoking

system calls. A thread within a process likewise can be a subject. A machine might send

messages conveying requests over a network, and various hardware components within

a single machine make requests to each other, so machines and hardware components

can be seen as subjects, too. Note, some of these subjects are fine-grained while others

are coarse grained. A process is a finer-grained subject than a user, for example, because

many processes make requests on behalf of the same user.

Just as there is flexibility in the choice of subjects, there is flexibility in the choice of

objects and operations. In this chapter, we limit our discussion to objects implemented by

an operating system kernel and operations that correspond to system calls. In subsequent

chapters, we discuss authorization in other contexts.
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1.2 Authorization Policies

For authorization, as elsewhere, separation of mechanism and policy has advantages [82].

It allows policy changes to be deployed quickly and without updating code, so long as

the existing guards support the new policies. It also allows guard implementations and

policies to be separately developed, debugged, or analyzed for correctness.

We view authorization policies in terms of privileges, each of which represents a right

to perform certain operations on certain objects. When a subject is allowed to perform

some operation p on an object, we say the subject holds privilege p for that object. The

set of privileges held by a subject need not be static. We should expect privileges will be

granted or revoked in response to various events, and the set of privileges that a subject

holds might depend on the system state.

One way to evaluate an approach to implementing guards is based on how effectively

such guards support a desired class of policies. We briefly consider a few classes of poli-

cies and guards that have played an important role in the development of authorization

for software systems. This discussion is primarily intended to illustrate the diversity of

policies that an authorization framework might strive to support. However, it also pro-

vides examples to which we will return.

1.2.1 Discretionary Access Control (DAC)

A discretionary access control (DAC) policy is one in which the owner of an object controls

the assignment privileges for that object to other subjects. DAC is one of two classes

of policy described in the “Orange Book” [46], ITSEC [39], and later the Common Cri-

teria [40]—influential documents that define requirements for secure software systems

intended for the U.S. Department of Defense and others. The policies commonly en-

forced by filesystems systems are DAC policies: the user that creates a file or directory is

3



the owner and specifies which other subjects are allowed to read, write, or execute a file,

enumerate a directory, etc.

A formalization of DAC policies can be obtained by representing privileges in an ac-

cess control matrix [79] m containing a row for each subject and a column for each object,

where each entry m[S, o] specifies the set of privileges held by subject S for object o. A

guard authorizes a request from subject S to perform operation p on object o if and only

if p ∈ m[S, o] holds. Traditionally, a special privilege own is defined, and own ∈ m[S, o]

is interpreted to mean that S is an owner of o, hence that S can control the assignment

of privileges for o. Ownership is at the heart of DAC, so there is a distinction between

own and other privileges. To reinforce that distinction, this dissertation departs from the

traditional formalization and instead introduces a separate owner relation to define which

subject owns each object. If every object has exactly one owner—a common restriction,

and one we adopt here—then we write owner(o) to denote the subject that owns object o.

Usually owner(o) is the subject that requested that o be created.

Changes to the access control matrix are necessary whenever objects or subjects are

created or destroyed and whenever privileges are granted or revoked. These changes

must themselves be performed only in response to an authorized request; otherwise,

a subject could circumvent DAC by simply adding any desired privileges to the cor-

responding entry of the access control matrix. So a DAC policy will also specify spe-

cial operations, called commands, that modify the access control matrix. For example,

addPriv(S ′, o, p) might add privilege p tom[S ′, o] and delPriv(S ′, o, p) might remove priv-

ilege p from m[S ′, o]. In a DAC policy, owner(o) is authorized to invoke these commands,

but most other principals are not.

An owner might want to confer on some other subject S ′ the ability to invoke

addPriv(·, ·, ·). This is an example of delegation of authority. One way to formalize del-

egation of authority is by defining a special privilege p∗ for each ordinary privilege p and

allowing any subject S ′ that holds p∗ for object o to invoke addPriv(S ′′, o, p). Thus an
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owner, by invoking addPriv(S ′, o, p∗), can delegate authority for controlling privilege p

for object o to subject S ′. Subsequently, S ′ can invoke addPriv(S ′′, o, p) to grant privilege

p to some subject S ′′.

A system might also allow the owner of an object to be changed by providing com-

mands that modify the owner relation. Usually, only system administrators are allowed

to invoke these commands. One reason for allowing system administrators, but not own-

ers, to change owner(o) is that ownership brings certain responsibilities. A user might be

responsible for the contents of files they own, for example, or a user might be charged for

storing those files. But one consequence of granting special powers to system administra-

tors is that now a system administrator may modify entries in the access control matrix

for any object simply by becoming the owner of that object first.

The access control matrix formalism is naturally supported in two ways: access control

lists and capabilities. We discuss these briefly before considering other types of authoriza-

tion policies.

Access Control Lists (ACLs)

An access control list (ACL) for an object summarizes one column of the access control

matrix. Thus the ACL for object o is a list of entries, each of which contains the name of

a subject S and a description of the privileges m[S, o] that S holds for o. Accompanying

each ACL is an owner record specifying the name of the object’s owner. The owner record

represents one element of the owner relation. ACLs are one of the earliest mechanisms

for enforcing DAC policies [41].

The integrity of an ACL and owner record can be maintained by storing them along

with the object they are associated with—for example, as part of the on-disk representa-

tion of a file or directory—and by managing ACLs and owner records within the operat-

ing system kernel.
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When ACLs are used, the privileges held by a particular subject are listed with the

different objects, hence privileges typically are stored in a variety of different memory

and disk locations. This hinders the ability to review the set of privileges a subject holds.

However, review for a single object is cheap. An owner can examine the ACL for an object

to ensure certain subjects do not appear, for example.

In many settings, privileges are granted to subjects by virtue of membership in a

group. Each user that is a member of the group Students , for example, might be granted

read privileges for every file in a directory Homeworks . A change in group membership

can be expensive if it requires updating ACLs for many different objects. One way to

avoid this expense is to allow group names to appear on ACLs. Groups provide a level

of indirection that eliminates the need to update ACLs for multiple objects when group

membership changes. Allowing groups to appear on ACLs can also reduce the size of

ACLs, potentially leading to reduced storage and run-time costs.

When ACLs are being used, the guard for object o simply checks, for each requested

operation, if the operation and requester’s name is listed on the ACL for o. Most mod-

ern operating systems implement guards with broad support for ACLs. The traditional

user/group/other file-permissions scheme from Unix [135] can be seen as a (particularly

limited) kind of ACL containing exactly three entries: a set of privileges for the user, a set

of privileges for other members of one of the user’s groups, and a set of privileges for all

other subjects.

Capabilities

A capability [45] is a pair comprising an object name and a set of privileges for that object.

Capabilities can be used to implement DAC; a capability held by a subject represents a

single entry of an access control matrix. And a capability list, which enumerates all of the

capabilities held by a single subject, represents a single row of an access control matrix. A

survey of early capability-based systems is provided by Levy [83].
6



Integrity of capabilities and capability-lists can be ensured through a variety of imple-

mentation approaches.

• Capabilities can be stored within or managed by an operating system kernel.

• Special-purpose hardware can be used to manage capabilities.

• Each capability can be represented by a message containing an object name and

associated privileges, signed with the private key of the object’s owner, the kernel,

or some other principal.

• Capabilities can be implemented as typed objects within a type-safe programming

language, where strong typing ensures the integrity of the capabilities.

When capabilities are managed by the kernel or hardware, commands like addPriv(·, ·, ·)

are implemented as system calls or special hardware instructions. In the cryptographic

and type-safe programming language approaches, a capability is held by each subject

that possesses the appropriate signed message or a variable of an appropriate type, so a

subject can pass any capability it holds to any subject with which it communicates.

Capabilities and capability-lists are used in commercial operating systems. The file

descriptor table for a process is an example of a capability list. Each file descriptor table

is maintained by the operating system kernel, with each entry specifying an object (such

as a file, socket, or pipe) and a set of privileges that the process holds for that object. A

second example comes from a widely implemented POSIX draft standard [70], which de-

fines a set of capabilities that represent privileges to perform operations useful for system

administration.1

While it is straightforward to enumerate privileges held by a particular subject in a

capability-based implementation, review for a particular object can be expensive or im-

practical. Revocation in a capability-system also can be challenging, since all of the ca-
1POSIX capabilities are not true capabilities, because they represent privileges to invoke certain operat-

ing system kernel interfaces, rather than representing privileges to invoke operations on an object. There is
only one kernel and its interfaces are usually fixed at compile-time, so POSIX need not define mechanisms
corresponding to DAC commands for adding or removing objects.
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pabilities for an object might not be stored in a central location. And in some capability

implementations, particularly those based on cryptography, capabilities are stored and

managed entirely by subjects, making revocation and review significantly more difficult.

1.2.2 Mandatory Access Control (MAC)

A mandatory access control (MAC) policy is one in which an administrator or other cen-

tral authority controls the assignment of privileges for objects to subjects. MAC policies

are suitable for organizations that impose uniform policies across all subjects and objects

rather than relying on the discretion of users. Some systems implement elements of both

DAC and MAC, generally by authorizing a request if and only if both the DAC and MAC

policies are satisfied. MAC is the second of two classes of policy described in the Orange

Book [46] and subsequent standards [39, 40].

A variety of MAC policies have been proposed. Below, we discuss two common types.

Domain type enforcement [8] and Chinese wall [29] policies are also well known MAC

policies, but we omit them for brevity.

Multilevel Security (MLS) Policies

Intelligence and military communities require control over the dissemination and in-

tegrity of information. Multilevel security (MLS) policies [111, 143]2 seek to control dis-

semination by ensuring that a subject can learn information only if: (i) the subject is

deemed sufficiently trustworthy; and (ii) the subject has a need to know the information.

In an MLS policy, each object o is assigned a classification, denoted λobj (o), and each

subject S is assigned a clearance, denoted λsubj (S). Object classifications and subject clear-

ances are selected from a set of security labels. In one widely studied MLS scheme [44,120],

2MacKenzie and Pottinger [89] detail the history of the development of MLS, and Bell [19] provides a
retrospective examination of its formalization.
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a security label is a pair. The first element of the pair designates a sensitivity level—U

(unclassified), C (confidential), S (secret), or TS (top-secret)—and the second element of

the pair designates a set of compartments constructed from descriptors, such as crypto,

nuclear, etc. There is a strict total order @ on the sensitivity levels (U @ C @ S @ TS) and

the usual partial order ⊆ on sets of compartments. From these we define a partial order

relation � for security labels, where 〈sl , cmpt〉 � 〈sl ′, cmpt ′〉 holds if and only if sl v sl ′

and cmpt ⊆ cmpt ′ hold. Thus, the security labels are a lattice.

MLS limits the dissemination of information within a system by systematically re-

stricting each subject’s ability to read or write data, as follows.

• A subject S is authorized to read data from object o if and only if

λobj (o) � λsubj (S).

• A subject S is authorized to write data to object o if and only if

λsubj (S) � λobj (o).

These policies were formalized by Bell and La Padula [18] who then proved that, if a

system enforces such a policy, then information never flows from entities (either subjects

or objects) with high security labels to entities with low security labels.

In practice, MLS can be quite complex. Policies might include citizenship require-

ments for users, object secrecy levels may change over time on a fixed schedule, and user

clearances may be contingent on successful polygraph and background checks, either of

which may expire after a fixed interval. Garg et al. [57] provide a case study of MLS

policies as implemented by U.S. intelligence agencies.

MLS policies are MAC policies because authorization decisions are not at the discre-

tion of users. This does not imply that decision making for MAC is centralized. For

instance, when the objects in the system are text documents, authority to assign classifi-
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cations is typically delegated to one or more classification authorities trusted by the admin-

istrator. And when subjects are human users, authority to assign clearances is delegated

to a set of clearance authorities trusted by the administrator. Thus, a guard that implements

MLS might be forced to use input from a variety of sources when making authorization

decisions for read and write requests.

Biba Integrity Policies

The Bell and La Padula formalization of MLS concerns the confidentiality of information.

Biba [22] proposed policies for protecting data integrity. Similar to MLS, Biba integrity

policies assign each subject and object an integrity label chosen from some lattice. We use

Λsubj (S) to denote the integrity label assigned to subject S, and Λobj (o) to denote the in-

tegrity label assigned to object o. We might define two integrity levels, HI (high integrity)

and LI (low integrity), with a strict total order A on them (HI A LI), and a set of categories,

such as production, development, etc. A security label is then a pair 〈il , cat〉 comprising

an integrity level il and a set cat of categories. Given the usual partial order ⊇ on sets

of categories, we form a lattice by defining a partial order relation � for integrity labels,

where 〈il , cat〉 � 〈il ′, cat ′〉 holds if and only if il w il ′ and cat ⊇ cat ′ hold.

A Biba policy restricts a subject’s ability to access objects.

• A subject S is authorized to read data from object o if and only if

Λobj (o) � Λsubj (S).

• A subject S is authorized to write data to object o if and only if

Λsubj (S) � Λobj (o).

It is clear that Biba and MLS policies share a similar structure. The lattice of security labels

used by an MLS policy is, in fact, the dual of the lattice of integrity labels in a Biba policy.
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And whereas MLS only allows information to flow upwards in the security label lattice,

Biba only allows information to flow downwards in the integrity label lattice.

Clark-Wilson Policies

The policies discussed thus far concern read and write operations. But in many commer-

cial settings, allowing any single subject to have unrestricted read or write privileges for

an object would be considered an unnecessary risk. In a bank, for example, an employee

might be deemed sufficiently trustworthy to transfer funds from one account to another,

but not to withdraw or to add funds from/to either account, even though all involve the

same read and write actions on the same underlying data. For this reason, the MLS and

Biba policies are ill suited for use in commercial settings.

There are several additional problems with using MLS and Biba in a commercial set-

ting. First, there might not be an overall ordering on the trustworthiness of employees or

on the classification of business data. Instead, the integrity and confidentiality of impor-

tant data might be protected through the use of separation of duties, which helps prevent

errors and fraud by requiring that multiple subjects cooperate in carrying out an action.

In addition, the integrity of an object in a commercial setting is not defined in terms of

which subjects have performed operations on the object but by constraints on the object’s

data. A bank’s ledgers, for example, must balance at all times.

Clark and Wilson [36] proposed a set policies to address these issues. Clark-Wilson

policies prohibit subjects from modifying data directly, but instead require subjects to

invoke trusted procedures, programs that implement transactions on system data. Trusted

procedures perform well-formed transactions, which, by definition, transform system state

only in integrity-preserving ways. So, if the system state satisfies integrity constraints

before a trusted procedure is executed, then the system state after execution will satisfy

the integrity constraints.
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In a Clark-Wilson policy, subjects hold privileges for invoking only certain trusted

procedures, rather than for invoking individual read and write operations on particular

objects. Assignment of privileges to subjects is determined by some central authority,

making Clark-Wilson a MAC policy. However, Clark-Wilson policies do not require sub-

jects or objects to have security labels. Instead, access to system data depends on which

subject is making a request and which trusted procedure the subject invokes to carry out

the request.

1.2.3 Role-Based Access Control (RBAC)

In both DAC and MAC, a subject may have a variety of responsibilities, each of which re-

quires the subject to hold some set of privileges. If a subject’s responsibilities change, then

the set of privileges the subject holds might also have to change. Role-based access con-

trol (RBAC) [52, 121] introduces roles as an aid to managing the assignment of privileges

to subjects in such scenarios. A role is assigned a set of privileges necessary for some task

or responsibility. For example, the Student role might be assigned privileges sufficient

to submit homeworks to be graded, while the Grader role is assigned privileges to read

submitted homeworks and modify a database of grades. Roles can form a hierarchy, with

higher roles defined in terms of lower roles. The Instructor role, for example, would be

assigned, at minimum, all the privileges assigned to the Grader and Student roles.

With RBAC, each subject is assigned some set of possible roles, and a subject is at

any time allowed to inhabit one or more of these assigned roles. When a subject inhabits

a role, the subject holds all of the privileges associated with that role. So only subjects

assigned the Instructor role can inhabit that role. And a subject might chose to inhabit the

Grader role, rather than the Instructor role, when grading submitted homeworks. This

helps avoid accidental misuse of privileges.

The assignment of roles to subjects can be governed by DAC or MAC policies, or a
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combination of both. For example, an administrator might assign the Instructor role to

some set of subjects, and any subject that inhabits the Instructor role might be allowed to

control the assignment of Student and Grader roles. More complex rules are also possible.

We might stipulate, for example, that no subject be assigned both Student and Grader

roles, or at least that no subject inhabit both these roles simultaneously, which has the

character of a MAC policy.

1.3 Credentials-Based Authorization

In credentials-based authorization, requests to perform actions are accompanied by creden-

tials. Each request is examined by a guard that uses the credentials accompanying the

request, perhaps augmented with other credentials conveying information about system

state, to make authorization decisions. Authorization decisions thus can be decentralized,

with authority shared by the guard and the principals who issue credentials.

Accountability for authorization decisions is made explicit through the credentials. So

for each request that is authorized by the guard, an audit log can record that outcome and

the credentials used to justify the guard’s decision. The result is a particularly descriptive

form of audit that identifies the basis on which subjects’ requests are authorized.

As an example, consider how credentials-based authorization can be used to enforce

an MLS policy for requests from some user Alice to read some document d. Two creden-

tials might be passed to the guard: a credential issued by a clearance authority describ-

ing Alice’s clearance, and a credential issued by a classification authority describing the

classification of document d. The guard would authorize the request if and only if the ev-

idence contained in these credentials is sufficient to discharge the MLS policy that Alice’s

clearance dominates d’s classification. Notice that attribution is an important part of a

credential, because the issuer of each credential can be a factor in determining whether

the information conveyed by that credential should be trusted. Suppose, for example, the
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administrator for an MLS policy trusts clearance authority CA but not CA′. Then a creden-

tial from CA describing Alice’s clearance might result in Alice’s request being authorized,

whereas a similar credential from CA′ would not result in a request being authorized.

Authorization Logics

In credentials-based authorization, the choice of language for expressing credentials and

policies determines the kinds of policies that can be enforced. A natural choice is to use a

formal logic, which defines a set of formulas and a set of inference rules. In this approach,

credentials are modeled by formulas that convey facts about the system or the world,

policies are modeled by formulas that describe the conditions under which subjects are

allowed to perform actions, and a guard authorizes a request if and only if the credentials

in evidence discharge the appropriate policy according to the inference rules.

A number of special-purpose logics have been designed for use in authorization—the

ones we discuss here derive from a logic due to Lampson et. al. [3,78]. Common features

of these logics include schemes for naming or describing principals in addition to opera-

tors that model attribution of statements to principals and delegation between principals.

Principals in the logic typically include subjects (because subjects make requests to per-

form actions), entities that issue credentials, and a variety of other entities. Continuing

the example of an MLS policy implemented using credentials-based authorization, we

might model Alice’s credential from some clearance authority CA by a formula:

CA says cleared(Alice, 〈C, {crypto}〉).

The says operator models attribution, so here, the statement cleared(Alice, 〈C, {crypto}〉)

is being attributed to the principal CA. The speaks-for operator (→) models delegation,

so we might model the fact that some CA is trusted by the administrator using a formula:

CA→ Admin.
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A formal logic for authorization offers the advantage that the meaning of a policy and

the consequences of issuing a credential are defined by known inference rules, so they are

unambiguous. A formal logic can also provide the basis for implementing guards. Since

credentials and policies are interpreted as formulas, a guard can use automated proof

search to check whether a policy is satisfied by a request. Or, the work of constructing a

proof could be performed elsewhere, with the guard simply checking the proof, using an

automated proof checker. In proof-carrying authorization [6], requesters are responsible

for constructing proofs, and these proofs accompany requests to perform actions. A guard

that checks a proof is likely to be simpler and more efficient than one that creates a proof,

because inventing proofs is harder than checking proofs.

Most authorization logics assume that each principal has a unique name and that all

requests and credentials can be correctly attributed to those names. One challenge when

designing a logic, then, is to support all of the types of principals encountered in prac-

tice. Consider, for example, a logic that names each principal using a unique public key.

Principals might then sign the requests they make and the credentials they issue by using

a private key. Guards would verify such signatures to ensure proper attribution. Unfor-

tunately, cryptographic operations can be costly in practice, both for protecting confiden-

tiality of keys and for creating and verifying digital signatures. Moreover, most principals

in practice are ill-suited for storing private keys. A user might rely on a process to man-

age a private key, but that means the user is also depending on an operating system and

perhaps a filesystem, which in turn rely on some hardware. Ideally, an authorization

logic would allow each of these entities—kernels, processes, machines, etc.—to be treated

as distinct principals in their own right, because each makes requests and can issue cre-

dentials. But a logic that equates principals with keys oversimplifies, as does a logic that

treats these principals as completely independent entities or fails to make the dependen-

cies between these principals explicit.
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1.4 Principles for Trustworthy Systems

Thus far, we have used notions of trustworthiness and trust somewhat informally. These

notions are not identical. A principal is trustworthy to the extent that

(i) it performs all tasks expected of it, and no others,

(ii) it does not violate any security goals, and

(iii) there is evidence to this effect.

Broadly, these three elements concern functionality, security, and assurance, respectively.

To be considered trustworthy, a principal must exhibit these elements despite failures,

errors, or attacks. By contrast, to the extent that one principal depends on another for its

own functionality or security, then we say that the former principal places trust in the lat-

ter principal. Ideally, a principal would only place trust in principals that are trustworthy,

but this need not be the case—trust can be misplaced. For example, a process can only

be as trustworthy as a guard it trusts. And in the context of authorization, trust usually

entails relocating authority from one part of a system to another.

We view a system as a set of components, each with state and behavior that can be

analyzed independently. Thus, some components may be deemed trustworthy, while

others are not. A component whose behavior deviates from its specification is defined

to be compromised; we make no assumptions about possible deviations. The component

is thus the smallest unit of compromise, and we do not admit the notion of a partially

compromised component.

Because a component that is compromised may violate security goals, building a trust-

worthy system requires attention to the behavior of each component. Authorization,

because it restricts behaviors, can play an important role in the design of trustworthy

systems. Designing a powerful authorization framework is not sufficient for achieving

trustworthiness, of course; the framework must be correctly deployed and configured.
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Various principles have been proposed to guide the design and implementation of

systems, and these principles inform how authorization should be used in the service of

trustworthiness. In this section, we describe a few of the principles that are frequently

advocated in the literature though perhaps not often instantiated in practice.

Several principles concern components that cooperate in some common task. Compo-

nents cooperate by interacting. For example, they might interact by sharing state, trans-

ferring control to each other, or synchronizing their behaviors. Without loss of generality,

we assume that all interaction between components occurs by sending and receiving re-

quests, responses, or other types of messages over prespecified channels.3 If, by sending

messages, one component can cause another to perform arbitrary actions, then the recip-

ient is placing full trust in the sender. Conversely, a recipient that performs only certain

actions at the request of a sender can be considered suspicious of the sender. Full trust may

lead to violations of security goals, because it enables compromise to spread: a component

that places full trust in some compromised componentC may itself become compromised

by virtue of receiving and acting on messages from C. Thus, suspicion is best encouraged

and full trust avoided, leading to a classic security principle [124]:

Principle: Mutual Suspicion. Prefer designs that reduce the likelihood that

any compromised component can cause the compromise of another [124].

This principle can be instantiated by employing a variety of authorization mecha-

nisms, alone or in combination. Examples include the following.

• Restrict the language of requests and responses. This is done, in effect, when an

application programming interface (API) specifies a set of interfaces and a protocol

or message format understood by those interfaces. When a recipient implements

such an API, senders are able to instigate the actions defined by the API but are

(presumably) prevented from instigating other actions at the recipient.
3Familiar shared memory and method invocation semantics can be formulated in terms of sending and

receiving messages over channels, as can all other types of interaction.
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• Check incoming requests and ignore those that violate some policy. Following the

most typical way to instantiate authorization, a guard is interposed to intercept re-

quests at run-time, perform various checks, then forward to the intended recipient

only those requests found to comply with the policy.

• Sanitize incoming messages before acting on them. Web servers, for example, com-

monly protect against SQL injection and XSS attacks [131] by implementing a trans-

formation that, for every request the Web server receives, replaces suspect character

sequences with harmless ones before any further processing.

We previously discussed privileges in the context of authorization guards, but notice that

reliance on APIs or sanitization induces a similar notion of privileges. So just as an entry

on an ACL or a capability represents a privilege, the ability to link against and invoke an

API represents a privilege, albeit one that is enforced at compile-time.

Implicit in the above examples is an assumption that all requests to recipients are

subjected to some prescribed measures. A familiar security principle summarizes this

obligation [5]:

Principle: Complete Mediation. Authorize, using an appropriate enforcement

mechanism, every request for a component to perform some action [5].4

What obligations are entailed by Complete Mediation depend on the particular mech-

anisms used to authorize requests. For guards or sanitization, Complete Mediation re-

quires that all requests to a component be checked by an appropriate guard or be appro-

priately sanitized. And when Mutual Suspicion is instantiated by selecting a restricted

set of APIs, Complete Mediation requires that all requests be handled by the appropriate

API.

Complete Mediation presumes that components interact only over some set of well-

defined channels. Some form of component isolation is thus implicit. An operating sys-
4Anderson [5] described did not provide a name for this principle; the term Complete Mediation is due to

Saltzer and Schroeder [119].
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tem typically implements isolation between processes by using a virtual memory archi-

tecture that prevents one process from accessing state associated with another process.

And within a single process, software techniques (e.g., [21,142]) can provide isolation be-

tween objects or code modules. In all cases, boundaries created by isolation mechanisms

define the system’s components.

Assurance of system trustworthiness requires analyzing all components that hold

privileges for any action that might violate that system’s security goals. This suggests

a conservative approach to granting privileges, which Saltzer and Schroeder [119] call the

Principle of Least Privilege.

Principle: Least Privilege. Grant every component of the system the fewest

privileges necessary to complete its task [119].

Least Privilege facilitates implementing Mutual Suspicion. One way that a component

can cause the compromise of another is by abusing privileges that instigate actions at

that other component. Eliminating unnecessary privileges thus helps reduce the likeli-

hood that a compromised component will have sufficient privileges to compromise other

components.

Of course, instantiating Mutual Suspicion, Complete Mediation, and Least Privilege

in a system does not by itself eliminate the possibility that a system’s security goals might

be violated. These security principles merely help by limiting the impact of compromised

components. Some components, by necessity, perform functions that could violate a se-

curity goal. This set of components is called the trusted computing base (TCB) [103] for that

security goal. A TCB likely includes not only software components, but also hardware

and firmware.

Components in the TCB for some security goal must all be trusted not to violate that

security goal. One way to reduce the risk that such trust is misplaced is prescribed by:

Principle: Minimization of Trusted Computing Bases. Make each TCB as
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small as possible, consistent with the functions it has to perform [103].5

A smaller TCB should be easier to analyze; a larger TCB is more likely to have bugs, hence

more easily attacked. In an ideal system design, TCBs would be chosen to minimize the

probability that security goals are violated. Minimization of Trusted Computing Bases

only approximates what is sought, equating greater TCB size with increased probability

of compromise.

1.5 Contributions of This Dissertation

A central issue for any authorization mechanism is the underlying rationale for authoriza-

tion decisions. An untrustworthy principal might attempt accesses that violate a security

policy, whereas (by definition) a trustworthy one wouldn’t. So a guard would never err

in authorizing requests made by trustworthy principals. However, determining whether

a principal is trustworthy is rarely feasible, so guards typically substitute something that

is easier to check. This dissertation proposes a taxonomy involving three bases for pre-

dicting trustworthiness: axiomatic, analytic, and synthetic.

• Axiomatic bases. Access control lists embody an axiomatic basis for making authoriza-

tion decisions. Axioms are statements that we accept without proof. With guards

that use an ACL, we accept without proof that all principals on the ACL are trust-

worthy, and the guard only authorizes requests made by these principals. The same

rationale is applied when a system uses a principal’s reputation as the basis for de-

ciding whether that principal’s requests should be authorized. An axiomatic basis

is also implicit when a guard authorizes requests to run some executable only if

the value of a hash indicates the executable is unaltered from a standard software
5The term trusted computing base was coined by Nibaldi [103]. Nibaldi’s formulation of the security

principle, which was subsequently incorporated into the Orange Book [46] and which we follow here,
builds on Saltzer and Schroeder’s [119] Principle of Economy of Mechanism, which in turn formalizes
Schroeder’s [124] earlier notions of simplicity in protection mechanism design and implementation.
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package or if a digital signature establishes the executable was endorsed by some

approved software provider.

• Analytic bases. Analysis provides a way to predict whether certain behaviors by

a program P are possible, so some guards employ an analytic basis for authoriz-

ing requests made by principals executing P . Specifically, an analysis establishes

that P is incapable of certain abuses and, therefore, granting the request will not

enable the security policy to be violated. Proof-carrying code [97] is perhaps the

limit case. In this approach, a program P is accompanied by a proof that its execu-

tion satisfies certain properties; a request to execute P is authorized if and only if a

proof checker trusted by the guard establishes that the proof is correct and that the

properties proved are sufficiently restrictive. As another example, some operating

systems [21] will authorize a request to load and execute code only if that code was

type checked by an analyzer trusted by the operating system; type checking is a

form of analysis, and programs that type check cannot exhibit certain malicious or

erroneous behaviors.

• Synthetic bases. Finally, a synthetic basis for authorization is involved whenever a

program is transformed prior to execution, if that transformed program is trust-

worthy in ways the original was not. Examples of this approach include sandbox-

ing [60], software-based fault isolation [142], in-lined reference monitors [50], and

other program-rewriting methods [66, 126].

The discussion above suggests that authorization is a proxy for a trustworthiness test,

rather than the more traditional view of authorization as a set of mechanisms for filter-

ing requests. Therefore, a guard may be designed to trust a program analyzer, a program

rewriter, an administrator, or others in the course of predicting whether a requesting prin-

cipal is trustworthy for some request. A significant aspect of engineering a trustworthy

system is thus deciding when one principal (e.g., a guard) should trust some other prin-

cipal (e.g., an analyzer).
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We conjecture that a single basis for establishing trustworthiness is unlikely to suffice

throughout an entire system. Different schemes are going to be useful in different settings,

and schemes that combine bases will also be useful—for example, type safety can be

enforced by using a hybrid of program analysis (an analytic basis) and code generation

that adds run-time checks (a synthetic basis).

This dissertation presents an approach, based on credentials-based authorization, that

incorporates and unifies axiomatic, analytic, and synthetic bases for predicting trustwor-

thiness. We seem to be the first to classify authorization schemes according to this tax-

onomy and the first to entertain creating such a unifying framework. We evaluate the

merits of our approach by building novel applications and operating system services, and

we examine how instantiating our approach to authorization impacts the instantiation of

well-known security principles.

1.5.1 Nexus Authorization Logic

We developed a logic NAL (Nexus Authorization Logic) for specifying and reasoning

about credentials and authorization policies.6 NAL extends Abadi’s access control logic

CDD [1,2], adding support for axiomatic, analytic, and synthetic bases7 and adding com-

pound principals (groups and sub-principals). These extensions were designed to help

bridge the gap from the simplifications and abstractions found in CDD to the pragmatics

of actual implementations.

NAL was designed for use in operating systems like α-Nexus,8 which employs a

Trusted Platform Module (TPM) [137] secure co-processor as a hardware-protected root

of trust. NAL’s scheme for naming principals and NAL’s operators for attribution and

delegation were informed by the needs of α-Nexus and the capabilities a TPM offers.

6Joint work with Fred Schneider and Emin Gün Sirer.
7In fact, any authorization logic that supports a sufficiently expressive language of beliefs should be able

to enforce authorization policies according to axiomatic, analytic, and synthetic bases.
8α-Nexus is a predecessor version of the Nexus [125] operating system.
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1.5.2 A Document Viewer Suite

To illustrate the convenience and expressive power of our approach to authorization, a

suite of document-viewer applications was implemented.9 The suite comprises three ap-

plications that run partly or entirely on the α-Nexus operating system.

• TruDocs (Trustworthy Documents) controls the display of documents that contain

excerpts and whose integrity is based on policies that restrict the use of those ex-

cerpts; it employs an analytic basis for authorization.

• ConfDocs (Confidential Documents) implements multilevel security policies to pro-

tect the confidentiality of documents built from text elements that have security

labels; it employs both analytic and synthetic bases for authorization.

• CertiPics (Certified Pictures) enforces the integrity of displayed digital images by

imposing chain-of-custody restrictions on the image-editing pipeline; it employs

synthetic and axiomatic bases for authorization.

Each of these applications relies on α-Nexus system services, and each employs NAL-

based authorization guards and NAL credentials. TruDocs and CertiPics rely on attes-

tation facilities of α-Nexus to create credentials, which are then conveyed to guards on

remote machines. In ConfDocs , documents are stored within a sealed storage facility im-

plemented by α-Nexus. α-Nexus sealed storage and ConfDocs guards work together to

ensure Complete Mediation with respect to multilevel security policy enforcement. The

policies enforced by guards in all three applications are decentralized, and the guards

depend on information gathered from multiple sources.

9Joint work with Fred Schneider and Emin Gün Sirer.
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1.5.3 A Mutual-Suspicion Filesystem

For an authorization framework to be useful, it should at minimum not preclude the in-

stantiation of security principles that engender trustworthiness. Ideally, an authorization

framework would provide leverage so that these security principles are more easily in-

stantiated. We explored the connection between authorization and the security principles

of Section 1.4 by implementing a filesystem called MSFS for α-Nexus.10 MSFS uses NAL

extensively for authorization but also pervasively instantiates these security principles.

We measured the performance of MSFS; the results suggest that run-time overhead need

not be significant for a design that relies on credentials-based authorization using NAL

and that embraces a small trusted computing base and the principles of Mutual Suspicion,

Complete Mediation, and Least Privilege.

The design of MSFS differs from traditional filesystems, but MSFS still exports a typ-

ical interface to clients. As with most other filesystems, MSFS enforces a DAC policy for

information stored on disks. For user files, MSFS enforces an authorization policy sim-

ilar to what is found in conventional filesystems: The owner of a file controls an ACL

that specifies access by other users and user groups. MSFS, however, also enforces DAC

for meta-data, including file, directory, and filesystem meta-data, disk configuration data,

and (nominally) unused portions of disks. In fact, every byte stored by MSFS on a disk

is associated with some owner record and ACL. For meta-data, the owner record and

ACL entries name components of the MSFS implementation itself. Thus components that

comprise MSFS are subjects, too, and their requests to access data are governed by a DAC

policy.

MSFS relies on credentials-based authorization internally, and MSFS also implements

credentials-based authorization for clients. Owner records and ACLs in MSFS are en-

coded as NAL expressions, so they can be written in terms of any principal that can be

expressed by NAL. This enables rich sets of principals to serve as owners of data and/or
10Joint work with Fred Schneider.
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to appear on ACLs, and it enables MSFS to authorize requests to access data using cre-

dentials from many sources.

1.6 Organization of This Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 gives the syntax and

semantics of NAL. It also discusses how NAL can be used to instantiate authorization

guards. We draw examples from our experience building guards for the α-Nexus kernel,

its system services, and some prototype applications. This is followed by a discussion of

related work on authorization logics and other approaches to authorization. Chapter 3

discusses TruDocs , ConfDocs , and CertiPics , focusing on how NAL is used by these ap-

plications. Chapter 4 describes the design and implementation of the MSFS filesystem for

α-Nexus. Concluding remarks are in Chapter 5. A complete list of NAL inference rules

can be found in Appendix A, and Appendix B gives details of the NAL proof checker im-

plementation used by α-Nexus, MSFS, and the applications described in this dissertation.
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CHAPTER 2

NEXUS AUTHORIZATION LOGIC

Nexus Authorization Logic (NAL) provides a rigorous basis for specifying and reason-

ing about credentials and authorization policies. NAL is designed to allow authorization

of access requests to depend on any or all of: (i) the source or pedigree of the requester

(i.e., an axiomatic basis), (ii) the outcome of a mechanized analysis performed on the re-

quester (i.e., an analytic basis), or (iii) the use of trusted software to encapsulate or modify

the requester (i.e., a synthetic basis). In this chapter, we provide an introduction to NAL,

focusing on how NAL can be used to specify credentials and authorization policies.

2.1 NAL Syntax and Semantics

NAL extends prior access control logics that are based on “says” and “speaks for” oper-

ators. Thus, principals and the says and speaks-for (→) modalities are what makes NAL

different from the higher-order predicate logics often used in programming; the rest of

this section discusses those differences in some detail.

The syntax of NAL formulas is given in Figure 2.1, and some useful NAL abbrevi-

ations appear in Figure 2.2. There and throughout this dissertation, identifiers typeset

in lower-case sans-serif font (e.g., x) denote propositional variables; identifiers typeset in

lower-case italic font (e.g., v) denote first-order variables; v abbreviates a list v1, v2, . . . , vn;

literals (including state-functions, predicates, and constants) are typeset in typewriter font

(e.g., read); identifiers typeset in upper-case italic font (e.g., A, B, ...) denote principals;

and identifiers typeset in calligraphic font (e.g., F , G, ...) denote NAL formulas. The

language for terms τ is left unspecified.

We write

RULENAME:
F1, F2, ..., Fn

F
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A ::= {|v : F|} | A.τ compound principals

F ::= f(τ, . . . ) | A says F | x | (∀x : F)
| F ∧ F | F ∨ F | F ⇒ F | true formulas
| (∀v : F) | (∃v : F)

Figure 2.1: NAL syntax.

false : (∀x : x)
¬F : (F ⇒ false)

A→ B : (∀x : (A says x)⇒ (B says x))

A
v:F−−→ B : (∀v : (A says F)⇒ (B says F)) for v not free in A or B

Figure 2.2: NAL abbreviations.

to define an inference rule RULENAME that allows conclusion F to be inferred assuming

that premises F1, F2, ..., Fn have been. Appendix A gives the complete list of NAL axioms

and inference rules. We focus below on aspects of the logic concerned with principals and

the says and speaks-for modalities.

NAL adopts many of its inference rules from CDD [1, 2]. Like CDD, NAL is a con-

structive logic. Constructive logics are well suited for reasoning about authorization [55],

because constructive proofs include all of the evidence used for reaching a conclusion

and, therefore, information about accountability is not lost. Classical logics allow proofs

that omit evidence. For example, we can prove G using a classical logic by provingF ⇒ G

and ¬F ⇒ G, since from these theorems we can conclude (F ∨ ¬F)⇒ G, hence true⇒ G

due to Law of the Excluded Middle. This classical proof, however, does not say whether

it is F or it is ¬F that serves as the evidence for G, and thus the classical proof is arguably

unsatisfactory for an audit of why G holds.
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2.1.1 Beliefs and says

NAL, like its predecessors [1–3, 13, 17, 47, 73, 81, 86], is a logic of beliefs. Each principal A

has a worldview ω(A), which is a set of beliefs that A holds or, equivalently, formulas that

A believes to be true. NAL formula A says F is interpreted to mean: F ∈ ω(A) holds.

NAL extends CDD by allowing formulas to include system- and application-defined

predicates in place of propositions. Since NAL terms can include the names of principals,

NAL formulas can convey information about, hence potential reasons to trust, a principal.

For example, the NAL formula

Analyzer says numChan(P,"TCP") = 3 (2.1)

holds if and only if worldview ω(Analyzer) contains a belief that numChan(P,"TCP") = 3

holds. System-defined function numChan(P,"TCP") yields the number of TCP connections

open at P .

A NAL formula like (2.1) could specify a credential or specify (part of) an authoriza-

tion policy. As a credential, formula (2.1) asserts that Analyzer believes and is accountable

for the truth of numChan(P,"TCP") = 3; as a specification for an authorization policy, for-

mula (2.1) compels a guard to establish that numChan(P,"TCP") = 3 is in ω(Analyzer) in

order to grant a request.

The worldview of each principal is presumed to contain all NAL theorems. NAL

therefore includes a necessitation inference rule:

SAYS-I:
F

A says F
(2.2)

We assume a constructive logical theory for reasoning about system- and application-

defined predicates; SAYS-I (2.2) asserts that those theorems are part of each principal’s

worldview.

Principals may hold beliefs that are not actually true statements and/or that are in
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conflict with beliefs that they or other principals hold. Just because A says F holds does

not necessarily mean thatF holds or thatB says F holds for a different principalB. How-

ever, beliefs that a principal holds are presumed to be consistent with beliefs that same

principal holds about its own beliefs:

SAYS-E:
A says (A says F)

A says F
(2.3)

2.1.2 Deduction and Local Reasoning

A principal’s worldview is assumed to be deductively closed: for all principals A, any for-

mula G that can be derived using NAL from the formulas in ω(A) is itself in ω(A). This

supports having the usual implication-elimination rule

IMP-E:
F , F ⇒ G

G
(2.4)

along with a rule for distributing says over implication:

DEDUCE:
A says (F ⇒ G)

(A says F)⇒ (A says G)

(2.5)

Notice that all formulas in DEDUCE (2.5) refer to the same principal. This local-reasoning

restriction limits the impact that a principal with inconsistent beliefs can have. In par-

ticular, from A says false, DEDUCE (2.5) enables us to derive1 A says G for any G, but

DEDUCE (2.5) cannot be used to derive B says G for an arbitrary principal B. So the

local-reasoning restriction causes inconsistency within ω(A) to be contained. The local-

reasoning restriction also prevents mutually inconsistent beliefs held by an unrelated set

of principals from being combined to derive A says false for any principal A [1, 2].

1Here is that proof: false ⇒ G is a theorem for all G. Therefore, by SAYS-I (2.2) we conclude A says
(false⇒ G) is a theorem for all G. We then use DEDUCE (2.5) and IMP-E (2.4) to derive A says G.
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2.1.3 Delegation

The notation A→ B (read “A speaks for B”) abbreviates the NAL formula

(∀x : (A says x)⇒ (B says x)). (2.6)

Since propositional variable x in sub-formulas “A says x” and “B says x” of (2.6) can

be instantiated by any NAL formula, we conclude that if A → B holds then all beliefs

in the worldview of principal A also appear in the worldview of principal B; therefore

ω(A) ⊆ ω(B) holds. In terms of credentials, A → B characterizes the consequences of B

delegating to A the task of issuing credentials. Not only would A be accountable for such

credentials but so would B.

The transitivity of→ follows directly from definition (2.6), and therefore we have the

following as a derived inference rule of NAL:

→ TRANS:
A→ B , B → C

A→ C

One theorem of NAL is

(B says (A→ B))⇒ (A→ B), (2.7)

which implies that the following is a derived inference rule of NAL:

HAND-OFF:
B says (A→ B)

A→ B

(2.8)

An interpretation of HAND-OFF (2.8) (or equivalently theorem (2.7)) is that each principal

B is an authority on its own delegations.

NAL also supports an abbreviation to assert the restricted delegation that only certain

beliefs held by A are attributed to B. We write A v :F−−→ B (read “A speaks for B about F”),
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where no identifier in v appears free in B or A, to assert:

(∀v : (A says F)⇒ (B says F))

Such a restricted delegation allows us to specify in NAL that a principal B delegates

authority or trusts another principal A for only certain kinds of credentials.

For example, we should not be surprised to find a university registrar UnivReg trusted

by academic department CSdept about whether somebody is a student at that university.

We specify this trust by writing the NAL restricted delegation formula

UnivReg
v : v∈Students−−−−−−−−→ CSdept , (2.9)

meaning

(∀v : UnivReg says v∈Students ⇒ CSdept says v∈Students).

Restricted delegation (2.9) limits which credentials issued by UnivReg can be attributed

to CSdept . So, credential UnivReg says F can be used with (2.9) to derive CSDept says F

when F is “Bob∈Students” but not when F is “offer(CS101, Spr)”.

Restricted delegation (2.9) limits the abuse of privilege and the spread of bogus beliefs

by asserting that CSDept will adopt only certain kinds of beliefs held by UnivReg . Some

care is required, though, when using this defense. A second unrestricted delegation

UnivReg
v : v 6∈Students−−−−−−−−→ CSdept

along with (2.9) could allow CSdept says false to be derived if UnivReg is compromised

and thus willing to issue bogus credentials

UnivReg says S ∈Students

UnivReg says S 6∈Students

for some student S.
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As with→, we have a corresponding derived inference rule for transitivity of v :F−−→:

v :F−−−→ TRANS :
A

v :F−−→ B,B
v :F−−→ C

A
v :F−−→ C

and we have the NAL theorem

(B says (A
v :F−−→ B))⇒ (A

v :F−−→ B),

which leads to a corresponding derived inference rule:

REST-HAND-OFF:
B says (A

v :F−−→ B)

A
v :F−−→ B

2.2 Predicates and Terms in NAL

NAL is largely agnostic about how predicates and terms are implemented.2 But an au-

thorization mechanism that evaluates NAL formulas would be impractical unless effi-

cient implementations are available for NAL predicate and term evaluation. The α-Nexus

kernel, for example, provides efficient system routines for processes to read certain op-

erating system state (abstracted in NAL formulas as terms) and to evaluate certain pre-

defined predicates on that state. Also, any deterministic boolean-valued routine run-

ning in α-Nexus can serve as a NAL predicate. So if an authorization policy can be pro-

grammed in α-Nexus then it can be specified using a NAL formula.

The designer of a guard in α-Nexus must decide what sources to trust for information

about the current and past states. Presumably, a guard would trust predicate evaluations

that it performs itself or that the α-Nexus kernel performs on its behalf. Other compo-

nents might have to be trusted, too, because it is unlikely that every principal would be

able to evaluate every predicate due to constraints imposed by locality and/or confiden-

2Because it is a constructive logic, NAL does require that all terms and predicates be computable.
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tiality. Arguably, a large part of designing a secure system is concerned with aligning

what must be trusted with what can be trusted. NAL helps focus on these design choices

by having each credential explicitly bind the name of a principal to the belief that creden-

tial conveys, thereby surfacing what is being trusted.

NAL is agnostic about predicate and function naming, assuming only that each name

is associated with a unique interpretation across all principals. One approach it to define

an authoritative interpretation (including an evaluation scheme) for each name; all prin-

cipals are then required to use that. Implicit in such a solution would have to be some

way to determine what is the authoritative interpretation for a given name. α-Nexus ad-

dresses this by implementing hierarchical naming, where a name encodes the identity of

the principal that is the authority for performing evaluations.

2.3 Principals in NAL

Principals are the entities to which beliefs can be attributed. Examples include active enti-

ties like processors, processes, and channels, as well as passive objects like data structures

and files. Principals in NAL thus encompass both the subjects and the objects of an autho-

rization model, and as will become clear in the discussion below, NAL principals include

entities like groups and roles. Some NAL principals make requests and issue credentials,

which are modeled as beliefs attributed to those principals. Other NAL principals do

not make requests or issue credentials in the traditional sense, but are simply used as a

convenience for describing and reasoning about related collections of beliefs.

We require that distinct NAL principals have distinct names and that credentials at-

tributed to a principal cannot be forged. Schemes that satisfy these requirements include:

• Use a public key as the name of a principal, where that principal is the only entity

that can digitally sign content using the corresponding private key. A principal

named by a public keyKA signifies that a beliefF is in worldview ω(KA) by digitally
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signing an encoding ofF . So, a digitally signed representation of the NAL statement

F , where public key KA verifies the signature, conveys NAL formula KA says F .

• Use the hash of a digital representation of an object as the name of a principal asso-

ciated with that object. A principal named by hash H(obj ) includes a belief F in its

worldview ω(H(obj )) by having an encoding of F stored in obj .3 So by having F be

part of obj , H(obj ) conveys NAL formula H(obj ) says F .

The benefit of using a public key KA to name a principal is that this name then suffices

for validating that a credential KA says F has not been forged or corrupted. Also, creden-

tials conveying individual beliefs or subsets of beliefs in ω(KA) can be issued at any time.

But public-private key pairs are expensive to create. Moreover, private keys can be kept

secret only by certain types of principals. With a Trusted Platform Module (TPM) [137],

you can associate a private key with a processor and keep the key secret from all software

that runs on the processor; without a TPM, you can associate a private key with a pro-

cessor but keep the key secret only from non-privileged software. And there is no way to

associate a private key with a non-privileged program executing on a processor yet have

that key be secret from the processor or from privileged software being run.

Hashes are attractive for naming principals, because hashes are relatively inexpensive

to calculate and do not require secrets. However, a principal must have read-access to

obj in order to generate or validate a credential H(obj ) says F for conveying beliefs that,

because they are stored in obj , are part of the worldview ofH(obj ). Also, the use of hashes

for naming principals is useful only for conveying static sets of beliefs held by objects

whose state is fixed. Change the beliefs or the state of obj and name H(obj ) changes too,

which means credentials previously issued for that object could no longer validate.

NAL is agnostic about what schemes are used to name principals. Our experience

with α-Nexus applications has been that public keys and hashes both have uses.

3We might adopt the convention that every object obj involves two parts. The first part is a possibly
empty list of the NAL formulas F1, F2, ..., Fn in ω(H(obj )); the second part is any other digital content.
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2.3.1 Sub-principals

System components often depend on other system components. In hierarchically struc-

tured systems, for example, higher levels depend on lower levels. Also, dependencies are

created when one component loads and starts executing (or interpreting) another. The

dependency of a principal Sub on another principal Dom can be so strong that Sub is ma-

terialized by Dom, hence Sub says F holds only if Dom says (Sub says F) holds. For

example, execution of a program Prog is ultimately materialized by computer hardware

(say) CPU , and therefore Prog says F holds only if CPU says (Prog says F) holds.

NAL offers sub-principals as a convenience for naming a principal that is materialized

by another. Given a principal A and any term τ , sub-principal A.τ is a NAL principal4

materialized by A. This is captured in a NAL rule:

SUBPRIN:

A→ A.τ

(2.10)

Equivalent terms define sub-principals having the same worldviews:

EQUIV SUBPRIN:
τ1 = τ2

A.τ1 → A.τ2

Here, we assume some theory is available for proving premise τ1 = τ2.

Sub-principals are particularly useful for describing structures where a principal is

multiplexed among various roles. For example, processes are often materialized by an

operating system that multiplexes a processor. Thus the principal that corresponds to an

executing program is a sub-principal of the operating system that runs that program; and

the operating system itself is a sub-principal of the processor.

In Section 2.3.3 we discuss in detail how α-Nexus uses sub-principals. Here, as a

4Sub-principals can themselves have sub-principals, with left-associativity assumed, so that A.τ1.τ2 ab-
breviates (A.τ1).τ2.
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somewhat simplified illustration, consider a system comprising a certification authority

CA being executed by an operating system OS that is multiplexing a processor among a

number of applications. And suppose the hash of the in-memory image for CA is hCA, the

hash of the in-memory image for OS is hOS , and the processor’s TPM stores a private key

whose signatures can be verified using public key KCPU . In NAL, these dependencies

could be characterized using a sub-principal KCPU .hOS for the OS and a sub-principal

KCPU .hOS .hCA for the CA. According to SUBPRIN (2.10), we have:

KCPU → KCPU .hOS (2.11)

KCPU .hOS → KCPU .hOS .hCA (2.12)

A credential attributed to execution of CA would, in fact, be issued by KCPU , materializing

operating system OS , materializing CA. So the credential for a beliefF held by CA would

be specified by the NAL formula

KCPU says (KCPU .hOS says (KCPU .hOS .hCA says F)),

from which we can derive

KCPU .hOS .hCA says

(KCPU .hOS .hCA says

(KCPU .hOS .hCA says F)),

by (2.11) and (2.12) and definition (2.6) of A→ B; using SAYS-E (2.3) twice then obtains

KCPU .hOS .hCA says F .

Sub-principals are also useful for creating different instances of a given principal,

where each instance is accountable for the credentials issued during disjoint epochs or

under the auspices of a different nonce or different circumstances. This allows the subset

of credentials issued by some principal A at a time when you trust A to be distinguished

from credentials issued by A at other times. So instead of using a single principal FileSys ,
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we might employ a sequence FileSys .1, FileSys .2, ..., FileSys .i, ... of sub-principals, each

accountable for issuing credentials during successive epochs. Then by specifying security

policies that are satisfied only by credentials attributed to a “current instance” FileSys .now

(for now an integer variable), a guard can reject requests accompanied by outdated cre-

dentials.

SUBPRIN (2.10) allows any statement by a principal A to be attributed to any sub-

principal of A. That is, from A says F we could derive A.τ says F for any sub-principal

A.τ . Unintended attributions can be avoided by adopting a sub-principal naming con-

vention. We might, for example, agree to attribute to sub-principal A.ε any belief by A

that should not be attributed to any other sub-principal A.τ of A.

2.3.2 Groups

A NAL group is a principal constructed from a set of other principals, called constituents,

and is specified intensionally by giving a characteristic predicate. We write {|v : P|} to

denote the group defined by characteristic predicate P ; the group’s constituents are those

principals A for which P [v := A] holds.5 As an example,

{|v : Analyzer says numChan(v,"TCP") < 3|}

is the group of all principals that Analyzer has certified as having fewer than 3 open TCP

connections.

The worldview of a NAL group is defined to be the union, deductively closed, of the

worldviews for its constituents. Thus, if the worldview for one constituent of the group

contains F ⇒ G and another contains F , then the group’s worldview contains beliefs F ,

F ⇒ G, and G—even if the worldview for no constituent of the group contains G.

Because the worldview of each constituent is a subset of the group’s worldview, we
5P[v := exp] denotes textual substitution of all free occurrences of v in P ′ by exp, where P ′ is obtained

from P by renaming bound variables to avoid capture.
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conclude for each constituent A of group G, that A → G holds. Thus, if P [v := A] holds

then A→ {|v : P|} holds:

MEMBER:
P [v := A]

A→ {|v : P|}
free variables of A are free for v in P (2.13)

Note that A → {|v : P|} does not necessarily imply that P [v := A] holds. In the absence of

a NAL derivation for P [v := A], we could still derive A → {|v : P|} from derivations for

A→ B and B → {|v : P|}.

When v → A holds for all constituents v of a group with characteristic predicate P

(i.e., all v satisfying P), then all beliefs in the group’s worldview necessarily appear in

ω(A), so the group speaks for A:

→ GROUP:
(∀v : P ⇒ (v→ A))

{|v : P|} → A

(2.14)

This inference rule, in combination with MEMBER (2.13), allows us to justify the following

derived inference rule, which asserts groups and→ are monotonic relative to implication:

GROUP MONOTONICITY:
(∀v : P ⇒ P ′)

{|v : P|} → {|v : P ′|}

Finally, note that NAL does not preclude extensionally defined groups, wherein con-

stituents are simply enumerated. For example, {|v : v ∈ {A,B,C}|} is the extensionally

defined group whose constituents are principals A, B, and C.

2.3.3 Principals in Practice

α-Nexus implements specialized naming schemes for abstractions that serve as princi-

pals, including hardware, the kernel, processes, users, and various groups.
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Some aspects of naming in α-Nexus are constrained by limitations of the TPM.6 As

described in Section 2.3.1, the NAL principal named by public key KCPU denotes the

hardware where the TPM holds a corresponding private key. Principal KCPU represents

all fixed hardware resources, including the TPM and a small amount of immutable code

known as the core root of trust. The core root of trust is responsible for initiating the boot

sequence and is largely isolated from all other software. The hardware’s owner, manu-

facturer, or some other principal can issue credentials attesting to the properties of the

hardware and core root of trust or to its trustworthiness. For instance, we might have a

credential that conveys the formula:

Manufacturer says tpm version(KCPU , 1.1).

This credential can be used to prove membership in the group

{|v : (∃m, i : m∈{M1, ...,Mn} ∧ i ≥ 1.1 ∧ m says tpm version(v, i))|},

whose constituents are machines made by known manufacturers M1, ...Mn and having a

TPM version 1.1 or greater.

Contrary to the simplified example of Section 2.3.1, α-Nexus does not compute a sim-

ple hash hOS over the in-memory image of the operating system. That approach would

not capture critical boot-time code and configuration data. α-Nexus instead relies on au-

thenticated boot (often trusted boot or secure boot) [7] to obtain a distinct sub-principal name

for each distinct kernel that executes on the hardware . The TPM implements authenti-

cated boot by recording measurements (typically hashes) of boot-time code and configu-

ration data. These measurements are stored in a small number of per-boot append-only

logs called platform configuration registers (PCRs).7 PCR values h = h1, . . . , hn, where there

6α-Nexus uses TPM version 1.1, a predecessor to the now commonly available TPM version 1.2. Both
TPM versions implement substantially similar functionality, but the more recent TPMs have fewer resource
limits and higher performance. Here, and throughout this dissertation, we omit or simplify many details
of the TPM’s operation, particularly the handling of cryptographic keys and signed messages. See [91] for
an informal but thorough description of the TPM’s operation.

7TPM measurement logs have a fixed size—each PCR is large enough to hold only a single hash value.
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are n PCRs, uniquely identify the kernel’s code and configuration, so we use h as part of

the kernel’s NAL sub-principal name: KCPU .pcrs(h).

The TPM can issue a credential by signing a message m with the TPM’s private key,

and the resulting credential conveys KCPU says F , where F is the NAL interpretation of

messagem. The kernel can issue a credential by invoking the TPM’s quote(m′) operation,

where m′ is a kernel-supplied message encoding some NAL formula F ′. In response, the

TPM uses its private key to sign a message m = 〈h,m′〉, where h encodes the current

PCR values. The resulting credential conveys KCPU says (KCPU .pcrs(h) says F ′), which

implies KCPU .pcrs(h) says F ′. Thus, as intended, F ′ is attributed to KCPU .pcrs(h).

A naming scheme for the kernel should distinguish between different executions of

the same kernel, to protect against different executions issuing contradictory credentials.

This differentiation could be realized by a hardware-maintained counter that increases

monotonically on each reboot. The TPM does not currently support this functionality.8

α-Nexus instead employs a sequence of NAL sub-principals to denote different execu-

tions of the kernel. Specifically, the α-Nexus kernel maintains a variable p denoting the

current epoch. This variable is stored on disk and incremented on each reboot. α-Nexus re-

lies on TPM facilities to ensure that no other software can modify p at any other time. The

kernel issues credentials under the auspices of NAL sub-principal KCPU .pcrs(h).epoch(p)

by including p in the message passed to the TPM’s quote(·) operation. This naming

scheme allows NAL formulas to refer to a specific execution of the kernel or to various

groups of kernel executions. For example, the NAL group

{|v : (∃p : 10 < p < 20 ∧ v→ KCPU .pcrs(h).epoch(p))|}

has as constituents the 10th through 20th boots of the specified kernel.

The TPM extend operation combines a new hash value with any existing hash value in a PCR. Distinct
sequences of extend operations result in distinct PCR values.

8TPM Version 1.1 does not implement hardware counters, and TPM Version 1.2 has only limited
support—counters are not mixed into the PCRs, and are not incremented automatically by the hardware
on boot.
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The α-Nexus kernel chooses a sub-principal name for each process. The only require-

ment is that each sub-principal name be unique, so we adopted a naming scheme that

simply appends a unique process ID pid onto the kernel’s name:

KCPU .pcrs(h).epoch(p).process(pid) (2.15)

To ensure uniqueness, process IDs are never reused within a single execution of the ker-

nel. The kernel implements a quote(m′′) system call that causes the kernel to issue a

credential on behalf of a process,9 wherem′′ encodes some NAL formula F ′′. When a pro-

cess with ID pid invokes this system call, the kernel constructs a messagem′ = 〈p, pid ,m′′〉

and then invokes quote(m′) at the TPM, which in turn signs message m = 〈h,m′〉 with

the TPM’s private key. The resulting signed message is a credential that conveys

KCPU says

(KCPU .pcrs(h) says

(KCPU .pcrs(h).epoch(p).process(pid) says F ′′)),

which implies

KCPU .pcrs(h).epoch(p).process(pid) says F ′′.

Processes, of course, are free to extend this naming scheme to define their own sub-

principals and to implement a quote(·) operation to allow those sub-principals to issue

credentials.

The NAL name of a process conveys little information about the process. This was a

deliberate design choice: there are a variety of bases—axiomatic, analytic, and synthetic—

on which trust in an α-Nexus process might be established. Any small set of information

included in the sub-principal name, such as the hash of the program being executed by

the process or the name of the program’s publisher, would have been insufficient for some

9In fact, a process P can cause the kernel to issue a credential on behalf of any principal A for which
P → A. We discuss how in Section 2.4.4.
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bases. So instead, the α-Nexus kernel issues credentials attesting to various attributes of

processes.

At the request of an executing process, the α-Nexus kernel will issue a credential spec-

ifying the hash of a program manifest for that process. A program manifest is a description

of the program being executed, the initial arguments for that program, and configuration

data for the program. For a process P , if hpgm is the hash of P ’s program manifest, then

the credential issued by the kernel will convey the NAL formula

KCPU .pcrs(h).epoch(p) says pgm hash(P, hpgm).

Note that P in this credential would, in practice, be replaced by an expression like (2.15)

encoding P ’s full NAL principal name. The kernel can similarly issue credentials attesting

to the start time of a process and other properties about which the kernel is authoritative.

The α-Nexus kernel is not the only source for credentials that attest to attributes of

processes. The α-Nexus networking stack, for example, runs as a process and issues cre-

dentials attesting to network usage by processes. And the Login process, which manages

α-Nexus user accounts and interactive user authentication, issues to each process P a

credential that conveys:

Login says P → Login.user(uid). (2.16)

According to SUBPRIN (2.10), from (2.16) we derive P → Login.user(uid). We define

Login.user(uid) to be the NAL representation of the user with ID uid , so credential (2.16)

means that P speaks for that user.10

The credentials issued by the kernel and α-Nexus processes can be used to construct

10User IDs (as opposed to user names) are never reused in α-Nexus, even across reboots. This ensures
the sub-principal names uniquely identify a single user.
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narrowly-tailored NAL groups. Consider the group

{|v : (∃p : v→ Login.user(uidAlice) ∧

KCPU .pcrs(h).epoch(p) says pgm hash(v, hpgm))|},

where uidAlice is the user ID for user Alice. The constituents of this group are processes

that satisfy four constraints: (i) the TPM-enabled hardware executing the process is as-

sociated with key KCPU ; (ii) the underlying kernel has code and configuration matching

the PCR values h; (iii) the process’s program manifest has hash hpgm ; and (iv) the process

speaks for Alice. The epoch number is unconstrained, so the constituents of this group

span multiple executions of the kernel.

We often define groups in order to have stable names for services or sets of processes

that span multiple kernel executions. For example, the Login principal does not refer to

a specific process. Instead, it denotes a NAL group with constraints similar to (i)–(iii)

above but specifying the hash hlogin of a program manifest describing the α-Nexus login

program.

2.4 Guards: Theory and Practice

The decision to authorize a request can be posed as a question about NAL formula deriva-

tion. We represent requests, credentials, and authorization policies as NAL formulas. A

guard G that enforces an authorization policy G allows a requestR to proceed if and only

if

(i) G has a set of unforged credentials c1, c2, . . . , cn, where credential ci denotes a bit-

string that conveys NAL formula Ci, and

(ii) G establishes that NAL can be used to derive G from

R∧ C1 ∧ C2 ∧ · · · ∧ Cn.
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Credentials could be stored at the requesting principal, at the guard, or elsewhere in the

system; and they could accompany a request, be fetched when needed by the guard, or be

sent periodically to the guard. Notice that if requestR is granted, then a NAL derivation

of G to discharge (ii) documents the rationale for this authorization decision, indicating

the role each credential plays. The NAL derivation of G is thus a form of audit log—and

a particularly descriptive one, at that.

A filesystem guard FileSys might, for example, enforce discretionary access control11

for accessing a file (say) foo by employing authorization policy

FileSys says read(foo) (2.17)

and issuing a restricted delegation

A
read(foo)−−−−−→ FileSys (2.18)

for any principal A whose requests A says read(foo) should be allowed to proceed,

since (2.18) allows (2.17) to be derived from A says read(foo). Store the restricted del-

egation credential for a principal at that principal, and the result is reminiscent of capa-

bilities; aggregate and store all of the restricted delegation credentials at the guard, and

access control lists result.

2.4.1 Credential Distribution and Revocation

Whenever a guard G has some credential c that G determines is not forged, the NAL for-

mula C conveyed by c is part of G’s beliefs. G having credential c thus can be formalized

in NAL as G says C.

One might hope that

(G says C)⇒ C (2.19)

11This is not the only way to specify discretionary access control using NAL and guards.

44



would hold and, therefore, beliefs acquired through credentials are sound. This property,

however, is not guaranteed. A principal P might issue c but then change beliefs (perhaps

because the state or environment has changed) in a way that invalidates C.

If P invalidates C after c has been distributed to other principals, then an access could

be granted on false pretense because a guard has c and therefore believes that C holds even

though C does not. Even if guards check the truth of each credential just before use, access

might still be granted on false pretense—concurrent actions elsewhere in the system could

falsify the formula conveyed by a credential after being checked.

For example, a request A says access(obj ) accompanied by a credential that conveys

TimeServ says clock = 900 suffices to derive the authorization policy:

A says access(obj ) ∧ TimeServ says clock < 1000 (2.20)

But

(G says (TimeServ says clock = 900)) ⇒ TimeServ says clock = 900

does not hold if TimeServ revises its beliefs whenever the passage of time causes its inter-

nal clock to increase. A guard that checks whether credentials are not forged and whether

a NAL derivation exists for authorization policy (2.20) thus could grant access for requests

made after clock < 1000 ceases to hold. So the guard could grant requests on false pre-

tense.

There are two general strategies for ensuring that (2.19) will hold and, thus, prevent

accesses from being granted on false pretense:

(i) Require that antecedent G says C of (2.19) is false prior to changes in beliefs that

invalidate its consequent C.

(ii) Choose for consequent C of (2.19) a formula that cannot be invalidated by principals

changing their beliefs.

With strategy (i), all principals G that have a credential c must delete their copies
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(thereby falsifying G says C) before any principal is allowed to change its beliefs in a

way that invalidates C. This credential revocation is not a new problem12 and is generally

considered infeasible when credentials propagate in unrestricted ways. But a feasible

realization of strategy (i), used extensively in α-Nexus, exists when the propagation of

credentials is restricted in a rather natural way.

In α-Nexus, a principal is called an authority if it is both the sole source of certain cre-

dentials and it is the only principal that can invalidate a NAL formula conveyed by those

credentials. We ensure that the only way that a principal can obtain a credential issued by

an authority is directly from that authority. The authority thus knows which principals

have its credentials. Prior to invalidating the belief conveyed in such a credential, the au-

thority requests that these principals delete their copies and awaits confirmations (either

from the principal or from α-Nexus asserting that the principal has been terminated).

To ensure that principals obtain credentials A says F directly from the issuing author-

ity A, such credentials are represented in a way that conveys F and allows the recipient

to attribute F to A, but does not allow any other principal to validate that attribution.

For example, the α-Nexus inter-process communication (IPC) mechanism implements

authenticated, integrity-protected channels (see the discussions below, in Sections 2.4.4

and 4.1.2, for details). Such a channel can speak for an authority A and transmit a for-

mula F that only the single recipient at the end point of that channel can attribute to A.

Authorities in α-Nexus distribute credentials using such channels. However, the same

effect also could be achieved on an ordinary channel by using shared-key cryptography

and message authentication codes.

Strategy (ii) for ensuring that (2.19) will hold requires restricting the execution of

principals and/or choosing for C a sufficiently weak formula. System developers thus

are made responsible for supporting revocation. Fortunately, system execution gener-

12It arises, for example, in connection with capabilities and with public-key certificates that describe
name-key bindings.
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ally does satisfy certain restrictions—time never decreases and the past is immutable, for

example—not to mention restrictions coupled to the semantics of system and applica-

tion functionality. So some truths do not change as execution proceeds, and this can be

leveraged for defining NAL formulas C that cannot be falsified by future execution. For

instance, once clock > 1000 holds, it cannot be later falsified by time advancing. And a

credential attesting that some predicate P once held (even if it doesn’t now hold) cannot

subsequently be falsified if P holds when that credential is issued.

Imposing additional execution restrictions on principals is the other way to instantiate

strategy (ii) for ensuring that (2.19) continues to hold. Suppose that, in order to authorize

some request, a guardG requiresA says P for P a state predicate, but thatA says P could

be invalidated from time to time.

• One solution is to prevent principals from invalidating P until some time in the

future—in effect using a credential that conveys a form of lease [62]. For example,

A says (clock < 1000 ⇒ P) (2.21)

is not falsified when time advances, so (2.19) will now hold. And if credentials

TimeServ says clock < 1000 (2.22)

TimeServ
v : clock<v−−−−−−→ G (2.23)

are available, then G can still conclude that A says P is satisfied. Moreover, if

TimeServ is implemented as an authority then we can ensure that credential (2.22)

satisfies (2.19); and if delegation (2.23) is never disseminated outside of G, then it

too will satisfy (2.19).

• An alternative to using leases is to have principals follow a synchronization pro-

tocol before invalidating P . For example, we might postulate a lock `P with two

modes of access. Any number of principals can concurrently hold shared access,

and a principal can hold exclusive access only if no other principal holds shared
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or exclusive access, with the following restrictions on execution:

(i) a guard acquires shared access to `P before authorizing a decision using a cre-

dential involving P , and the guard releases the lock afterward,

(ii) a principal acquires exclusive access to `P before falsifying P and must re-

establish P prior to releasing `P .

Then a credential conveying

A says (locked(shared, `P)⇒ P)

is never falsified even though P might be, so (2.19) holds. Moreover, if a guard G

acquires `P with shared access before making an authorization decision, so G has

credentials

LockMngr says locked(shared, `P) (2.24)

LockMngr
locked(shared,`P )−−−−−−−−−−→ G (2.25)

attesting to locked(shared, `P ), thenG guard can conclude that A says P is satisfied

at that time. Credentials (2.24) and (2.25) can be made to satisfy (2.19) if LockMngr

is implemented as an authority and (2.25) is never disseminated outside of G.

2.4.2 Credential Distribution in α-Nexus

We implemented facilities in α-Nexus to avoid relying on credentials that might convey

invalidated beliefs.13 These facilities can be used to implement several variations of the

strategies described above.

13Nexus implements somewhat different interfaces and abstractions than we describe here for α-Nexus.
These differences reflects the evolution of Nexus as experience was gained implementing and using the
system.
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α-Nexus Time Service

The α-Nexus kernel is an authority on the system clock, and therefore it can take the

role of TimeServ for credentials that convey time-based leases, like credential (2.21). The

kernel is a natural place to implement this authority because the kernel speaks for all

processes, hence for all guards. We can also implement other time-keeping services as

processes. So while a credential from A conveying

A says (clock < 1000 ⇒ P)

would prompt the guard to read clock from the kernel, a credential conveying

A says ((NetTimeServ says network clock < 1000) ⇒ P)

unambiguously states that the guard must contact a different principal, NetTimeServ ,

instead.

α-Nexus Label Store

The α-Nexus kernel label store is an authenticated, integrity-protected channel that dis-

tributes credentials. It provides an alternative to using cryptography or having guards

contact authorities over IPC channels. And having such an alternative is useful. Cryptog-

raphy is expensive. With IPC channels, authorities are processes, so they consume system

resources. Moreover, when authorities are implemented by processes, the use of creden-

tials could involve multiple IPC operations for distribution, validation, and revocation.

The label store is a list of entries. Each entry is identified by a unique ID lid , and each

entry encodes a pair 〈A,F〉, where A is a principal and F is a formula. The pair derives

the credential A says F issued by some α-Nexus process or by the kernel itself. Process

fetches the entry to obtain that credential. Label store entries can be deleted, and they do

not persist across reboots of the kernel.
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The label store distinguishes two types of credentials by keeping, along with each

label store entry, a boolean-valued attribute r. If r = true holds then the entry represents

a revocable credential, for which the label store functions as an authority. When a label

store entry of this type is deleted from the label store, the credential it represents is also

revoked. If r = false holds then the entry represents an irrevocable credential; the label store

functions merely as a secure channel for distributing the credential with no provisions for

revoking the credential.

Irrevocable label store credentials. For an irrevocable credential, the credential ob-

tained by fetching the entry is never revoked. A process that fetches the entry is allowed

to receive either a signed or unsigned copy of the credential. The necessary signatures

are generated on demand, as described below. The recipient can safely store the returned

copy of the credential indefinitely. And with signed credentials, the process can also for-

ward the credential to other principals. Thus an irrevocable credential obtained from the

label store can outlive the label store entry itself, and irrevocable credentials can be held

by a process across reboots of the kernel.

The α-Nexus kernel implements the following system calls to support irrevocable cre-

dentials in the label store.14

• label say irrevocable(A,F , pf ) creates a label store entry for an irrevocable cre-

dential and returns lid , the unique ID for the new entry. To ensure the label store

can’t be used to forge credentials, α-Nexus allows a process P to invoke system call

label say irrevocable(A,F , pf ) only if P has been authenticated as the principal

A. In the simplest case, A is simply the NAL name for process P and the pf pa-

rameter is ignored. Other cases, which make use of the pf parameter, are discussed

below, in Section 2.4.4. In all cases, P → A holds, allowing F to be attributed to

principal A rather than just process P , hence the pair stored in the newly created
14α-Nexus enforces discretionary access control for all operations on label store entries. We omit details

of label store authorization guards and policies.
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entry is 〈A,F〉. The invoking process P can specify any formula for parameter F .

In particular, F may convey a form of lease by including references to the α-Nexus

system clock.

• label fetch signed(lid) returns a digitally signed credential for the label store en-

try identified by the unique ID lid . The kernel creates the credential by invoking

the TPM’s quote(·) operation. Thus the credential for an entry containing the pair

〈A,F〉 actually conveys the formula:

KCPU .pcrs(h) says (A says F). (2.26)

Because the process P that created the label store entry was authenticated asA (thus

P → A holds) and P is a sub-principal of KCPU .pcrs(h), from (2.26) we can derive15

A says F ,

which is the desired meaning of the label store entry. A process that invokes

label say irrevocable(·, ·, ·) followed by label fetch signed(·) could also obtain

an identical credential by invoking the α-Nexus quote(·) system call (discussed pre-

viously, in Section 2.3.3).

• label fetch unsigned(lid) returns an unsigned representation of formulaA says F ,

where 〈A,F〉 is the pair stored in the label store entry identified by unique ID lid .

• label delete(lid) deletes the label store entry identified by unique ID lid . This does

not revoke the credentials obtained by processes that previously fetched the en-

try, but instead only reclaims kernel resources associated with the label store entry.

Specifically, a process that obtained a credential using label fetch unsigned(lid)

15Here is that proof: Process P is a sub-principal of KCPU .pcrs(h).epoch(p), which in turn is a sub-
principal of KCPU .pcrs(h). So from SUBPRIN (2.10), applied twice, we derive KCPU .pcrs(h) → P . Since
P → A and→ is transitive, we obtain KCPU .pcrs(h) → A. Using definition (2.6) of speaks-for and SAYS-
E (2.3) with (2.26), we derive A says F .
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or label fetch signed(lid) may retain copies of the credential for the now-deleted

entry.

In addition to label say irrevocable(·, ·, ·), several other α-Nexus system calls result

in the creation of label store entries. These are used to represent various irrevocable cre-

dentials that the kernel itself issues, such as those described in Section 2.3.3. So when a

process invokes the process attest hash() system call, for example, the kernel issues a

credential by creating an appropriate entry in the label store. In this case, the label store

entry would contain the pair

〈KCPU .pcrs(h).epoch(p) , pgm hash(P, hpgm)〉,

where P is replaced by the full NAL name of the requesting process, hpgm is replaced by

the hash of that process’s program manifest, both p and h are replaced by appropriate

values for the current boot of the kernel, and KCPU is the public key for the hardware

TPM.

Revocable label store credentials. For an entry in the label store that represents a re-

vocable credential, a processes that fetches the entry is provided only with an unsigned

(hence, unforwardable) representation of that entry’s credential. Here, the α-Nexus ker-

nel supports credential revocation on behalf of the process that created the entry. Specifi-

cally, the kernel allows a label store entry to be deleted only after each process that could

be holding a copy of the credential for that entry confirms that all such copies have been

deleted. To implement this functionality, for each entry having r = true, the label store

keeps an attribute holders listing processes that have fetched the label store entry but have

not yet confirmed deletion of the resulting credential.

The label store can also (optionally) serve as an authority for a lock that is used in

a revocable credential represented by an entry in the label store. The kernel allocates

and manages a lock for each such label store entry, and processes invoke system calls to
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acquire and release shared or exclusive exclusive access to these locks. Because the lock

is stored with the label store entry, it is trivial for the kernel to delete the lock along with

the entry when the entry’s credential is revoked.16

The kernel implements the following system calls to support revocable credentials in

the label store.

• label say revocable(A,F , l , pf ) creates a label store entry for a revocable creden-

tial and returns lid , the unique ID for the new entry. A process P is authorized

to invoke label say revocable(A, ·, ·, ·) only if P → A holds. As before, the pro-

cess can specify any formula for F , including formulas that convey leases. If the

boolean-valued l parameter is true, then the label store entry will use locking and

the kernel allocates a lock `lid for the new label store entry.

• label fetch revocable(lid , callback) returns an unsigned representation of the cre-

dential for the label store entry identified by the unique ID lid . If no lock `lid has been

allocated (i.e., the l parameter was false when the label store entry was created), then

the credential conveys

A says F ,

where 〈A,F〉 is the pair encoded in the label store entry. Otherwise, there is a lock

`lid , and the credential conveys the formula

A says (locked(shared, `lid)⇒ F).

Either way, the pair 〈P ′, callback〉 is inserted into the holders list for that label store

entry, where P ′ is identity of the process fetching the label store entry and callback

specifies an α-Nexus IPC channel to be used to contact that process.

16In principle, locking can be used with both revocable and irrevocable credentials. However, the label
store only implements locking for revocable credentials. This limitation stems from the design decision to
delete each lock when the corresponding label store entry is deleted. In contrast, an irrevocable credential
might outlive the label store entry, so any lock an irrevocable credential uses would also need to outlive the
label store entry.
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• label unregister(lid , callback) removes the pair 〈P ′, callback〉 from the holders list

for the label store entry identified by unique ID lid , where P ′ is identity of the pro-

cess invoking the system call. A process invokes this system call to notify the kernel

that the process no longer holds a copy of the credential. Processes are not permit-

ted to store revocable credentials between executions, so when a process P ′ exits,

the kernel automatically removes any pair 〈P ′, ·〉 from the holders list for every label

store entry.

• label lock(lid ,mode) acquires lock `lid , if that lock exists, where mode specifies ei-

ther shared or exclusive. The return value of this system call conveys the credential

KCPU .pcrs(h).epoch(p) says locked(mode, `lid).

This credential is analogous to (2.24), but with the kernel, represented by principal

KCPU .pcrs(h).epoch(p), taking the place of LockMngr . An analog to (2.25) holds,

because the kernel speaks for all α-Nexus processes.

• label unlock(lid) releases a previously acquired lock `lid , if that lock exists and is

held by the invoking process. Processes are not permitted to hold locks after they

have exited, so when a process exits the kernel automatically releases any label store

locks held by the process.

• label revoke(lid) requests that the kernel revoke the credential for the label store

entry identified by unique ID lid , then delete that label store entry. Lock `lid is also

deleted, if that lock exists. To handle this request, the kernel first acquires exclusive

access to `lid if that lock exists, then enqueues a notification message on each IPC

channel listed in holders for that label store entry. A process receiving such a notifi-

cation will invoke label unregister(lid , ·) once any stored credential that process

holds has been deleted. Thus, the kernel waits until holders becomes empty before

proceeding to delete the label store entry and any associated lock.
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α-Nexus Guard Library

We implemented a library for constructing credentials-based authorization guards for

α-Nexus applications and the kernel. An overview of the interface implemented by this

guard library is given in Appendix B. The guard library provides a set of helper routines

for obtaining, managing and validating sets of credentials, including routines for

• checking a cryptographic signature for a credential that is represented as a signed

message;

• obtaining certain credentials from the α-Nexus kernel, given a description of the

desired credential. Recall, the kernel serves as an authority for clock and certain

accessible parts of the system state.

• obtaining a credential conveying A says F over an IPC channel from an authority

that is an α-Nexus processes, given an IPC channel identifier, the principal A, and

the desired formula F ; and

• obtaining credentials from the α-Nexus label store, given unique ID lid for a label

store entry.

Credentials are obtained from the label store by invoking label fetch unsigned(lid)

or, should that fail, label fetch revocable(lid , ·). Credentials are obtained from an au-

thority that is an α-Nexus process by sending a request containing the specified formula

F to the specified IPC channel and then awaiting a response from the IPC channel. IPC

channels in α-Nexus are authenticated, so a guard can verify whether the response was

sent by the given principal A.

When obtaining credentials over an IPC channel or from the label store, the helper

routines register a callback in the form of a α-Nexus IPC channel identifier that the source

(e.g., an authority) can use to notify the guard library should a credential need to be

deleted. In the event that a credential obtained from an authority becomes invalidated,

the authority (e.g., the label store or some process) will enqueue a notification message
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to the IPC channel. Upon receiving such a message, the guard library deletes any stored

copies of the credential and notifies the authority of this fact, either by sending a message

to the IPC channel for that authority or by invoking the label unregister(lid , callback)

system call, as appropriate.

The guard library helper routines include code to accommodate credentials that con-

vey leases. Specifically, the helper routines check if a credential has the form

A says (((clock op1 val1 ) ∧ (clock op2 val2 ) ∧ . . .)⇒ P),

where each opi is one of =, >, <, etc., and each vali is an integer constant. The guard

library checks that all conjuncts in the antecedent are satisfied for some pre-specified in-

terval, e.g., at the time the guard library was invoked, or the interval from that time and

spanning some specified duration.17

The guard library helper routines also include code to accommodate credentials that

refer to locks. For a credential obtained by reading the label store entry with unique ID

lid , the guard library checks if the credential has the form

A says (locked(shared, `lid)⇒ F).

If so, the guard library helper routines invoke label lock(lid , shared) to acquire the lock

and label unlock(lid) to release the lock. For a credential obtained from some other

authority A, the guard library checks if the credential has the form

A says (locked(shared, lock id)⇒ F),

where lock id is any constant term. If so, the guard library helper routines acquire and

release the lock by sending an IPC requests containing lock id to the IPC channel for that

17The guard library helper routines include code for automatically checking leases only for leases that
refer to clock, which is the α-Nexus system clock.
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authority.18 When checking a set of credentials, the helper routines acquire all locks before

the start of the pre-specified interval and release the locks after the end of the interval.

2.4.3 Sources of Derivations

Since NAL includes terms whose axiomatization is undecidable (e.g., integers or rich data

structures), we cannot hope to build a universal guard—a guard that, for any choice of au-

thorization policy G and set of credentials {c1, c2, . . . , cn}, derives G from {C1, C2, . . . , Cn}

if and only if such a NAL derivation exists. This undecidability result, however, does not

preclude building guards that automatically generate a NAL derivation for some partic-

ular authorization policy when given credentials in some pre-specified form. The filesys-

tem example above illustrates this, because authorization policy (2.17) can be derived au-

tomatically from a request A says read(foo) when given a credential that conveys (2.18).

An alternative to having a guard perform the derivation of an authorization policy

G would be to accompany each request with a NAL derivation of G [6, 11] or for the

guard to solicit the derivation from trusted third parties [14]. In either case, the guard

checks a NAL derivation rather than generating its own. This check is a decidable task,

because NAL derivations are finite in length and inference rule applications are mechan-

ically checkable.

α-Nexus supports guards by implementing a NAL proof checker. (Appendix B de-

scribes the interface and operation of this proof checker). In practice, a proof in α-Nexus

contains two parts: a schema for a set of credentials, with each credential conveying a

formula to be taken as a premise; and a schema for deriving from these premises a con-

clusion using the axioms and inference rules of NAL. Guards invoke helper routines in

the guard library to obtain and validate the specified credentials and to check the proof

schema; the guard allows a request to proceed only if the proof is correct and has the

18The guard library helper routines include code for automatically acquiring locks only for credentials
from authorities, where the authority is assumed to manage the lock.
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desired authorization policy G as its conclusion.

Having each request be accompanied by a derivation is not a panacea. For a principal

to produce a derivation of an authorization policy G, that principal must know what G is.

Yet sometimes G must be kept secret so that, for example, various principals do not learn

that different authorization criteria apply to each. Also, having each requester indepen-

dently derive G makes changing G difficult, since principals that will submit requests to

the guard must either be programmed to accommodate such changes (which might not

be possible for the same reason that universal guards cannot exist) or must be found and

manually updated whenever G is altered.

2.4.4 Authenticated Channels in α-Nexus

Thus far we have presumed authenticated channels, so that the recipient of a message

containing statement F can correctly attribute F to the sending principal P . Thus the

recipient adds belief P says F to its worldview. A straightforward way to implement

authentication for IPC channels would be for the kernel to augment each IPC message

with the process ID (or, equivalently, the NAL principal name) of the sender. And for the

label store, we might allow process P to create label store entries only using its own NAL

principal name. If a recipient has a credential for P says F and can separately derive

P → A, for some other principal A, then the recipient can derive A says F . Thus P can,

in effect, send IPC messages and create label store entries on behalf of principal A so long

as P → A.

We implemented a more flexible approach to authenticated channels in α-Nexus. For

a process P , if P → A holds then the kernel allows P to send IPC messages on behalf of A

directly, with each such IPC message augmented with a representation of NAL principal

A rather than P . Similarly for the label store, if P → A holds then the kernel allows P

to invoke label say irrevocable(A,F , pf ) or label say revocable(A,F , l , pf ) to insert
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a new label store entry on behalf of A. These system calls and those for sending IPC

messages take the principal name A and a proof pf as parameters. On each such system

call, the kernel invokes a guard with the specified proof to check the authorization policy

P → A. Thus, some work that would otherwise be performed by the recipient of the

IPC message or label store credential (i.e., ensuring that P , the sender or issuer, actually

speaks for the principal A they purport to speak for), is performed by kernel guards.

α-Nexus Alias Tables

Proofs (or sub-proofs) of P → A, where P denotes an α-Nexus process and A is some

principal, are common, because many requests that a process makes are on behalf of just

one principal, such as a user, or at most a small set of principals. As a convenience and

an optimization, α-Nexus keeps, for each process P , an alias table.19 The ith entry of the

alias table is a pair 〈Ai, pfi〉, where principal Ai is called an alias for P and pfi contains a

proof schema and a schema for a set of credentials. The proof schema and the credentials

purportedly constitute a proof of P → Ai. However, because credentials obtained from

an authority (i.e., over an IPC channel or from the label store) might be invalidated at any

time, the kernel does not check that proof until alias Ai is used.

α-Nexus implements the following system calls in connection with the alias table ab-

straction.

• authenticate alias(A, pf ) inserts a new entry 〈A, pf 〉 into the invoking process’s

alias table and returns the index of the newly created entry. Note that, unlike system

calls to send IPC messages or create label store entries, pf need not be checked when

the alias table entry is created.

• drop alias(i) removes the ith entry from the invoking process’s alias table.

• lookup alias(P, i) returns either: the alias Ai from the ith entry in P ’s alias table

19Nexus discarded the alias table abstraction implemented by α-Nexus in favor of a decision cache abstrac-
tion, which caches a wider variety of information than is stored in the alias tables.
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along with a proof of P → Ai that has been checked by the guard library; or an error

code if the kernel is unable to construct such a proof.20

One way to implement lookup alias(P, i) would be simply to invoke the guard li-

brary with pfi from the ith entry in P ’s alias table, returning either Ai or an error code

based on whether pfi is a correct proof of P → Ai. Because this is a common operation,

α-Nexus amortizes some of the cost of checking pfi by performing some checks during

authenticate alias(·, ·), when an alias entry is first created. The checks it factors out are

ones that cannot be invalidated by subsequent execution. This includes (i) checking the

proof schema to ensure that it is well formed and has P → Ai as its conclusion, and (ii)

validating the signatures on signed credentials. Checks that involve contacting authori-

ties (e.g., to acquire locks) are delayed until lookup alias(·, ·) is invoked.

Some α-Nexus kernel guards invoke lookup alias(·, ·) when authorizing requests

from processes. For instance, when process P sends an IPC message, rather than pass-

ing a principal A and a proof pf to the kernel, P can instead provide an index i into its

alias table. The kernel invokes lookup alias(P, i) and, if an alias Ai and a proof that

P → Ai are returned, then the kernel augments the IPC message with an encoding of Ai

to represent the sender. Thus, P avoids having to pass a principal A with each IPC send

system call and avoids having to construct and pass proofs for each IPC send. Invok-

ing lookup alias(P, i) is also more efficient than performing a complete proof check of

P → A on each IPC send.

The label store makes similar use of the alias table by allowing P to omit the A and

pf parameters when creating a label store entry. Instead, P provides an index i into its

alias table and the kernel invokes lookup alias(P, i). Only if that call returns an alias Ai

does the kernel proceed to create a label store entry using Ai as the principal. The same

approach is implemented by the α-Nexus quote(·) system call.

20α-Nexus implements discretionary access control for lookup alias(·, ·), but we omit the details of alias
table authorization guards and policies.
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Our impetus for creating the alias table abstraction was to optimize the handling

of proofs commonly encountered when we built α-Nexus applications. An additional,

though unintended, benefit was that the alias table allowed some applications to imple-

ment proof-carrying authorization with very little effort. Consider, for example, a filesys-

tem guard that enforces discretionary access control by implementing an ACL (see access

control lists, in Section 1.2.1). In a traditional implementation, principal names on the ACL

might be encoded as strings (e.g., user names), and for each request the guard compares

the name of the requester, again encoded as a string, against each name on the ACL. (A

more complete implementation would require the guard to examine group membership

as well.) By just replacing the string encodings with a encodings of NAL principal names,

the filesystem guard can support some types of credentials-based authorization. If an

ACL entry encodes a NAL group G, for example, a requesting process can invoke system

call authenticate alias(G, pf ), then provide the resulting index into its alias table when-

ever invoking the filesystem over an IPC channel. Group G could equally well be any of

the α-Nexus principals or groups discussed in Section 2.3.3. All of the work of validating

credentials and checking proofs is done by the kernel; the filesystem guard needs only

compare the principal name accompanying the IPC message with the names on the ACL.

In fact, because NAL formulas can be represented as strings, a simple string comparison

is sufficient for this purpose, just as in the traditional filesystem guard implementation.

2.5 Discussion

2.5.1 Genesis of NAL

Our original plan for α-Nexus was to adopt—not adapt—prior work in credentials-based

authorization. The Lampson et al. [78] account (which introduced says and→ operators)

seemed to offer a compelling framework for the kinds of authorization α-Nexus was go-
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ing to support, had been formalized by Abadi et al. [3] as a logic, and was used in the

Taos operating system [147]. There was the matter of generating proofs and checking

them—Taos had implemented only a decidable subset of the logic. Appel and Felten’s [6]

proof-carrying authentication addressed that, suggesting that all requests be accompa-

nied by proofs and that guards perform only proof checking. Moreover, proof-carrying

authentication employed a higher-order logic, so it supported application-specific predi-

cates; and it was implemented in Twelf [112], so a proof checker was available.

A clear focus of this prior work was authentication for the varied and nuanced prin-

cipals found in distributed systems. Operators to construct new principals (e.g., roles,

quoting, etc.) were central to that enterprise. In α-Nexus, system state and properties of

principals were going to be important inputs to authorization, too. We embarked on a

series of design exercises to see how well those needs would be served by the prior work.

Our attempt to design a simple digital rights management system was particularly in-

structive. We sought flexibility in what should count as an access to the managed content

(e.g., accessing any part versus accessing a majority versus accessing all of the content).

A system designer would presumably record accesses by changing the system’s state. So

we concluded that a logic for credentials and authorization policies ought to include state

predicates.

However, adding arbitrary state predicates to an authentication logic is subtle. If

stand-alone state predicates can be formulas then inconsistencies would have far-reaching

effects by allowing false to be derived, hence any authorization policy to be satisfied. We

thus restricted state predicates to appearing only in worldviews of principals. Since it

is unrealistic to expect that every principal could evaluate every state predicate or that

different principals evaluating the same state predicate at different times would compute

the same value, we needed a way for one principal to include in its worldview a state

predicate P evaluated by some other principal.
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• One approach [3, 6, 68] is to use SAYS-I (2.2) along with a new inference rule

CNTRL:
A says P , controls(A,P)

P

where controls(A,P) holds if A is considered a trusted source regarding the truth of

P .

• The other approach [1, 2, 81] is to postulate a local-reasoning restriction and require

that principals use delegation to import and reason about beliefs from others.

We rejected the first approach because it offers fewer guarantees about the propagation

of inconsistencies, and it also requires characterizing sets of state predicates P ′ covered

by controls(A,P): if controls(A,P) holds and P ⇒ P ′ is valid then is A necessarily also

trusted on P ′? Is A necessarily trusted on ¬P?

CDD [1, 2], which had embraced a local-reasoning restriction and been subjected to

careful analysis, then became an obvious candidate for the foundation of NAL. More-

over, CDD left unspecified details about principals and beliefs, so it offered us freedom to

define principals that would match what α-Nexus provided and to use state predicates in

beliefs (with theories that interpret these state predicates).

NAL sub-principals are derived from named roles in Alpaca [81]. Prior proposals (e.g.,

SDSI/SPKI [117] and Taos [147]) restrict the term τ used in defining a sub-principalA.τ to

being a fixed string, which meant that only static roles could be supported. By allowing

τ to be any term, the identity of a NAL sub-principal can be state-dependent.

Groups in NAL are a special case of the dynamic unweighted threshold structures defined

by Delegation Logic [85]. And Delegation Logic was the first to suggest that group mem-

bership be specified intensionally, although no proof rules were given (nor were they

needed) there. Our approach to authorization requires proof rules for satisfying autho-

rization policies from credentials; with inference rules MEMBER (2.13) and→GROUP (2.14),

NAL appears to be the first logic for reasoning about such groups. The deductive closure

63



semantics we selected for NAL groups was first proposed in [3] along with an axiomati-

zation for extensionally defined instances of such groups.

Other semantics for groups have been proposed. With the or-groups of Syverson and

Stubblebine [132], which are also supported in proof-carrying authentication [6], a belief

is considered to be in the worldview of a group if and only if that belief is in the worldview

of some21 group member; or-groups are not sound with respect to IMP-E (2.4) and there-

fore would require different proof rules from other NAL principals. In groups with con-

junctive semantics (sometimes called conjunctive principals [3,47,49,85] or and-groups [132]),

a belief appears in the worldview of a group if and only if that belief appears in the de-

ductive closure of the intersection of the worldviews for all members. We conjecture that

conjunctional groups could be supported in NAL as the following abbreviation:

〈〈v : P〉〉 says F : (∀v : P ⇒ (v says F))

Finally, various proposals (e.g., [49] and [85]) have been made for groups that exhibit

t-threshold semantics, whereby a belief is in the worldview of the group if and only if that

belief is in the worldviews of at least t group members. This construct is quite expressive,

difficult to axiomatize, and (fortunately) has not been needed for the applications we have

explored.

We were not the first to see a need for state in an authentication logic. As soon as

support for revocation or expiration of credentials is contemplated, the need for state-

dependent credentials and policies becomes apparent. In Becker and Nanz [16], creden-

tials and policies can have side effects that involve the addition or removal of assertions

from the local rule base; Cassandra [17] represents state in terms of the activation and

deactivation of roles; and linear logics [28, 54] encode state information in terms of how

many times an axiom can be used. These encodings all duplicate in the logic state that al-

21Some authors refer to such as groups as implementing disjunctive semantics, but this term is used by
other authors to describe groups that have the semantics defined by NAL, which also requires a deductive
closure.
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ready exists in a system. Expressiveness is often lost in the translation, preventing certain

policies from being formalized. Moreover, in this prior work, either some sort of globally

available state is being assumed, which becomes difficult to implement in a distributed

system, or the state is local to a guard, which limits what authorization policies could be

implemented.

2.5.2 Other Related Work

PolicyMaker [24, 26, 27] was the first authorization scheme to focus on considerations of

trust as an input to authorization decisions.22 Policies, credentials, and trust relationships

are expressed in PolicyMaker as imperative programs in a safe language; a generic com-

pliance checker interprets these programs to determine whether a policy is satisfied given

the provided credentials and trust assumptions. REFEREE [35], designed to support Web

applications, extends this approach by supporting policies about credential-fetching and

signature verification; KeyNote [25] adds restrictions to make compliance checking effi-

cient; and Delegation Logic [85] replaces PolicyMaker’s imperative programs with D1LP,

a monotonic version of Datalog that has declarative semantics and can be compiled into

ordinary logic programs (e.g., Prolog).

SD3 [73], Binder [47], the RT family of logics [86], Cassandra [17], Soutei [113], and

SecPAL [15] all employ languages based on Datalog; the result is a tasteful compromise

between the efficient decision procedures that come with PolicyMaker’s imperative pro-

grams and the declarative elegance of the Abadi et al. [3] access control calculus.

SecPAL, which targets grid computing environments and has also been used for au-

thorization in a weakly-consistent peer-to-peer setting [148], is quite expressive despite

limitations inherent in Datalog. It supports delegation credentials that are contingent on

the evaluation of predicates over a guard’s local state. And, unlike other authorization

22However, considerations about trust are the basis for the definitions of groups and roles in prior work
on access control.
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schemes based on logic programming, SecPAL allows negations of the form ¬(A says F)

to appear within policies (but not credentials); syntactic constraints on credentials and

policies nevertheless guarantee policy checking is sound, complete, and always termi-

nates, under the assumption (which unfortunately can be violated by a denial of service

attack) that all credentials are available whenever a policy is evaluated. A tractable deci-

sion procedure for authorization was obtained by translating from SecPAL into a Datalog

variant (viz. Datalog with Constraints).

DKAL [63] introduces a new dimension to credentials-based authorization by extend-

ing SecPAL to prevent any sensitive information carried in credentials and authorization

policies from leaking, even when users that have different clearances share the same un-

derlying authorization policies, database of credentials, and implementation.

Alpaca [81], like NAL, builds on proof-carrying authentication [6]. However, the do-

main of applications for Alpaca—unifying and generalizing public key infrastructures

(PKIs) to support authentication—is quite different from NAL’s goal of supporting autho-

rization. And that explains differences in focus and function. Alpaca authorities (different

from NAL authorities), for example, provide a structure to localize reasoning associated

with a given logical theory; this turns out to be convenient in Alpaca for dealing with the

mathematical operations and coercions used in authentication protocols. NAL and other

logics that are dependent on signatures and hashes for attributing beliefs to principals,

do not provide support for reasoning about these operations within the logic. Another

important point of difference is that Alpaca—unlike NAL—has only limited support for

stateful protocols. Nonces can be used in Alpaca to achieve one-use or limited-use cre-

dentials; there is no way, however, to use Alpaca for protocols that depend in general on

history, as would be required (and is supported in NAL) for a digital rights management

system or even as needed for implementing many authentication protocols.

Relatively few systems—most, research prototypes—support credentials-based au-

thorization, but none do so in anything that approaches the generality needed for using
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analytic or synthetic bases in authorization. This prior work includes Taos and SecPAL,

which were already mentioned; the W3C Web Services WS-Security [107] standard (in

particular, WS-Policy [150]) is also rooted in this general approach, and that could bode

well for the future. Bauer [11] used proof-carrying authorization for access control to Web

pages. The Grey Project [12, 13] integrates a linear logic and proof-carrying authentica-

tion on a smart phone platform, and it has been used for authorizing access to offices and

shared labs. And Howell and Kotz [69] implemented a credentials-based approach for

use within and between applications running in Java virtual machines; that logic is an

extension of SPKI [49].
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CHAPTER 3

A DOCUMENT-VIEWER SUITE USING NAL

We designed and implemented on α-Nexus three document viewer applications in or-

der to evaluate the use of NAL for enforcing authorization policies that concern integrity

and confidentiality of electronic documents. This exercise informed the design of NAL as

well as showing that surprisingly broad functionality can be seen as forms of authoriza-

tion if one considers authorization in terms of predicting trustworthiness of principals.

In each viewer application, we posit a one-to-one correspondence between documents

and principals. The principal for the document to be displayed—not the human user

viewing the document—is the principal whose requests are authorized by a guard. This

unconventional set-up allows us to benefit from analytic and synthetic bases for autho-

rization. Had the viewer applications instead been designed to process requests from

human users wishing to view documents, then we would have been limited to employ-

ing an axiomatic basis for authorization, since humans are hard to analyze and do not

take kindly to transformations.

3.1 TruDocs : Analytic and Axiomatic Bases for Authorization

TruDocs is a document-viewer application that ensures excerpts attributed to a document

are consistent with policies that document specifies. We start with the observations that

documents convey beliefs and that excerpts derived from a document also convey beliefs.

For di some document, NAL provides a natural way to formalize which beliefs di conveys.

We identify di with a principal Prindoc(di) and write a NAL formula Prindoc(di) says P for

each belief P that di conveys.

We represent an excerpt e appearing in a document d as a 4-tuple e = 〈χ, d, l, d′〉, where

χ is the text of the excerpt, d′ is a source document to which the excerpt is being attributed,

and l is the location where the excerpt appears in d. Notice, distinct appearances of text
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χ in d are considered to be different excerpts. As with documents, each excerpt ei can be

identified with a NAL principal Prinex (ei), where Prinex (ei) says P holds for every belief

P that except ei conveys. Define src(e) to be the source document (i.e., d′ above) from

which e was purportedly derived; Prindoc(src(e)) is therefore the principal corresponding

to src(e).

The reader of an excerpt e and the author of source document src(e) would expect that

beliefs conveyed by e are also conveyed by src(e): ω(Prinex (e)) ⊆ ω(Prindoc(src(e))) or

equivalently Prinex (e) → Prindoc(src(e)) holds. But whether Prinex (e) → Prindoc(src(e))

actually holds will depend on how e was derived from src(e). Quoting too few words,

quoting out of context, redaction, elision of words and clauses, all can produce an “ex-

cerpt” that conveys different beliefs than are conveyed in the source. We define a doc-

ument d to have integrity if and only if, for every excerpt e appearing in d, the beliefs e

conveys are also conveyed by src(e). This property can be formalized in NAL as a cre-

dential

TruDocs says (∀e : e∈d ⇒ (Prin ex(e)→ Prin doc(src(e)))) (3.1)

that TruDocs issues about d, where relation e ∈ d holds if and only if document d con-

tains excerpt e.1 The principal-valued function Prin ex(e) and document-valued function

src(e) appearing in this credential are defined, for any excerpt e, to be equal to Prinex (e)

and src(e), respectively. Similarly, the principal-valued function Prin doc(d) is defined,

for any document d, to be equal to Prindoc(d). For instance, given an excerpt e for which

src(e) = d′, then we have

TruDocs says src(e) = d′,

or more generally we have

TruDocs says (∀x, d, l, d′ : src(〈x, d, l, d′〉) = d′),

since each excerpt e is represented by some 4-tuple 〈χ, d, l, d′〉.
1Definition (3.1) treats nested excerpts as if each appears directly in d. Other treatments are possible.
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The author of a document d′ cannot be expected to enumerate all possible excerpts e

that convey beliefs found in d′. So authors (or the organizations they work for) associate

use policies with documents they produce. To be eligible for inclusion in another document

d, an excerpt e must comply with the use policy associated with src(e). TruDocs limits

use policies to those that can be specified as syntactic criteria or as other computable

checks whose compliance implies Prinex (e) → Prindoc(d
′), meaning the beliefs expressed

by excerpt e are from document d′.

We can associate a use policy with a source document d′ by issuing a credential that

conveys the NAL formula

Prindoc(d
′) says (∀e : (Prindoc(d

′) = Prin doc(src(e)) ∧ usePold′(e))

⇒ (Prin ex(e)→ Prindoc(d
′)))

(3.2)

where usePold′(e) is a predicate satisfied if excerpt e = 〈χ, d, l, d′〉 appearing in d is con-

sistent with the use policy associated with d′. The first conjunct in the antecedent of (3.2),

Prindoc(d
′) = Prin doc(src(e)), restricts the quantification to those excerpts e that purport

to come from d′.2 Credentials like (3.2) enable (3.1) to be derived by checking each excerpt

e in a document d against the use policy for src(e):

TruDocs says usePol src(e)(e) (3.3)

Thus, a guard handling a request for the display of a document d can mechanically de-

rive (3.1) or, conversely, deny a display request if d does not have integrity. Note that (3.3)

is an analytic basis for trust because authorization depends on a form of analysis: check-

ing a use policy.

TruDocs can also handle copyright’s “fair use” and other non-computable use policies

by employing an axiomatic basis for trust. One or more human authorities Hi for which

2Under the assumption that the principals identified with documents are unique, that conjunct is equiv-
alent to d′ = src(e). But the conjunct used in (3.2) has the benefit that only Prindoc(d

′) need appear in
the credential rather than d′. As will become clear below, Prindoc(d′) is a concise name for the document
whereas d′ contains the actual text of the document.
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TruDocs has issued a credential that conveys

TruDocs says (Hi → TruDocs) (3.4)

are solicited to check the use policy for each excerpt e. Hi in turn provides credentials that

convey

Hi says (Prinex (e)→ Prindoc(src(e))) (3.5)

only if the use policy is satisfied for excerpt e. Receipt of such a credential for each excerpt

e in d is all that is needed for TruDocs to derive (3.1). So this approach corresponds to

deriving (3.3), where usePol src(e)(e) is satisfied if and only if TruDocs has credentials (3.4)

and (3.5).

Implementation Details

TruDocs comprises an editor TDed for use by document authors, a viewer TDview for

displaying documents, and some additional support software.

• TDed allows a document d that contains excerpts to be created, enables a use pol-

icy to be defined and associated with that document, and constructs a unique name

nme(d) for the document. By construction, nme(d) embodies a validated set of doc-

ument particulars, such as title, author, publication venue, publication date, etc.

• TDview implements a guard to authorize display requests from documents; a dis-

play request for d is granted only if (3.3) can be derived for each excerpt e in d,

since (3.1) can then be derived from that. Whenever TDview displays a document,

it displays after each excerpt e the document particulars embodied in nme(src(e)),

thereby giving the reader a human-intelligible description for the source document

from which e was derived.

TDed and TDview were obtained by modifying the OpenOffice software suite [105].

We added 739 lines of Visual Basic code and 5066 lines of C code to OpenOffice. TDed
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and TDview also use the NAL guard library (an additional 4677 lines of C code) and

third party libraries: OpenSSL [106] (for hashing, signature generation, and signature

verification) and XOM [153] (for document manipulation and canonicalization). Because

α-Nexus does not yet support sophisticated user interfaces, TDview was implemented as

two separate components. One component is trusted and runs on the α-Nexus kernel;

it executes the NAL proof checker and an analysis engine. The other component is not

trusted and runs on a Linux platform; it displays information and implements the user

interface. TDed runs primarily on an untrusted Linux platform.

The TDview guard enumerates the excerpts in d and processes each excerpt e as fol-

lows.

(i) Determine the predicate usePol src(e)(e) that applies for excerpt e.

(ii) Check usePol src(e)(e) and, if it holds, issue

TruDocs says usePol src(e)(e). (3.6)

Step (ii) is implemented with assistance from the NAL proof checker and built-in support

for text matching, as follows:

• TDview checks to see if the display request was accompanied by credentials like (3.5)

from some human authority Hi and/or a NAL proof that discharges (3.6), and if so,

TDview checks that proof, issuing a credential conveying (3.6) if the proof is correct;

• if not, TDview determines if it has built-in support to validate usePol src(e)(e), at-

tempts that validation, and if successful TDview issues a credential conveying (3.6);

• otherwise, TDview displays an error message that details the use policy that it could

not satisfy, requesting additional credentials and/or a NAL proof be provided.

TDview currently supports only digitally signed credentials—credentials are not read

from the α-Nexus label store, for example—and credentials must be written using a frag-

ment of NAL (described below).
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Note that some trust assumptions are required, because of NAL’s local-reasoning re-

striction. First, TDview → TruDocs must be assumed, so that credentials issued by

TDview can contribute to the derivation of (3.6), a statement being attributed to TruDocs .

TDview is an α-Nexus process, and the kernel issues a credential

KCPU .pcrs(h).epoch(p) says pgm hash(TDview , hTDview),

where hTDview is the hash of TDview ’s program manifest. Thus assumption TDview →

TruDocs can be discharged if we take TruDocs to be

{|v : (∃p : KCPU .pcrs(h).epoch(p) says pgm hash(v, hTDview))|},

making every TDview process executing on the kernel given by platform configuration

register values h and running on the machine having a Trusted Platform Module (TPM)

with public key KCPU a constituent of TruDocs . Alternatively, we could take TruDocs

to be a public key KTruDocs chosen for this purpose by the user or an administrator; we

would then have to arrange for the distribution of signed credentials that convey

KTruDocs says TDview → KTruDocs

for each execution of TDview , or

KTruDocs says {|v : (∃p : KCPU .pcrs(h).epoch(p) says pgm hash(v, hTDview))|} → KTruDocs

to capture all TDview instances in a single credential.

A second trust assumption we require is that for each credential Hi says F provided

by an human authority Hi and used in step (ii), there must be a credential

TDview says (Hi → TDview)

that signifies Hi is trusted by TDview and, therefore, TDview says F can be derived by
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TDview from Hi says F . The name of each such trusted human authority Hi is com-

municated to TDview at startup.3

Limits in on-line storage or concerns about confidentiality are just two reasons TDview

might not have access to certain source documents. So TDview is not always able to vali-

date usePol src(e)(e) directly and might instead have to import credentials from human or

other external authorities. In fact, having TDview import credentials can improve per-

formance by undertaking an expensive analysis once rather than each time a document

display is requested. For example, when creating a document d, TDed has access to all

documents from which excerpts appearing in d are derived. TDed is therefore an obvi-

ous place to perform some analysis and issue credentials that later aid TDview in deriv-

ing (3.6). TDed invokes TDanalyze, an analysis engine that runs on α-Nexus; TDanalyze

performs some or all of the required analysis and invokes the α-Nexus quote(·) system

call to issue a credentials attesting to the results of this analysis, and then TDed stores

these credentials with the document. This implementation does require an additional

trust assumption: TDanalyze → TDview . TDanalyze might execute on a different machine

than TDview , and only some machines may be trusted, so we discharge this assumption

using a credential of the form

TDview says {|v : (∃k, p : certified hardware(k) ∧

k.pcrs(h).epoch(p) says pgm hash(v, hTDanalyze))|} → TDview ,

(3.7)

where hTDanalyze is the hash of the program manifest for TDanalyze and the predicate

certified hardware(K) holds only if K is the public TPM key for a trusted machine.

3In TruDocs , integrity policies are meant to protect the interests of the reader of a document, and these
policies are enforced at the reader’s discretion. Documents are stored in plain text, for example, and a
reader can examine those documents using some other viewer. Thus, it is reasonable for TDview to issue
credentials of the form TDview says (Hi → TDview) at the request of the reader. This is in contrast to a
MAC policy (see mandatory access control, in Section 1.2.2) or digital rights management systems, which aim
to protect the interests of other principals, such as copyright holders, system administrators, or the reader’s
employer.
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excerpts(d)—The set of all excerpts in document d (i.e., excerpts e such that
e∈d holds).

nme(d)—The validated document particulars for document d, encoded
as a set of key-value pairs. Keys are strings such as "title",
"author", "publication date", etc., and values are strings.

body(e)—The text of excerpt e.

src(e)—The source document from which excerpt e purports to have
been derived.

dst(e)—The document in which excerpt e appears.

numWords(χ)—The length in words of text χ.

txtSrch(χ1, χ2,m)—The text χ1 appears within text χ2 modulo m. Here, m is a
subset of { "ignore case", "ignore whitespace",
"allow eliding", "allow editorial inserts", . . .}.

Figure 3.1: A subset of TruDocs credential and use policy terms.

TruDocs relies on a platform authority (named by public key KPA), which issues a credential

that conveys

KPA says certified hardware(K)

for each trusted machine’s TPM key K. This requires a further trust assumption,

TDview says KPA
k : certified hardware(k)−−−−−−−−−−−−−−→ TDview .

The identity of the trusted platform authority is communicated to TDview at startup.

Use policies enforced by TDview and (partially) checked by TDanalyze are currently

written in a fragment of NAL that includes simple connectives (∧, ∨, and ¬), a variety of

arithmetic and relational operators (+, ∗, >, <, ∈, etc.), and the terms shown in Figure 3.1.

Our prototype implements only what is required to support a few example use policies;

a complete implementation would likely support a much richer policy language. For in-

stance, one might include support for invoking automated sentiment analysis [109, 139].

Still, our prototype’s policy language is rich enough for TDview and TDanalyze to sup-

port: matching an excerpt and source text verbatim or allowing for change of case, re-
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placing fragments of text by ellipses, inserting editorial comments enclosed within square

brackets, and limiting the length of individual excerpts or the aggregate length or number

of the excerpts from a given document. For instance, consider the use policy usePold′(e)

defined by

txtSrch(body(e), body(d′), {"ignore case"})

∧ numWords(body(e)) ≥ 20

∧ numWords(body(e)) ∗ 4 < numWords(body(dst(e))).

(3.8)

For excerpt e to be attributed to source document d′, this use policy requires that the text

of e match some text in d′ (ignoring case), have at least 20 words, and constitute less than

one quarter of the document in which e appears. TDview and TDanalyze also can validate

compliance with a use policy that stipulates excerpts not appear in documents having cer-

tain document particulars—for example, that excerpts not appear in documents authored

by a given individual or published in a given venue. So the author of d′ in the above

example might augment policy (3.8) with a restriction

〈"author", A〉 6∈ nme(dst(e)).

A name nme(d) that lists document particulars would prove problematic if we want to

use an ordinary filesystem and store d as a file named nme(d). So TruDocs associates with

each document d a principal named Hnme(d), as follows. Each document d is represented

in extensible markup language (XML), and we define Hnme(d) = H(xd) where xd is the

XML representation (using the DocBook [48] standard) for d and where H(·) is a SHA1

hash. Hnme(d), because it is relatively short, can serve as the name for a file storing xd in

a filesystem or Web server. For each excerpt e appearing in d , TruDocs stores in xd name

nme(src(e)), which provides the document particulars for src(e), and name Hnme(src(e)),

which provides direct access to the file storing xsrc(e).4

4If only name Hnme(src(e)) were stored in xd, then after d has been created, an attacker could
change what is stored in file Hnme(src(e)), thereby invalidating the consistency of the information from
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A binding between principals Hnme(d) (i.e., H(xd)) and nme(d) is made by TruDocs

principal Reg (named by public key KReg ); Reg runs on a separate machine from TDed

and TDview . Reg creates bindings, validates document particulars, and disseminates the

existence of Hnme(d) to nme(d) bindings by issuing credentials. In particular, a document

d created with TDed becomes eligible for viewing only after the user invokes the publish

operation; publish causes pair 〈xd, nme(d)〉 to be forwarded to Reg , which checks that

(i) nme(d) is unique,

(ii) nme(d) is consistent with document particulars (e.g., author, title, publication venue,

publication date) conveyed in xd, and

(iii) each document particular in nme(d) is valid according to relevant external authori-

ties (e.g., the authoritative reprints repository maintained by the journal where d is

purported to have been published).

If (i)–(iii) hold, then nme(d) is considered validated and Reg issues a credential

KReg says (Hnme(d)→ KReg .nme(d)), (3.9)

which is returned by Reg to TDed , where it is piggybacked5 on xd. Notice that if we define

Prindoc(d) to be KReg .nme(d), we can derive

Hnme(d)→ Prindoc(d), (3.10)

a binding between Hnme(d) and Prindoc(d): from (3.9), SUBPRIN (2.10) derives Hnme(d)→

KReg .nme(d) and then use the above definition of Prindoc(d) to substitute for KReg .nme(d).

The principal name for an excerpt, Prinex (e), never appears explicitly in credentials,

and it is never shown to the reader of a document. So here, there is no need for more than

a simple hash. For the excerpt e = 〈χ, d, l, d′〉, we define Prinex (e) to be H(〈χ, d, l, d′〉),

where H(·) is again a SHA1 hash.

nme(src(e)) that gets displayed at the end of e with the document particulars for src(e).
5Credential (3.9) cannot be stored in xd, because that would change name H(xd) for that principal,

rendering credential (3.9) useless.
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Finally, as noted above, when TDed creates a document d′, it stores a use-policy cre-

dential as part of xd′ . The credential stored is actually a variant of (3.2), now that two

different principals are associated with each document:

Hnme(d′) says (∀e : (Hnme(d′) = sha1(src(e))) ∧ usePold′(e))

⇒ (Prin ex(e)→ Hnme(d′))),

(3.11)

where TruDocs says sha1(d) = h if and only if h is the SHA1 hash of document d. For

excerpt e, Prin ex(e)→ Hnme(d′) derives Prin ex(e)→ Prindoc(d
′), since (3.10) can be de-

rived from the instance of (3.9) piggybacked on xd′ . This means that from (3.9) and (3.11),

TDview can always automatically derive:

H(xd′) says (∀e : ((Hnme(d′) = sha1(src(e))) ∧ usePold′(e))

⇒ (Prin ex(e)→ Prindoc(d
′)))

(3.12)

And the NAL derivation of (3.1) from (3.12) is virtually the same as the derivation of (3.1)

from (3.2), again remaining independent of document d and thus not something the guard

of TDview must regenerate to authorize each display request.

3.2 ConfDocs : A Synthetic Basis for Authorization

ConfDocs implements multilevel security (MLS) [111, 143] for accessing documents com-

prising text elements. The policy that ConfDocs enforces for each text element is similar to

the MLS policy described in Section 1.2.2. Each text element χ in a document is assigned

a classification by some trusted classification authority; each human user H is assigned a

clearance by some trusted clearance authority. Classifications and clearances are selected

from a set of security labels on which a partial order relation � has been defined.

Each document d is identified with a unique principal Prin(d). A document d com-
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prising a set txt(d) of text elements is authorized for display to a user H if and only if

Prin(d) says (∀x : x∈ txt(d)⇒ cls(x) � clr(H)) (3.13)

holds, where cls(χ) denotes the classification assigned to text element χ, and clr(H) de-

notes the clearance assigned to user H . Policy (3.13) makes d—or, rather, the publisher

of d—the ultimate authority on which users can read d, by leaving the choice of classifi-

cation authority and clearance authority with d. In particular, the choice of classification

authority determines the value of cls(χ) and the choice of clearance authority determines

the value of clr(H), so these choices (albeit indirectly) effect whether H satisfies (3.13).

ConfDocs is agnostic about the set of security labels and partial order relation �. The

system simply requires the means (internally built-in or by appeal to an external author-

ity) to determine whether ` � `′ holds for any pair of security labels ` and `′. ConfDocs has

built-in support for security labels structured as pairs [44, 120], comprising a sensitivity

level and set of compartments, as described in Section 1.2.2.

If a document d does not satisfy authorization policy (3.13) for a given user H , then it

is often possible to derive a document that does.

• Deleting text from d narrows the scope of the universal quantification in (3.13) by

removing a text element χ from txt(d), thereby eliminating an obligation cls(χ) �

clr(H) that could not be discharged.

• Modifying d (say, by changing certain prose in a text element χ to obtain χ′) could

change the contents of txt(d) in a way that transforms an obligation that could not

be discharged (i.e., cls(χ) � clr(H)) into one that can be (i.e., cls(χ′) � clr(H)).

Each implements a synthetic basis for authorization, and our ConfDocs prototype sup-

ports both.

79



Implementation Details

ConfDocs provides a program CDview for viewing documents and provides some shell

scripts for creating and managing documents. CDview is 5787 of C code that runs on

α-Nexus and uses the NAL guard library and proof checker. Shell scripts (175 lines of

Bash) that invoke the OpenSSL library to perform encryption allow a user (as detailed

below) to attach policies to documents and then encrypt the result for subsequent use by

CDview . The shell scripts can run on either α-Nexus or Linux.

Each ConfDocs document d is represented using XML according to the DocBook stan-

dard, and we define Prin(d) to be equal to the SHA1 hash of that XML representation. The

representation for a document d includes set txt(d) of text elements, as well as credentials

that give a classification `χ for each text element χ∈ txt(d):

Prin(d) says (cls(χ) = `χ)

or:

CAT says (cls(χ) = `χ)

Here, CAT is a classification authority; credentials it issues must be accompanied by a

suitable restricted delegation

Prin(d) says CAT
v1,v2: cls(v1)=v2−−−−−−−−−→ Prin(d) (3.14)

attesting that the publisher of d trusts CAT to assign classifications to text elements.

The representation of d optionally may include sanitization credentials

San says (cls(edit(χ, s)) = `χ,s) (3.15)

that give a classification for the text element produced by executing a built-in edit func-

tion to modify χ according to script s. Here, San is either Prin(d) or some classification

authority CAT for which restricted delegation (3.14) appears in the representation of d.
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Script s comprises standard text editor commands like replace(x, y), which replaces all

instances of character string x with string y, and so on.

Credentials like (3.15) define a sanitization policy. Such a policy characterizes ways to

transform a document containing information that readers are not authorized to access

into a document those readers are. The hard part is resolving the tension between hiding

too much and indirectly leaking classified information. Sanitization of paper documents,

for example, often involves replacing fragments of text with whitespace, but a document

sanitized in this manner might still leak information to a reader by revealing the length

of a replaced name or the existence of an explanatory note.

A user H attempting to view a document d invokes CDview , furnishing a credential

signed by some clearance authority CAU that attests to clr(H):

CAU says clr(H) = `H

Not all clearance authorities are equivalent. The publisher of d controls whether a clear-

ance authority CAU is trusted to assign clearances and, thus, can participate in determin-

ing which users have access to d. Specifically, the publisher includes a credential

Prin(d) says CAU
v1,v2: clr(v1)=v2−−−−−−−−−→ Prin(d)

in the ConfDocs representation of d for each clearance authority CAU that is trusted.

α-Nexus Sealed Bundles

To ensure that CDview is the only way to view confidential documents, they are stored

and transmitted in encrypted form. α-Nexus, in conjunction with a TPM secure co-

processor, implements a storage abstraction that is ideal for this task.6 An α-Nexus sealed

6α-Nexus and TPM terminology differ here: sealing in α-Nexus is a generalization of the TPM’s binding
interfaces, which enforce confidentiality policies specified in terms of the TPM’s platform configuration
register values. α-Nexus does not use TPM sealing interfaces, which provide for both authentication and
confidentiality but only for data consisting of certain symmetric keys generated by that TPM.
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bundle b comprises (i) a payload payload(b) stored in encrypted form and (ii) a NAL group

Group(b) of constituents authorized to decrypt payload(b).

The α-Nexus kernel implements a system call decrypt(b, pf ), which a process P can

invoke to request that b be decrypted. Just as for other α-Nexus system calls, the pf pa-

rameter is either a NAL proof or an index into P ’s alias table; its purpose will be described

shortly. By invoking decrypt(b, pf ), process P is seen by the α-Nexus kernel to be provid-

ing the credential

P says decrypt(b).

α-Nexus responds by decrypting and returning payload(b) to P if and only if authorization

policy

Group(b) says decrypt(b)

can be derived. To allow an access thus requires the kernel to verify a proof of P →

Group(b), thereby establishing that P is among Group(b) constituents. One way the kernel

can discharge this obligation is by checking whether P satisfies a NAL formulaPb[v := P ],

where characteristic predicatePb was originally provided for defining Group(b) and saved

in the bundle; P → Group(b) then follows due to MEMBER (2.13). α-Nexus also allows P

to provide a proof of P → A, where A is some other principal; the kernel would validate

that proof and then check that Pb[v := A] is satisfied. Process P can provide such a proof

by passing it in the pf parameter to the decrypt(·, ·) system call. Or P can create an alias

table entry for A and pass the index for that entry in the pf parameter instead. Notice, the

set of principals satisfying Pb is not necessarily static if Pb depends on state, and therefore

the Group(b) constituents may be dynamic.

Each ConfDocs document d is stored using an α-Nexus bundle bd, where Group(bd) is

a set of principals corresponding to valid instances of CDview . A process is considered

a valid instance of CDview if and only if the hash of its program manifest equals the

hash hCDview of some pre-determined correct program manifest for CDview , that process
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is running on a valid α-Nexus kernel, and the α-Nexus kernel is itself executing on a

trusted processor with associated TPM. We again rely on a platform authority that issues

credentials like (3.7) attesting to the public key of each trusted processor’s TPM. Thus the

group Group(bd) of principals for each document d is defined in NAL as:

{|v : (∃k, p : certified hardware(k) ∧

k.pcrs(h).epoch(p) says pgm hash(v, hCDview))|}

3.3 CertiPics : Axiomatic and Synthetic Bases for Authorization

The integrity of an image is often based on trust in an image provider [90], an axiomatic

basis for trust. For example, today consumers trust images found in reputable newspa-

pers, and newspapers in turn trust reputable on-line image repositories. And a court

might require photographs used as evidence to come from digital cameras [32] that sign

each image they produce. Some academic journals perform automated analysis on im-

ages in an attempt to avoid fraud in scientific publishing [51, 155], an example of an ana-

lytic basis for trust. Synthetic bases for trust in images are also common, though typically

they are enforced only in an ad-hoc manner. For instance, newspapers might only pub-

lish images that comply with editorial policies regarding what constitutes an acceptable

series of image transformations.

CertiPics formalizes these approaches by allowing a definition of image integrity to

be specified as a NAL policy, and enforcing such policies on images. CertiPics comprises

a set of image manipulation tools that run on α-Nexus, each taking some parameters

and one or more images as input and producing a single output image and several NAL

credentials. We also implemented an image viewer containing a guard to ensure that

displayed images satisfy a user-specified image integrity policy. This involved several

domain-specific proof generators for such policies; the proof generators take as input the

credentials issued by CertiPics image manipulation tools.
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Just as the text of a document conveys beliefs, so too does the contents of an image.

So, to model an image integrity policy in NAL, we identify each image i with a principal

Prin(i), and we write a NAL formula Prin(i) says P for each belief P that i conveys.

CertiPics enables different principals to define different image integrity policies. We de-

fine an image i to have integrity according to principal A (named by a private key KA) if

and only if the beliefs i conveys are also conveyed by some designated principal Imgs(A)

trusted by A. Thus a guard enforcing A’s image integrity policy allows a display request

for image i to proceed only if the following holds:

Prin(i)→ Imgs(A). (3.16)

3.3.1 Axiomatic Bases for Image Integrity

In the simplest case, A might declare some images to a priori have integrity. For each such

image i, A issues a credential conveying

KA says Prin(i)→ Imgs(A). (3.17)

If we take Imgs(A) to be

KA.imgs (3.18)

for any principal A, then SUBPRIN (2.10) derives KA → Imgs(A).7 Together with (3.17),

this discharges (3.16) for requests to display images declared byA to a priori have integrity.

In order that credentials like (3.17) remain small, we define Prin(i) to be equal to H(i),

the SHA1 hash of the image data.

Using→ in (3.16) to encode the notion of image integrity makes it simple to introduce

7Since we require A be able to create delegations for Imgs(A), one might be tempted to define Imgs(A)
to be KA. Our approach using a sub-principal KA.imgs seems more prudent on Least Privilege grounds,
because it separates beliefs conveyed by images (hence found in the worldview of Imgs(A)) from beliefs
held by A proper. An alternative approach would be to use restricted delegation in (3.17), but our approach
also allows us to define sub-principals to represent other sets of images. We take advantage of this flexibility
in the image integrity policies discussed in the remainder of this section.
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a level of indirection so that A need not issue a separate instance of credential (3.17) for

each image. Consider a camera C that is equipped with a key KC and that digitally

signs each image i it produces. Because it represents the camera’s declaration that i has

integrity, the resulting credential conveys the NAL formula

KC says Prin(i)→ Imgs(C). (3.19)

Given definition (3.18) of Imgs(·), from an instance of (3.19) we obtain Prin(i)→ Imgs(C)

for each image i that C produces. So A can declare all images produced by camera C to

have integrity by issuing a credential:

KA says Imgs(C)→ Imgs(A).

This derives Imgs(C)→ Imgs(A). Together with an instance of (3.19) we obtain Prin(i)→

Imgs(A) for each image i produced by camera C, which discharges (3.16) for requests to

display that image.

CertiPics supports further levels of indirection. For instance, if a manufacturer M

(named by key KM ) issues a credential conveying

KM says Imgs(C)→ Imgs(M) (3.20)

for each camera C that it manufactures, A can declare all images by all such cameras to

have integrity using a single credential that conveys KA says Imgs(M)→ Imgs(A).

3.3.2 Synthetic Bases for Image Integrity

As an example of a synthetic basis for authorization in CertiPics , consider the image

integrity policy in Figure 3.2, which we dub the NYT policy.8 The first rule of the NYT

8The policy we discuss here was inspired by clarifications made by the New York Times [104] subsequent
to the widespread publishing—on many news Web sites, including the New York Times—of a doctored
photograph of an Iranian missile test. The New York Times in fact does have a policy (though not machine
checkable) on image integrity [102].
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(1) Images produced by any camera from manufacturer M (named by key KM ) are
considered validated source images.

(2) A derived image has integrity if it derives from a validated source image by a series
of (zero or more) transformations that crop, redact, or add captions.

Figure 3.2: NYT policy—an example image integrity policy.

(1) Images produced by any camera from manufacturer M (named by key KM ) are
considered validated source images.

(2) A derived image has integrity if it derives from some set of validated source images
by a series of (zero or more) transformations and the series satisfies the constraints
implied by the following rules.

(a) Cropping is allowed.

(b) Scaling is allowed, but only once.

(c) Color balancing is allowed, but only before scaling.

(d) Tiling (e.g., joining two images side by side) is allowed, but only if a visible
border is inserted between the tiled images.

Figure 3.3: JCB policy—an example image integrity policy.

policy defines a set of validated source images. The second rule concerns the chain-of-custody

of an image by defining conditions under which an image derived from validated source

images itself has integrity. The NYT policy permits transformations to be applied to a

validated source image any number of times (and in any order), and each image that has

integrity derives from some single validated source image.9

More generally, an image integrity policy might define constraints on the history of

transformations that have been performed, and the policy might permit transformations

that combine multiple input images to produce an output image. Consider the JCB pol-

icy shown in Figure 3.3, inspired by the policies of the Journal of Cell Biology and de-

9Note, the NYT policy, as presented in Figure 3.2, is lax about the distinction between a validated source
image and a derived image that merely has integrity. In fact, the distinction is immaterial in the NYT policy:
if image i derives from image j by some otherwise acceptable transformation, and j has integrity according
to NYT—but is not a validated source image—then there must be some validated source image j′ from
which both i and j are derived by a series of acceptable transformations. Shortly, we discuss a policy in
which the distinction is important.
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signed to preserve the integrity of scientific data represented in published images. Here,

some of the chain-of-custody constraints (i.e., (2a) and (2d) of Figure 3.3) are local: they

concern only information about a single step in a series of transformations. Other chain-

of-custody constraints (i.e., (2b) and (2c) of Figure 3.3) are global: they concern the entire

history of transformations performed.

In practice, CertiPics represents the NYT and JCB policies as a set of credentials is-

sued by principals NYT and JCB , respectively. Here we use the generic principal A

(named by key KA) as a placeholder. We define an image i to be a validated source im-

age according to A if and only if Prin(i) → Srcs(A), where Srcs(A) is some designated

principal trusted by A. So to define the set of validated source images, A might issue a

credential conveying NAL formula

KA says Imgs(M)→ Srcs(A). (3.21)

We take Srcs(A) to be KA.srcs so that (3.21) derives Imgs(M) → Srcs(A). Together

with suitable instances of credentials (3.19) and (3.20), we obtain that Prin(i) → Srcs(A)

holds—meaning that i is a validated source image according to A—for each image i pro-

duced by a camera C manufactured by M .

Consider some process P that instantiates an image transformation xform and pro-

duces an output image i. CertiPics characterizes such a transformation by its input pa-

rameters, which comprise input images j1, . . . , jn along with additional (e.g., string or

integer) parameters p1, . . . , pm. The derivation of i is described by a credential conveying

the NAL formula

P says Prin(i) = xform(Prin(j1), . . . ,Prin(jn), p1, . . . , pm). (3.22)

In CertiPics , one instance of this credential is associated with each derived image i.

Each instance of (3.22) concerns information local to one step in a series of image trans-

formations. So in addition to identifying each image i with a principal Prin(i), CertiPics
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identifies a pair 〈i, h〉with a principal Printag(〈i, h〉), where i is a derived image and h is a

tag that itemizes the relevant history of image i. Depending on the image integrity policy,

h could be simply a list of (parameterized) descriptions of each transformation that has

been applied, or h might have to be a tree of such descriptions.

We say that h is a valid tag for i if and only if

(i) h accurately describes the derivation of i from some set of source images, and

(ii) those source images are validated source images.

CertiPics formalizes this by defining h to be a valid tag for i, according to A, if and only if

Printag(〈i, h〉)→ Tagged(A) (3.23)

holds, where Tagged(A) is some designated principal trusted by A. We take Tagged(A)

to be KA.tagged to allow A to create such delegations (hence, to define which tags are

valid for an image). And we define Printag(〈i, h〉) to be H(Prin(i)||h), or equivalently,

H(H(i)||h), the SHA1 hash of the image (itself represented by a SHA1 hash) concatenated

with a canonical encoding the associated tag.10

The empty set is, by definition, a valid tag for a validated source image. Thus A issues

a credential:

KA says (∀i : (i→ Srcs(A)) ⇒ (sha1(i||∅)→ Tagged(A))). (3.24)

This credential represents the base case of an inductive definition. The inductive step is

10We could alternatively define Printag(〈i, h〉) to be H(〈i, h〉) to avoid nested applications of SHA1, but
that would be slightly less convenient for the formalization we describe below.
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represented by a second credential:

KA says (∀i, h, j1, h1, . . . , jn, hn, p1, . . . , pm :

(i = xform(j1, . . . , jn, p1, . . . , pm) ∧

h = tag(xformname, h1, . . . , hn, p1, . . . , pm)) ⇒

(sha1(i||h)→ sha1(j1||h1) ∨ . . . ∨ sha1(i||h)→ sha1(jn||hn)))

(3.25)

for each transformation relevant to the image integrity policy to be enforced. Here, tag(·)

is a policy-specific function that constructs a new tag h given the name xformname of an

image transformation, the tag h1, . . . , hn for each input image, and the transformation’s

additional parameters p1, . . . , pm.

Note that we use disjunction, rather than conjunction, in the consequent of the impli-

cation in (3.25). This is because instances of (3.25) are ultimately used to derive (3.23) for

an image i and its tag h . With conjunction, if the antecedent of the implication in (3.25)

is satisfied, then from the consequent we would obtain Printag(〈i, h〉) ⇒ Printag(〈j1, h1〉),

meaning that if h1 is a valid tag for input image j1, then so too would h be a valid tag

for i regardless of whether tags h2, . . . , hn are valid for input images j2, . . . jn. This would

not provide the desired semantics: with conjunction we would be able to derive (3.23)

for an image i and its tag h so long as any input image had a valid tag. With disjunction

in the consequent, (3.25) derives Printag(〈i, h〉) ⇒ Tagged(A) only if Printag(〈jk, hk〉) →

Tagged(A) holds for every input image jk and associated tag hk.

Some trust assumptions are required for credential (3.22), issued by P , to be useful in

combination with credential (3.25), issued by A. In particular, part of an image integrity

policy is a definition of which processes are trusted to instantiate each image transforma-

tion. Thus A might issue a credential conveying NAL formula

KA says P
i,j,x,y : i=scale(j,x,y)−−−−−−−−−−−→ KA (3.26)

to designate process P as trusted on the scale(·, ·, ·) image transformation, which pro-
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duces an image i given one input image j and two integer parameters x and y.

Given the above definitions, we can now define which derived images have integrity:

derived input image i has integrity according to A if and only h is a valid tag for i and h

satisfies some predicate custodyPol(h) representing policy-specific chain-of-custody con-

straints. Thus we have a credential:

KA says (∀i, h :

((sha1(i||h)→ Tagged(A)) ∧ custodyPol(h)) ⇒ (i→ Imgs(A)))

(3.27)

Thus a complete image integrity policy in CertiPics comprises the following elements.

• Instances of credential (3.21) to define the set of valid source images.

• A definition for the tag(·) function used in instances of (3.25) to construct tags for

derived images.

• Instances of credential (3.26) to define which processes are trusted to implement

image transforms.

• A definition for the custodyPol(·) predicate used in (3.27) to represent chain-of-

custody constraints.

Notice, CertiPics relies both on synthetic bases (for chain-of-custody constraints) and ax-

iomatic bases (for validated source images) for authorizing the display of a derived image.

3.3.3 Implementation Details

CertiPics comprises a set of image transformation programs, an image viewer CPview ,

and a set of domain-specific proof generators for image integrity policies.

• Each image transformation program runs on α-Nexus. When executed, the program

issues credentials conveying (3.22) to describe the transformation. In our prototype,

all such credentials are stored in a credential database to facilitate the construction of
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proofs that involve credentials from multiple images. Also stored in the credential

database are credentials issued by α-Nexus about the processes (and kernel and

hardware) that execute CertiPics image transformation programs.

• CPview implements a guard to authorize display requests from images. CPview

is configured with an image integrity policy, but CPview does not create proofs.

Instead, CPview invokes an external domain-specific proof generator to obtain a

proof for each display request, and the guard in CPview invokes the NAL guard

library to check that the returned proof is correct and discharges (3.16).

• We implemented domain-specific proof generators, including one for a more com-

plete variant of the NYT policy (Figure 3.2) and one for the JCB policy (Figure 3.3).

Each proof generator is invoked with the SHA1 hash H(i) of the image to be dis-

played. The proof generator then accesses the credential database to obtain creden-

tials associated with i (or with images from which i purports to have been derived)

and credentials associated with the processes that performed the transformations

that derived i. The proof generators need not be trusted, because their output—

a proof—is checked by CPview . They can be executed wherever and whenever is

most convenient—at the time an image is published, just before viewing, or some

other time.

CertiPics was implemented in C, requiring 1274 lines of code for image transformation

programs, 1887 lines of code for CPview , and 1554 lines of code for domain-specific proof

generators. The image transformation programs additionally use the libpng [123] image

parsing library, and CPview uses the NAL guard library.

Figure 3.4 shows a subset of the image transformation programs implemented by

CertiPics . The credentials issued by processes executing these programs can be inferred

from their signatures. For instance, a process P that executes the tile(j1, j2, b) program
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crop(j, p1, p2)—Image j cropped to the box given by points p1 and p2.

scale(j, x, y)—Image j scaled by a factor of x horizontally and y vertically.

balance(j,m, r, g, b)—Image j with colors balanced according to method m (a string)
and integer parameters r, g, and b.

tile(j1, j2, b)—Images j1 and j2 tiled with a border of b pixels.

overlay(j1, j2, p)—Image j1 overlaid on image j2 at point p.

redact(j, p1, p2)—Image j with the box given by points p1 and p2 redacted.

blur(j, p1, p2, b)—Image j with the box given by points p1 and p2 blurred by b
pixels.

caption(j, t, p)—Image j overlaid with caption text t at point p.

arrow(j, p1, p2)—Image j overlaid with an arrow from points p1 to p2.

Figure 3.4: A subset of CertiPics image transformation programs.

to produce image i will issue a credential conveying NAL formula

P says H(i) = tile(H(j1), H(j2), b),

where H(·) is a SHA1 hash.

The image transformation programs are agnostic about policy. In particular, the cre-

dentials they issue do not contain information about global image history, since CertiPics

encodes history for images in a policy-specific manner. Actually, we implemented most

of the transformation programs while working only with the NYT policy example, which

does not require any history. This gives us a small measure of confidence that CertiPics

is flexible enough to accommodate other image integrity policies or even other bases for

trust, since we then extended our work to accommodate the JCB policy example, which

does require global history.

In general, constructing proofs is hard. But, because each proof generator in CertiPics

need only work for a subset of image integrity policies, we can implement a straightfor-

ward and efficient proof construction strategy that takes advantage of domain-specific

knowledge about the structure of CertiPics credentials and proofs for that subset of poli-
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(1) Enumerate credentials conveying NAL formulas of the form

P says H(i) = xform(H(j1), . . . ,H(jn), p1, . . . , pm),

where H(i), H(j1), . . . , H(jn) are SHA1 hashes of images.

(2) For each such credential, check whether

P
H(i)=xform(H(j1),...,H(jn),p1,...,pm)−−−−−−−−−−−−−−−−−−−−−−→ KA

holds, where KA is either KNYT or KJCB as appropriate. If not, discard the
credential.

(3) Starting with the target image as the root, reconstruct image relationships by
constructing a tree having images as nodes, and with output images being the
parent of the input images from which they were derived, as evidenced by
credentials from step (2). The leaves of the resulting tree are taken to be source
images.

(4) Assign tags to images by traversing the resulting tree in depth-first order: leaf
nodes are assigned tag ∅; tags for parent nodes are constructed from the tags of
their children in accordance with the tag(·) function defined by the image
integrity policy.

(5) Check that custodyPol(h) holds, where h is the tag for the target image (i.e., at the
root of the tree).

(6) Check that H(j)→ KA.srcs holds for each source image j, where KA is either
KNYT or KJCB as appropriate.

Figure 3.5: Outline of CertiPics proof generator strategy for NYT and JCB when executed
for some target image.

cies. The proof generators we implemented for the NYT and JCB policies rely on a

graph search to build a tree11 of image transformations representing the derivation of a

given image. The structure of a proof for (3.16) largely mirrors this tree. We implemented

a backwards-chaining search strategy to analyze the credential database and generate

proofs (if they exist). A sketch of this strategy is shown in Figure 3.5.

The NYT policy (shown in Figure 3.2) is represented in CertiPics by a set of digitally

signed credentials. The principal NYT (named by key KNYT ) takes the place of the prin-

11Although is possible to derive a single image using many different sequences of transformations, this
is unlikely to occur often in practice. For simplicity of presentation, we assume each derived image has a
unique derivation from source images.

93



cipal A used in Sections 3.3.1 and 3.3.2. NYT issues a credential conveying (3.26) only for

the image transformation programs mentioned in the policy, i.e., crop(·, ·, ·), redact(·, ·, ·),

and caption(·, ·, ·), as follows.

KNYT says Gcrop
i, j, p1, p2: i=crop(j, p1, p2)−−−−−−−−−−−−−−→ KNYT

KNYT says Gredact
i, j, p1, p2: i=redact(j, p1, p2)−−−−−−−−−−−−−−−→ KNYT

KNYT says Gcaption
i, j, t, p : i=caption(j, t, p)−−−−−−−−−−−−−→ KNYT

Here, Gxform is a NAL group of processes trusted by KNYT to execute image transforma-

tion program xform. We take Gxform to be the NAL group

{|v : (∃k, p : certified hardware(k) ∧

k.pcrs(h).epoch(p) says pgm hash(v, hxform))|},

where hxform is the hash of a program manifest for the image transformation program

corresponding to xform. Thus the NYT policy allows CertiPics transformation programs

to execute on any trusted α-Nexus platform.

Two additional elements complete the NYT policy: a definition for the tag(·) function,

and a definition of the custodyPol(·) predicate. Since delegations were created only for ac-

ceptable image transformations (cropping, redacting, and adding captions) and the NYT

policy imposes no additional constraints on image derivations, we simply take tag(·) to

be ∅ and custodyPol(·) to be identically true.

The JCB policy is quite similar to the NYT policy, but using key KJCB and allowing

a wider set of image transformations. The JCB policy also uses a more involved tag(·)

function and custodyPol(·) predicate. Here, image integrity depends on history, so we take

h to be a tree of parameterized descriptions of transformations. In NAL, such a tree can

be represented by a nested list h = [xformname, h1, . . . , hn, p1, . . . , pm], where xformname

is the name of the transformation (a string), hk is the tag for the kth input image to that

transformation (a list), and pk is the kth non-image parameter for the transformation (an

94



integer, string, etc.). Thus, for the tile(·, ·, ·) image transformation, we use an instance

of (3.22) that conveys:

KJCB says (∀i, h, j1, j2, h1, h2, b :

(i = tile(j1, j2, b) ∧

h = ["tile", h1, hn, b]) ⇒

(sha1(i||h)→ sha1(j1||h1) ∨ sha1(i||h)→ sha1(j2||h2)))

(3.28)

Similar credentials conveying instances of (3.22) are issued by JCB for each other image

transformation. Together, these define the tag(·) function for JCB .

The custodyPol(h) predicate for JCB defines whether a series of image transformations

satisfies constraints implied by rules (2a)–(2d) of Figure 3.3. The predicate can be defined

inductively as follows.

KJCB says ∀h, h1, h2, b :

custodyPol(h) =



true if h = ∅

custodyPol(h1) if h = ["crop", h1, ·, ·]

custodyPol(h1) ∧ unscaled(h1) if h = ["scale", h1, ·, ·]

custodyPol(h1) ∧ unscaled(h1) if h = ["balance", h1, ·, ·, ·, ·]

custodyPol(h1) ∧ custodyPol(h2) if h = ["tile", h1, h2, b] ∧ b > 0

false otherwise

The first case corresponds to an empty sequence of image transformations, which satisfies

the JCB policy. The next four cases encode rules (2a)–(2d) of Figure 3.3, respectively. Two

of the cases—for scaling and color balancing—refer to unscaled(h), a predicate that holds

if and only if no scaling image transformations appear in h . It is defined inductively as
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follows.

KJCB says ∀h :

unscaled(h) =



true if h = ∅

unscaled(h1) if h = ["crop", h1, ·, ·]

false if h = ["scale", h1, ·, ·]

unscaled(h1) if h = ["balance", h1, ·, ·, ·, ·]

unscaled(h1) ∧ unscaled(h2) if h = ["tile", h1, h2, ·]

false otherwise
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CHAPTER 4

A MUTUAL-SUSPICION FILESYSTEM

We built the MSFS filesystem to gain insight into issues not addressed in designing and

implementing TruDocs , ConfDocs , and CertiPics . Is NAL and our underlying credentials-

based authorization approach compatible with security principles thought to engender

trustworthiness? Also of concern was whether using NAL leads to unacceptable perfor-

mance compared to more conventional approaches to authorization. We chose to study

a filesystem because the structure of conventional filesystems are well known and well

understood and because a trustworthy filesystem would be of great benefit to α-Nexus

applications.

MSFS instantiates the security principles discussed in Section 1.4—Mutual Suspicion,

Least Privilege, Complete Mediation, and Minimization of Trusted Computing Bases

(TCBs)—and it enforces the following discretionary access control policy using ACLs (see

access control lists, in Section 1.2.1).

MSFS DAC Policy:

• Every sequence of bytes stored by MSFS on disk has an owner.

• Every sequence of bytes stored by MSFS on disk has an ACL, specified by

the owner or by some principal acting on the owner’s behalf, where the

ACL names principals and gives either read or read/write privileges.

• A request to read or write disk data—whether on disk or in memory—

made on behalf of some principal is allowed to proceed only if the prin-

cipal and corresponding privilege appear on the ACL for that data.

MSFS is designed to enforce this policy while defending against an adversary that

launches software-based attacks on the filesystem. Our threat model includes users who

may or may not have legitimate access to the machine as well as processes that attempt

unauthorized access to filesystem data. But our threat model excludes hardware-based
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attacks; MSFS does not defend against adversaries with physical access to disks, memory,

processors, or other hardware.1

MSFS runs on α-Nexus, and MSFS relies on services provided by the α-Nexus kernel.

We assume that the kernel does not attempt unauthorized access to filesystem data and

is trustworthy in other respects. In particular, we assume:

(i) The currently-executing kernel code and configuration is trustworthy.

(ii) The adversary cannot modify the kernel’s code or configuration to cause it to be-

come untrustworthy.

(iii) The adversary cannot reboot the hardware with modified kernel code or configura-

tion that is untrustworthy.

These assumptions ensure that MSFS DAC Policy is not violated when α-Nexus is com-

posed with MSFS.

The design goals for α-Nexus were chosen specifically2 to discharge assumptions (i)–

(iii). Assumption (i) implies that there are no bugs in the kernel. This is a difficult standard

for any operating system to meet; achieving it is outside the scope of this dissertation.

To address assumption (ii), α-Nexus prohibits dynamic extensions or device driver code

from running within the kernel, and it prohibits changes to the kernel’s configuration

unless the resulting configuration is known to be safe. For an adversary without physical

access to violate assumption (iii) would require the adversary to modify kernel code or

configuration data stored within the MSFS filesystem.3 So assumption (iii) is reasonable if

assumptions (i) and (ii) hold and if the filesystem enforces a suitable authorization policy

for requests to modify such data. A straightforward approach, and one we adopt in MSFS,

1Many prior filesystems (e.g., [23,61,65,93]) do focus on defending against physical attacks, particularly
off-line attacks against stolen disks. Most such filesystems encrypt data stored on disks or make use of
cryptographic hashes to monitor data integrity; MSFS does not, but could.

2α-Nexus is written in C and was not intended to be a production system. Thus it is unlikely that
α-Nexus discharges assumptions (i)–(iii) with any significant degree of assurance.

3Another way an adversary without physical access could violate assumption (iii) is to modify the ma-
chine’s firmware. α-Nexus prohibits firmware modifications unless the modifications are first verified to
be safe.
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is to designate the α-Nexus kernel as the owner of this data and specify an ACL that

prohibits all write accesses.

A filesystem administrator principal is responsible for configuring an MSFS instance. In

conventional filesystems, the filesystem administrator owns the meta-data that specifies

the owner of every file and directory. So in conventional filesystems, the filesystem ad-

ministrator can change the owner and, by implication, can modify ACLs to gain access to

files and directories. Some conventional filesystem implementations even grant filesys-

tem administrators unrestricted access to all data stored on disks regardless of DAC poli-

cies.

In MSFS, filesystem administrators are governed by DAC just like ordinary users.

Filesystem administrators are allowed to configure the filesystem, but they do not own

user files or directories, nor do they own most of the filesystem meta-data stored on disks.

So they are not able to read or write user files or meta-data, nor are they able to change

owners or ACLs for user files.

Filesystem administrators in MSFS can reformat disks, so a filesystem administrator

can compromise the availability of MSFS user data. Such power seems necessary for a

filesystem administrator to manage the system.

To build MSFS, we might have just modified a conventional filesystem or made use of

a conventional operating system. That approach faced two challenges.

• In conventional filesystem implementations, the bulk of filesystem code executes in

supervisor mode within the operating system kernel. The behavior of such code is

largely unconstrained, so it would be difficult to enforce DAC on that code.

• Conventional operating systems grant system administrators, and all processes that

execute on their behalf, the power to circumvent DAC policies. We deemed that

unwisely liberal.

So we designed MSFS to execute outside of the operating system kernel. And because
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MSFS runs on α-Nexus, system administrators are prevented from modifying MSFS code

or circumventing MSFS DAC enforcement.

The rest of this chapter is organized as follows. In Section 4.1, we describe features

of α-Nexus on which MSFS depends. We provide a brief overview of heuristics for de-

composing the filesystem into components in Section 4.2. Section 4.3 details the design

and implementation of MSFS, with specific attention to how the security principles of

Section 1.4 are instantiated, including trade-offs that entailed. Section 4.5 evaluates the

performance impact of various security principles we instantiated in the design of MSFS.

We close with a discussion of related work on secure filesystems and security principles

for building trustworthy systems.

4.1 Use of the α-Nexus Operating System

Several key features of α-Nexus were particularly useful for MSFS.

• α-Nexus processes are isolated from each other by default, making Mutual Suspi-

cion the norm rather than the exception.

• Processes in α-Nexus interact with each other and with the kernel over channels

that have simple and straightforward semantics, chosen to support Complete Medi-

ation. For example, it is trivial in α-Nexus to implement a guard that mediates all in-

coming inter-process communication (IPC) messages to a process (see Sections 2.4.4

and 4.1.2 for details on α-Nexus IPC).

• NAL and credentials-based authorization supported by α-Nexus are useful for im-

plementing guards to instantiate Least Privilege.

• α-Nexus executes device drivers and various system services outside of the operat-

ing system kernel, enabling smaller TCBs.
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In this section, we briefly describe these features of α-Nexus and how they are used in

MSFS.

A notable feature of α-Nexus, discussed previously in Section 2.3.3, is the use of a

Trusted Platform Module (TPM) [137] secure co-processor as a hardware-protected root

of trust. α-Nexus relies on the attestation and secure storage facilities of the TPM to

protect the confidentiality and integrity of certain data. However, our MSFS prototype

does not depend on the presence of a TPM.4

We restrict our discussion in this chapter to a single installation of α-Nexus with a

kernel denoted by NAL principal name KCPU .pcrs(h).epoch(p), where KCPU is the pub-

lic key for the hardware TPM, h is replaced by the appropriate platform configuration

register values for the α-Nexus kernel code and configuration, and p varies across re-

boots. For simplicity of presentation, in this chapter we use Kernel as an abbreviation for

KCPU .pcrs(h).epoch(p). We also assume a designated user FSAdmin for the filesystem

administrator, along with an ordinary user Alice. As described in Section 2.3.3, these are

sub-principals of the α-Nexus Login service, and the following hold:

Kernel → FSAdmin

Kernel → Alice

4.1.1 Credentials-Based Authorization for MSFS

MSFS DAC is a generalization of traditional DAC implementations. Traditional filesys-

tems typically require a file’s owner to be a user and limit ACLs to enumerated sets of

users. By contrast, owners in MSFS need not be users—a set of processes can be an owner,

for example, where the processes are characterized by specifying public keys, hashes of

program manifests, or any other property that can be validated by mechanical analysis.
4If the threat model had included certain physical attacks and the filesystem were to encrypt data or

monitor data integrity using cryptographic hashes, as suggested previously, then these α-Nexus and TPM
facilities would provide a means for storing the necessary keys and hashes.
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1. Kernel says pgm hash(P, hpgm) Credential (4.2).

2. Kernel → FSAdmin By definition of FSAdmin (see Section 2.3.3).

3. (∀x :
(Kernel says x)⇒ (FSAdmin says x))

From step 2, using definition (2.6) of→.

4. FSAdmin says pgm hash(P, hpgm) Eliminating the implication with steps 1
and 3, using IMP-E (2.4) and substituting for x.

5. FSAdmin says
(∀v :
pgm hash(v, hpgm)⇒ (v→ FSAdmin))

Credential (4.3).

6. FSAdmin says (P → FSAdmin) By deduction on the beliefs of FSAdmin with
steps 4 and 5, using DEDUCE (2.5) and
IMP-E (2.4) and substituting for v .

7. P → FSAdmin From step 6, since principals are trusted on
their own delegations, using HAND-OFF (2.8).

8. (∀x : (P says x)⇒ (FSAdmin says x)) From step 7, using definition (2.6) of→.

9. P says format(disk , . . .) Credential (4.4).

10. FSAdmin says format(disk , . . .) Eliminating the implication with steps 8
and 9, using inference rule IMP-E (2.4) and
substituting for x.

Figure 4.1: A proof of authorization policy (4.1) for MSFS’s format method with three
credentials in evidence and justification provided for each step.

Moreover, MSFS enables any principal to define such groups, in contrast to traditional

DAC implementations that permit only system administrators to define groups. And be-

cause MSFS employs credentials-based authorization using NAL and NAL groups are

specified intensionally, the set of constituents of a group in MSFS can change over time or

in response to changes in system state. A NAL group appearing on an ACL, for example,

may use a characteristic predicate that refers to the system clock.

As an example of how NAL is used to express an authorization policy for MSFS, con-

sider the guard in MSFS’s API to format a disk. Only the filesystem administrator for

MSFS is allowed to format a disk. In NAL, this policy is encapsulated by the formula

FSAdmin says format(disk , . . .), (4.1)
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which must be discharged before a request to format a disk is allowed to proceed. Here,

disk is a NAL encoding of the MSFS name for the disk to be formatted. When a pro-

cess makes a request to invoke the filesystem’s format method, a guard at the filesystem

authorizes the request only if NAL formula (4.1) can be proved from accompanying cre-

dentials. Suppose that process P is making a request to format the disk, and P has a

credential from the α-Nexus kernel attesting to the hash hpgm of P ’s program manifest:

Kernel says pgm hash(P, hpgm). (4.2)

And suppose further that FSAdmin issues a credential conveying the NAL formula

FSAdmin says (∀v : pgm hash(v, hpgm)⇒ (v→ FSAdmin)). (4.3)

This credential attributes to the filesystem administrator the assertion that any principal

v—likely a process running on α-Nexus—whose manifest has hash hpgm speaks for the

filesystem administrator. Then, for the request from process P , three pieces of evidence

might be used by the guard:

• credential (4.2) from α-Nexus attesting to the hash of P ’s program manifest;

• credential (4.3) from the filesystem administrator;

• and P ’s request itself, which is represented by NAL formula

P says format(disk , . . .). (4.4)

Figure 4.1 shows a complete proof of authorization policy (4.1) given the above evidence.

The filesystem guard would therefore authorize P ’s request to invoke format for the spec-

ified disk.
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Use of α-Nexus Alias Tables for MSFS

Many authorization policies in MSFS share a similar structure: the requesting principal

must prove that it speaks for one of a set of prespecified principals, such as the filesystem

administrator, the owner of some object, or a principal found on an ACL. Guards in MSFS

are specialized for these cases, and MSFS leverages this specialization to amortize the

cost incurred by guards for checking NAL proofs. α-Nexus alias tables, described in

Section 2.4.4, are used for this purpose. Here, we provide details on how MSFS uses alias

tables.

Consider process P from the example above, which is allowed to invoke format if

P → FSAdmin holds. The MSFS guard enforcing this policy simply checks if the IPC

message conveying the format request was augmented by the kernel with the NAL prin-

cipal FSAdmin. Thus, a process that invokes format must add FSAdmin as an entry in

its alias table, and P must subsequently specify the index of that alias table entry when

sending IPC messages to the filesystem.

MSFS makes similar use of alias tables when checking ACLs. For example, MSFS

authorizes a request to read a file f only if the following NAL formula holds:

owner(f) says read(f), (4.5)

where owner(f) denotes the principal that owns f . Suppose Alice configures an ACL

to grant user U read-only access to a file f that Alice owns. In NAL, that ACL entry

represents a restricted delegation:

U
read(f)−−−−→ Alice. (4.6)

If a process P executes on behalf of U , then P → U holds. Together with (4.6), we

derive P
read(f)−−−−→ Alice. And from P ’s request to read f , represented by NAL formula

P says read(f), we can then obtain (4.5), substituting Alice for owner(f). So MSFS should
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authorize P ’s request to read Alice’s file f . As with the format method, the MSFS guard

for the read operation simply checks if the IPC message conveying the read request was

augmented by the kernel with the NAL principal U . Process P must add U as an entry

in its alias table and then specify the index of that alias table entry when sending IPC

messages to the filesystem.

NAL Groups for MSFS

In the previous example, FSAdmin places full trust in any process satisfying the criteria

encoded in (4.3), a credential issued by FSAdmin. Similarly, P → U represents full trust

between user U and a process P executing on behalf of U . With NAL, there are several

possible approaches if full trust is inappropriate. For example, consider P
read(f)−−−−→ Alice,

where P is any process whose program manifest has hash hpgm .

• Alice could place the name of each such process P on the ACL for f with read-

only privileges. But this is cumbersome: P ’s name includes a process ID that is not

predictable before P executes, and the name changes at reboot.

• Alice could publish a credential similar to (4.3) but using NAL’s restricted speaks-for

operator:

Alice says (∀v : pgm hash(v, hpgm)⇒ (v
read(f)−−−−→ Alice)).

But α-Nexus alias tables are no longer useful, because alias tables do not directly

support a restricted delegation like P
read(f)−−−−→ Alice: P ’s alias table lists only princi-

pals A for which P → A.5

5Two considerations informed this aspect of the design of α-Nexus alias tables. First, a restricted dele-
gation can be quite narrow in scope: presumably, P would use a restricted delegation in which the term
read(f) appears only when sending to the filesystem an IPC message that encodes a read request for file
f . The alias table was intended to instead cache only widely useful sub-proofs, such as those that might be
used by P in requests to many different services. And second, the kernel does not interpret the contents
of IPC messages. Indeed, encoding rules for IPC vary by application, and only the sender and recipient
need to know how messages are encoded. Thus the kernel is not in a position to determine if a particular
restricted delegation is suitable for use with a given IPC message. These considerations were revisited dur-
ing the design of subsequent versions of the operating system, resulting in the previously mentioned—see
footnote 19 of Chapter 2—Nexus decision cache as a replacement for α-Nexus alias tables.
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We therefore rejected these approaches. Instead, MSFS achieves the desired effect by

using NAL groups.

Consider the NAL group

{|v : (∃p : KCPU .pcrs(h).epoch(p) says pgm hash(v, hpgm))|},

the constituents of which are processes whose program manifests, according to some in-

stance of the kernel, have hash hpgm . Recall, this principal name is stable across reboots

because it is independent of the process IDs chosen by the kernel at run-time. So this

group is suitable as a principal for use on an ACL. For instance, if Alice places this group

on the ACL for file f with read-only privileges, then Alice has granted to the group’s con-

stituents privileges to read f . The filesystem guard enforcing that ACL would allow P ’s

request to read f to proceed if it can be proved that P is a constituent of that group:

P → {|v : (∃p : KCPU .pcrs(h).epoch(p) says pgm hash(v, hpgm))|}. (4.7)

Moreover, the cost of checking a proof of (4.7) can be amortized over multiple accesses,

because {|v : (∃p : KCPU .pcrs(h).epoch(p) says pgm hash(v, hpgm))|} can now be added to

P ’s alias table.

4.1.2 α-Nexus Shared Memory and IPC Channels

MSFS relies on two kinds of α-Nexus channels for processes to communicate and synchro-

nize with each other: shared memory regions and IPC channels. These are named using

opaque numeric identifiers, chosen at the time the region or channel is created. α-Nexus

provides mechanisms to restrict which processes can read and write shared memory re-

gions and which processes can send and receive messages over IPC channels.

α-Nexus implements DAC for shared memory regions. Each shared memory region is

owned by the process that created it, and that process controls read and write access to the
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region by specifying an ACL that contains NAL principal names for read or read/write

privileges. A process invokes the shm read and shm write system calls to read or write

data in a shared memory region. Also, a process can invoke the shm map system call

to create virtual memory mappings for the underlying memory—thereafter, the process

can access that data directly, without kernel intervention. The shm read, shm write, and

shm map system calls take a parameter i, specifying an index into the requester’s alias ta-

ble. And before performing any action in response to any of these system calls, a kernel

guard performs a lookup for entry i in the requester’s alias table and, if the lookup suc-

ceeds, checks if the resulting alias and access modes appear on the appropriate ACL. The

shm change acl system call allows the owner to modify the ACL for a shared memory

region. If an owner requests changes to an ACL, then the kernel examines existing virtual

memory mappings for all processes and deletes those found to be inconsistent with the

new ACL. The kernel’s shared memory guard is kept deliberately simple, because it is in

the TCB for all security goals.

IPC channels in α-Nexus have a single recipient and many senders. A process that

creates an IPC channel is the owner of that channel. Two types of messages are supported:

IPC requests and IPC responses. The owner is the only process allowed to receive IPC

requests, which it does by invoking the ipc recv system call, or to send IPC responses,

which it does by invoking the ipc reply system call. The kernel implements a guard that

allows the channel owner, for each IPC request from some process, to send at most one

IPC response. Any process is allowed to invoke the ipc send system call to send an IPC

request over a channel and await the corresponding IPC response.6

Two processes participate in every IPC request-response exchange. Complete Medi-

ation for IPC requests and IPC responses is achieved by implementing guards within

6In addition to the synchronous request-response semantics described here, IPC channels in α-Nexus
also support an asynchronous semantics. Here, the sender of an IPC request is not blocked awaiting an IPC
response, nor is the channel owner provided the means to send an IPC response. MSFS uses asynchronous
semantics whenever possible, because the implementation exhibits better performance.
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these processes. A channel owner runs a guard to authorize IPC requests arriving over

the channel; other processes run guards to authorize IPC responses. To implement these

guards, processes need a reliable way to attribute IPC requests and IPC responses to the

principals that sent them. As described in Section 2.4.4, IPC channels in α-Nexus are au-

thenticated channels: a process P that invokes ipc send or ipc reply specifies an index i

into its alias table, and the kernel augments the message with the specified alias Ai after

checking that the alias table contains a correct proof of P → Ai. In MSFS, the recipient’s

guard simply examines the principal name accompanying each IPC message; it is the

sender’s responsibility to ensure the alias that was selected satisfies the recipient’s guard.

4.1.3 α-Nexus Device I/O Privileges

Device drivers in α-Nexus run as processes above the kernel. Each physical I/O device

is associated with a device driver process. The process and device interact using a set

of (unique) I/O addresses associated with the device; device drivers are not allowed to

access other I/O addresses. Device drivers request I/O to instigate direct memory ac-

cess (DMA) transfers between system memory and devices, but they are not allowed to

request I/O that causes DMA transfers to memory outside of the device driver process’s

virtual memory or to memory that is otherwise unsuitable for DMA transfers.7

Neither the kernel nor other processes place full trust in device driver processes. The

kernel implements a guard, called the device driver reference monitor (DDRM) [146], that

tracks relevant system state (and history) in order to distinguish between safe and unsafe

I/O operations. Whether a particular I/O operation is permitted by the guard depends

on system state including, for example, current DMA-compatible memory allocations, the

history of I/O operations previously requested, and the identity and state of the device

to which the I/O is addressed.
7Memory pages used in DMA transfers must be properly aligned, have virtual memory paging disabled

(i.e., “pinning” the pages in memory), and be physically contiguous with low physical addresses.
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Complete Mediation requires that the DDRM be invoked for every I/O request. To

implement this, a device driver process makes system calls to request that the kernel

execute I/O instructions on the process’s behalf; α-Nexus disables native hardware I/O

instructions for all processes. The α-Nexus kernel invokes the DDRM before performing

any action in response to a device driver process’s I/O-related system calls. In order that

the DDRM can accurately check whether a requested I/O operation is safe, the kernel also

notifies the DDRM of relevant changes to system state, such as when DMA-compatible

memory is allocated or deallocated.

The DDRM is an example of Mutual Suspicion using an external guard—a guard that

is implemented not by the intended recipient of requests (i.e., the hardware device) nor

by the channel that conveys requests (i.e., the device I/O mechanism), but by some other

principal. Using an external guard increases the costs associated with enforcing a policy.

In this case, I/O operations incur extra latency by involving the kernel instead of being

executed directly by the device driver process. Using an external guard was necessary

here because the recipient, a physical device, does not implement a guard and can’t be

easily modified to do so.8

4.2 System Decomposition

How one instantiates Mutual Suspicion, Least Privilege, and Minimization of TCBs de-

pends on how the system is decomposed into components, because this defines the unit of

compromise and the granularity of privileges. There is often considerable flexibility about

how to decompose a system into components. We should prefer small, fine-grained com-

ponents since they offer more opportunities to instantiate Mutual Suspicion, Least Privi-

lege and Minimization of Trusted Computing Bases. If the filesystem were implemented

as a single large component, for example, then the entire filesystem would be in the TCB
8Some hardware platforms include support for enforcing policies in hardware similar to those enforced

by the DDRM. These platforms partially obviate the need for the DDRM.
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for all security goals. If, instead, the filesystem were decomposed into small components,

each with only a small amount of state and code, then each component could conceiv-

ably be granted only a relatively small set of privileges. Some components might even be

excluded from some of the TCBs.

Granularity of a decomposition affects performance, however. A run-time cost is as-

sociated with supporting isolation for a component, so with many finer-grained compo-

nents the total costs for implementing isolation will be larger. System performance can

also suffer due to overhead for supporting interaction between components. This over-

head includes the cost of provisioning channels, the extra cost to communicate over such

channels as compared to using shared memory, and the costs incurred by mechanisms

for Complete Mediation and Mutual Suspicion concerning messages sent over channels.

All things equal, a filesystem decomposed into fine-grained components ought to exhibit

worse performance than one decomposed into coarse-grained components.

MSFS was decomposed into fine-grained components according to the following three

heuristics.

• Domain decomposition [53]: Define a component for each cohesive subset of the sys-

tem state, and include in the component all code necessary for managing and ma-

nipulating that state. In a filesystem, for example, a file descriptor table containing

information about open file handles might be assigned to one component, while a

partition table describing the disk layout is assigned to another component. If secu-

rity goals concern only a portion of the system state (e.g., file descriptors or partition

tables), then this decomposition helps minimize TCB size by isolating sensitive data

and its associated code from unrelated parts of the system. However, a single task

that spans much of the system state now involves interactions between many com-

ponents.

• Functional decomposition [53]: Define a distinct component for each separate task.

Such a decomposition often results in components whose boundaries coincide with
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units of code. As with domain decomposition, functional decomposition helps min-

imize TCB size by isolating critical functionality from unrelated parts of the system.

However, functional decomposition can require replicating or sharing data, if tasks

being assigned to different components use the same data.

• Privilege separation [76, 114]: Decompose code into components according to privi-

leges, placing code requiring similar privileges in the same component and placing

code requiring different privileges in different components. This approach should

result in designs that allow many opportunities to instantiate Least Privilege. But

the approach presumes that privileges are defined before the system is decomposed.

These three heuristics can conflict. As an example, consider a data structure imple-

menting a list of pending disk transfers. This data structure would likely be manipulated

both by transfer-scheduling code and by disk driver code. Domain decomposition would

suggest placing both the transfer-scheduling code and disk driver code in a single compo-

nent, because they share state. But privilege separation would suggest decomposing this

code into two separate components, one for the scheduler and another for the disk driver,

because only the disk driver code requires privileges to perform disk I/O. In the end,

decomposition of a system into components requires taste and experience to understand

how best to resolve such conflicts.

4.3 Structure and Organization of MSFS

The basic design and some of the code for MSFS derive from the Linux filesystem [88].

MSFS is organized into three main layers, augmented by several modules for concerns

that cut across multiple layers. The layers and major modules are shown in Figure 4.2.

• A bottom layer comprises disk drivers. These manage DMA transfers between sys-

tem memory and disks. The disk drivers are based on the Linux libATA [58] driver

library.
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Figure 4.2: Structure of the MSFS filesystem.

• A middle layer comprises filesystem drivers, each implementing a standard file and

directory tree view of the data stored in one partition of the disk. We implemented

one filesystem driver for use in MSFS; it is an adaptation of an open source FAT32

filesystem driver [116].9

• A top layer creates a virtual filesystem (VFS). VFS presents a single file and direc-

tory namespace to clients, and it hides some details of filesystem drivers. The VFS

interface for clients includes a streams-oriented interface, in which a client invokes

read and write methods to access file contents, and an mmap-oriented interface, in

which file contents are mapped into a client’s virtual address space for subsequent

direct client access.

MSFS runs on standard Intel x86-compatible hardware with dual Serial ATA (SATA) disk

buses, each capable of controlling between one and four physical disks.

MSFS data is stored on disks in 4096-byte blocks; this size coincides with the memory

page size on our hardware. The kth block on the jth disk of disk bus b is uniquely identi-

fied by the tuple 〈b, j, k〉, called a block ID. Block 0 of each disk stores a partition table for

that disk. Each entry in the partition table defines a partition, specifying a type code and

a range of block numbers. The type code identifies a filesystem driver that manages the

9We chose the FAT32 format for ease of implementation. Other filesystem formats, such as EXT3 or
NTFS, would also be straightforward to deploy by adapting the available open source drivers.
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corresponding range of blocks (our prototype only supports one type code, FAT32, be-

cause it only implements that one filesystem driver). An MSFS disk-formatting module

writes block 0 once, during system installation, and the MSFS filesystem-loader module

reads block 0 during each reboot.

The owner and ACL for each block are stored on disk and, therefore, persist across

reboots. MSFS does not impose constraints on what principal names are used to specify

owners or ACL entries. Typical principals include users and NAL groups whose con-

stituents are processes or users. This authorization information is first written during

initial system installation, and MSFS flushes changes to disk whenever a block’s ACL is

modified or the block’s owner changes.

4.3.1 File Access Requests

Before describing MSFS design details, it is instructive to consider the high-level steps for

a client to access a file. Consider a client that invokes VFS to read an open file. A file read

request from the client specifies a file handle and a count of bytes to read.

1. Upon receiving the request, VFS looks up the specified file handle in a per-client

file descriptor table to obtain: that client’s current offset for reading and writ-

ing; and a unique ID for the file. The unique ID is a pair, comprising a reference

to the underlying filesystem driver for that file and an ID chosen by that filesystem

driver. VFS calculates the range of bytes requested, using the file offset and the spec-

ified count, then forwards a read request, with the calculated range of bytes and the

file’s unique ID, to the filesystem driver for the file.

2. A filesystem driver, upon receiving such a request, translates the file ID and byte

range into a set of block IDs. This computation can require access to meta-data on

the disk, or the meta-data might already be cached in memory. Once the block IDs

are computed, the filesystem driver checks if the requested blocks are cached. If not,
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the filesystem driver sends the block IDs in a data transfer request to the appropriate

disk driver.

3. A disk driver translates each such request into a series of I/O requests. A hard-

ware interrupt on completion of the transfer initiates a completion action at the disk

driver. The disk driver then notifies the filesystem driver where the data can be

found in the cache.

4. The filesystem driver sends a response to the VFS layer indicating where the data

can be found in the cache.

5. The VFS layer updates the current file offset in the client’s file descriptor table

then passes the data from the cache to the waiting client.

Clients communicate with VFS over an α-Nexus IPC channel, and VFS in turn uses

IPC to communicate with filesystem drivers. Filesystem drivers communicate with disk

drivers through a shared io request queue data structure that contains data transfer re-

quests to be serviced (asynchronously) by the disk driver. Filesystem drivers insert new

requests into this data structure, and they poll to check whether previously inserted re-

quests have completed. Requests are not always performed in first in, first out order be-

cause disk drivers re-order requests, combine overlapping requests, or aggregate requests

for nearby blocks.

4.3.2 Caching

To mask the high latency and low throughput of physical disks, MSFS caches disk blocks

in memory. An MSFS cache management module tracks the status of cached blocks, and

it monitors global memory usage and block access patterns. A cache replacement strategy

could be implemented by each filesystem driver, since filesystem drivers are well suited

to making predictions about future accesses to blocks. Or the cache replacement strategy
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could be implemented by the cache management module, which has more comprehen-

sive information about current and past cache usage across all filesystems. Our prototype

implements most of the cache replacement strategy in the cache management module,

but filesystem drivers provide hints about predicted future accesses.

MSFS avoids the expense of copying blocks when requests or responses move between

layers of the filesystem. Thus, messages within and between layers refer to the unique

copy of data stored in the block cache; all parts of the filesystem share access to the block

cache. Disk hardware also shares access to cached blocks, performing DMA transfers

directly between the block cache and a disk.

4.4 MSFS Implementation: Components and Privileges

Mutual Suspicion is supported if MSFS components are isolated from each other. Addi-

tionally, because the α-Nexus kernel is in the TCB for all security goals—it has access to all

system state, for example—Minimization of TCBs dictates that MSFS code not be located

in the kernel. So most MSFS components execute as separate processes above the kernel.

In some cases, we judged the higher performance costs associated with supporting pro-

cess isolation to outweigh its contribution to trustworthiness. One such case is discussed

in Section 4.4.8. There, more than one MSFS component is executed in a single process,

even though this means sacrificing some of the trustworthiness benefits. We examine the

performance impact of that design decision in Section 4.5.3. In another case, discussed

in Section 4.4.4, a small amount of MSFS code is situated within the kernel at the cost of

enlarging the TCB for all security goals. We did not evaluate the performance impact of

that design decision.

Certain MSFS components must be in the TCB for MSFS DAC Policy enforcement be-

cause they are responsible for protecting the integrity of the enforcement mechanisms for

this policy. Consistent with Minimization of TCBs, we endeavored to reduce the number
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Figure 4.3: Final implementation of the MSFS filesystem, showing major components and
some of the interfaces between components. Numbers refer to the sections of this chapter
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and size of such components. Execution of all other MSFS components is subject to the

enforcement mechanism. In particular, those components are prohibited from accessing

blocks (cached in memory or stored on disk) that contain the contents of user files, since

such blocks are owned by users and do not include MSFS components on their ACLs.

For blocks that store other information, Least Privilege dictates that an MSFS component

have access to the data only if its task requires such access. The owner of such a block is

the MSFS component that creates and manages the block’s data, and an MSFS component

is included on the ACL for such a block only if that component needs to access that data.

In fact, MSFS components rarely share access to block data, so most ACLs for these blocks

contain only a single entry, which grants the owner of the block full access.

Several modules in MSFS are implemented as independent components executing as

α-Nexus processes—an example of functional decomposition. These include: FSLoader ,

to execute the filesystem-loader module; DiskFormatter , to execute the disk-formatting

module; CacheMgr , to execute the block cache management module; and PolicyMgr , to

execute code for managing block owners and ACLs. Below, we describe some of these
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components in more detail, justify how the remainder of MSFS was partitioned into com-

ponents, and describe the privileges each MSFS component holds. Figure 4.3 provides

a guide for the discussion by illustrating the final structure we arrived at for the MSFS

implementation, including the major components of MSFS and some of the interfaces

between those components.

4.4.1 Cache Management Component

CacheMgr has overall responsibility for managing the block cache. For each page of mem-

ory allocated for the block cache, CacheMgr tracks: a block ID, a reference count, usage

statistics, and a page status flag. The page status flag can be either empty, for a page that is

allocated for a particular block but not yet filled with data, or filled, for a page that has

been filled with data for the appropriate block from disk. In the later case, CacheMgr also

implements a block status flag, which can be either dirty, for a page containing cached

block data that has been modified in memory and not yet flushed to disk, or clean, oth-

erwise.

Block and page status flags are used to ensure that clients and MSFS components do

not access pages in the block cache before those pages are filled with appropriate data.

The flags are also used to ensure that changes made to cached blocks are flushed to disk

before block cache memory pages are deallocated.

MSFS components and clients refer to cached blocks using block references. Block ref-

erences are passed as parameters when invoking the CacheMgr API, which includes in-

terfaces for incrementing and decrementing reference counts, reading or updating usage

statistics, and reading block and page status flags. Processes invoke these interfaces over

an IPC channel. But because efficient access to cached blocks is so critical to system perfor-

mance, MSFS stores the contents of cached blocks in α-Nexus shared memory regions. A

single ACL controls access to all blocks in a single shared memory region, so blocks with
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different owners or different ACLs are stored in different memory regions. For example,

a separate shared memory region is created for each file.

Block references are pairs comprising a shared memory region ID and a page offset

within the shared memory region. A process accesses the contents of a block by first

extracting the shared memory region ID from the block reference, then invoking interfaces

in the α-Nexus shared memory API. For mmap-oriented access, a process invokes the

shm map system call. For streams-oriented access, a process invokes shm read or shm write

system calls.10

When a process requests access to data in an α-Nexus shared memory region, the

requester provides the absolute offset and length of the desired data. Each MSFS com-

ponent that accesses cached blocks is responsible for calculating such offsets for its own

requests, so MSFS components invoke shared memory system calls directly when they

need to access data. Similarly, for a client that uses mmap-oriented access to files, the

client calculates the needed offsets and the client invokes shm map. But for a client that

uses streams-oriented access to files, VFS calculates offsets on behalf of the client; in this

case, VFS invokes shm read and shm write system calls, and VFS transfers data to or from

the client over an IPC channel.

MSFS employs a level of indirection—block references rather than block contents typi-

cally appear in messages between processes—and each process accesses and manipulates

blocks indirectly through system calls. This indirection improves performance by avoid-

ing copying. And the interposition of an API for accessing and manipulating blocks, in

effect, exposes only a limited set of operations (hence, privileges) compared to a design

in which block data is copied between processes and accessed directly by processes. For

example, CacheMgr holds privileges to initiate pre-fetching and eviction for blocks, but

CacheMgr does not hold privileges to read or write cached blocks. And a disk driver can’t

10MSFS use of α-Nexus shared memory regions is similar to a more traditional implementation’s use of
a kernel buffer cache or page pool.
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directly read or write blocks stored in the cache or on disk, even though it holds privi-

leges for initiating DMA transfers between the block cache and disks. Thus, our use of

indirection enables MSFS to better instantiate Least Privilege.

4.4.2 Policy Management Component

The MSFS PolicyMgr component manages policy meta-data, which includes the owner

and the ACL for each block stored in MSFS.11 For each installed disk, PolicyMgr main-

tains a policy table data structure to store policy meta-data for that disk. Each entry

in policy table encodes a range of block IDs, a NAL principal name for the owner of

those blocks, and an ACL enumerating NAL principal names and the privileges those

principals hold.

MSFS DAC Policy dictates that access to a block—whether stored in the block cache or

on disk—is allowed only if the requester appears on the appropriate ACL. Blocks stored

on disk can only be accessed using disk transfers, so MSFS prohibits disk transfers except

in certain limited situations, e.g., to flush a cached block to disk or to load a disk block

into the block cache. The mechanism for enforcing these restrictions is described in Sec-

tion 4.4.4. For blocks stored in the block cache, the shared memory guard that the α-Nexus

kernel provides is sufficient for enforcing MSFS DAC Policy; we need only configure each

shared memory region’s owner and ACL. PolicyMgr creates the shared memory regions

used for the block cache, hence the PolicyMgr process is the owner for these shared mem-

ory regions and, consequently, PolicyMgr can configure each shared memory region’s

ACL. PolicyMgr determines the contents of that ACL by reading policy table for the

blocks that are expected to be stored in the shared memory region. All those blocks must

have the same ACL, otherwise PolicyMgr refuses to create the shared memory region.

11Many filesystem drivers contain code to manage policy meta-data for the files and directories that
they manage. However, the FAT32 filesystem does not directly support DAC and makes no provision for
storing policy meta-data within a FAT32 partition, so such code was not present in the filesystem driver we
adapted.

119



The complete policy table is stored on the corresponding disk, so policy meta-data

persists across reboots. Portions of policy table are cached in memory and used when

PolicyMgr creates a shared memory region for the block cache. PolicyMgr uses the same

mechanisms to read or write policy meta-data on disk as used for all other disk accesses in

MSFS. So the cached policy table is actually stored in the block cache. This architecture

makes bootstrapping MSFS a bit tricky since, as previously described, MSFS prohibits

reading disk blocks except to load the block cache, but PolicyMgr must read policy table

when creating the shared memory regions that hold cached blocks. We resolve this cir-

cular dependency by storing policy table at a fixed, predetermined location on disk.

On reboot, PolicyMgr knows which disk blocks store policy table, so it creates a shared

memory region to cache those blocks along with an ACL that grants only itself access to

that shared memory region. PolicyMgr can then request the blocks storing policy table

be loaded from disk into the block cache, as needed, before creating additional shared

memory regions for other blocks.

Requests to change block ACLs. PolicyMgr implements an API for changing the ACL

associated with a range of block IDs. A process can invoke a change acls method over an

α-Nexus IPC channel, specifying the range of block IDs and how the ACLs should change,

e.g., modify the privileges in an existing ACL entry, add a new ACL entry, or delete an

existing ACL entry. In response to a change acls request, PolicyMgr updates the ACLs

in the cached copy of policy table in memory and flushes the changes to disk. If any

of the modified ACLs concern blocks in the block cache, then PolicyMgr also invokes the

kernel to update the kernel-maintained ACL associated with the shared memory region

for those cached blocks. Thus PolicyMgr ensures all copies of an ACL are consistent.

MSFS DAC Policy allows only a block’s owner—or some principal that speaks for

the block’s owner—to change an ACL. So PolicyMgr implements a guard to authorize

change acls requests. For each block ID d in the specified range, the policy enforced by
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the guard is represented by the NAL formula

owner(d) says change acls(d, . . .), (4.8)

where owner(d) is the NAL principal name for block d’s owner, as found in policy table.

A request from process P to change an ACL is represented as P says change acls(d, . . .).

The guard allows a change acls request to proceed only if P
change acls(d,...)−−−−−−−−−−→ owner(d) can

be derived, since (4.8) can then be derived from that. A process P invoking change acls

can augment that request with a proof of P
change acls(d,...)−−−−−−−−−−→ owner(d), and the guard in-

vokes NAL’s automated proof checker to check that proof.

Since each change owner request is conveyed over an α-Nexus IPC channel, PolicyMgr

can leverage α-Nexus alias tables to check the policy in cases where P → owner(d). Before

invoking change acls, P installs owner(d) in its alias table along with a proof of P →

owner(d); P then specifies an index for the resulting alias when sending IPC requests to

PolicyMgr . The PolicyMgr guard compares the NAL principal name that accompanies

each such IPC request against owner(d) for each block ID d in the specified range. If any

of these comparisons fail to match, then the change acls request is denied. For instance,

consider a client P , executing on behalf of user Alice, that makes a request to change the

ACL for the blocks storing the contents of a file owned by Alice. P first invokes the kernel

to add Alice to its alias table along with a proof of P → Alice. From this system call, P

obtains an index into its alias table. Subsequently, P specifies this index when invoking

the kernel to send a change acls request over an IPC channel to PolicyMgr . If the proof

of P → Alice is correct, then the kernel will attach Alice to the request and this will allow

the guard in PolicyMgr to derive (4.8).

Requests to change block owners. PolicyMgr ’s API includes methods for changing the

owner for a range of block IDs. In a traditional filesystem, the chown system call changes a

file’s owner, and typically only a filesystem administrator is allowed to invoke chown on a
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file. MSFS enforces DAC for the filesystem administrator and does not have the filesystem

administrator speak for all users or processes. So PolicyMgr implements a different policy

for changing a block’s owner, as follows. Before changing the owner of a block d to some

new NAL principal name A, a guard in PolicyMgr checks the policy represented by

(owner(d) says chown nominate(d,A)) ∧ (A says chown accept(d)), (4.9)

where owner(d) is the current owner of block d as found in policy table. Policy (4.9)

stipulates that the current owner and new owner both consent to the change in owner-

ship. Discharging (4.9) requires coordination between the current owner, owner(d), and

the proposed new owner, A. This coordination is done out of band.

Policy (4.9) can be discharged by obtaining two credentials, one for each conjunct. So

PolicyMgr implements two methods—chown nominate(d,A) and chown accept(d)—that

processes can invoke over an IPC channel.12 MSFS leverages the α-Nexus alias table for

processing these requests. The protocol for changing a block’s owner is as follows. First, a

process executing on behalf of the current owner adds owner(d) to its alias table and sends

an IPC chown nominate(d,A) request to PolicyMgr , specifying a block ID d and a proposed

new owner A. Upon receipt of this request, a guard checks that the NAL principal name

that accompanies the IPC request equals owner(d). If so, then the first conjunct of pol-

icy (4.9) is satisfied, and PolicyMgr records A in a temporary variable, nomination(d), for

later use. Subsequently, a process executing on behalf of the proposed new owner adds

A to its alias table and sends an IPC chown accept(d) request to PolicyMgr . Upon receipt

of this request, a guard checks that the NAL principal name that accompanies the IPC

request equals nomination(d). If so, both conjuncts of policy (4.9) have been discharged,

and PolicyMgr records nomination(d) as the block’s new owner in policy table, flushing

the change to disk. At most one instance of nomination(d) is stored for each block d, and

these variables are discarded on reboot.
12For simplicity of presentation, we showed these methods as accepting a single block ID d. In practice,

the methods accept ranges of blocks IDs.
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Complete mediation for policy meta-data. MSFS may store as many as three copies of

policy meta-data: (i) encoded in policy table on disk, (ii) encoded in a cached copy of

policy table, and (iii) in the ACLs for shared memory regions that form the block cache.

Copies (i) and (ii) are accessed using the same mechanisms as used for all other blocks, so

MSFS’s normal DAC enforcement mechanisms suffice for implementing Complete Me-

diation: MSFS assigns PolicyMgr to be the owner of blocks storing policy table, and

PolicyMgr specifies an ACL containing only itself for those blocks. Copy (iii) is stored

within the kernel, and the kernel’s shared memory guard only allows the owner of the

corresponding shared memory region to change it. And because PolicyMgr is the owner

of the shared memory regions that form the block cache, only PolicyMgr can directly

change copy (iii) of the policy meta-data. PolicyMgr only makes changes to any of the

copies in response to requests that its own guard has authorized, i.e., after checking pol-

icy (4.8) for a change acls request or checking policy (4.9) for a request to change a block’s

owner.

4.4.3 TCB for MSFS DAC Policy Enforcement

PolicyMgr and CacheMgr are both involved in managing cached blocks. We considered

incorporating all cache-related code into a single component, in order to reduce perfor-

mance costs. But we rejected that design after considering its impact on the TCB for MSFS

DAC Policy enforcement. Code for managing policy meta-data is in this TCB, but most

cache management code need not be. For example, code that implements block cache

prefetching does not need privileges to modify ACLs. Thus, the current MSFS decompo-

sition leads to a smaller, simpler TCB. We predicted that the performance costs of having

the two separate components would be acceptable, given the infrequency of block alloca-

tion. But we did not perform experiments to directly measure these costs.

Because PolicyMgr is in the TCB for MSFS DAC Policy enforcement, we included in
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PolicyMgr the remaining MSFS code necessary for enforcing DAC. PolicyMgr makes sure

cached blocks are flushed before they are deallocated, for example, and PolicyMgr ensures

that each block can be found at most once in the block cache to avoid cache aliasing issues.

The result is that, aside from the α-Nexus kernel, PolicyMgr (2267 lines of C code) is the

only MSFS component that is in the TCB for MSFS DAC Policy enforcement.

4.4.4 Disk Driver Components

MSFS uses a component DDb to execute disk driver code for each disk bus b. This decom-

position is an example of privilege separation, because components are being defined

based on security-relevant privileges they require—in this case, privileges to request I/O

for a given disk bus. We considered decomposing disk drivers into finer-grained compo-

nents by using a separate component for each disk rather than for each disk bus. But this

decomposition would require the DDRM to distinguish I/O requests on a per-disk basis,

and α-Nexus did not support that.13

DDb holds privileges for initiating DMA transfers between the block cache and disks

on bus b. MSFS DAC Policy implies that only certain transfers be allowed. A straightfor-

ward, but ultimately unsatisfactory, approach to restricting access to blocks on disk is to

include a guard in each disk driver DDb . This implements Complete Mediation, because

only DDb can request I/O operations for disk bus b. But this approach would also put

DDb in the TCB for MSFS DAC Policy enforcement, a bad idea given the size, complexity,

and (historically) high rate of bugs in device driver code [34].

The approach we instead implemented in MSFS was to extend the DDRM with checks

to enforce MSFS DAC Policy. This implements Complete Mediation, because all device

I/O requests are checked by the DDRM. The approach also helps to minimize TCBs, be-

cause the TCB for MSFS DAC Policy enforcement already includes the DDRM, and we

13Attributing I/O requests to specific disks introduces significant dependencies on the specific type of
disk controller hardware being used.
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now add only a small amount of code to the kernel (hence, to all TCBs).

In addition to the regular DDRM checks, for I/O operations that instigate a DMA

transfer between block having ID d and memory pagem, the DDRM also checks whether:

(i) page m is within some shared memory region r, owned by some process P ;

(ii) P speaks for PolicyMgr ;

(iii) page m stores, or is expected to store, block d;

(iv) if transferring to memory, then page m is empty; otherwise, if transferring from

memory, then page m is filled and dirty.

We modified α-Nexus shared memory code so that shared memory allocations for the

block cache satisfy hardware constraints for DMA transfers. And we modified the DDRM

to update the associated page status flag to filled (if it was not already) and the block

status flag to clean.

The DDRM implements (ii) by searching P ’s alias table for an entry encoding a NAL

principal name for PolicyMgr accompanied by a correct proof of P → PolicyMgr . If no

such alias table entry is found, then the DDRM denies the I/O request. For stability across

reboots, we define PolicyMgr to be the NAL principal name

{|v : (∃p : KCPU .pcrs(h).epoch(p) says pgm hash(v, hPolicyMgr))|},

where hPolicyMgr is the hash of a program manifest describing the MSFS code for PolicyMgr .

This definition allows the DDRM to ensure PolicyMgr owns the shared memory region,

even though the NAL name for the process P that executes PolicyMgr changes on each

α-Nexus reboot.

Checks (iii) and (iv), above, depend on meta-data associated with each page in the

block cache, including the page’s block ID, the page status flag (empty or filled), and the

block status flag (clean or dirty). We considered two implementations.
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• The meta-data could be stored in an MSFS component, requiring the kernel to access

some process’s memory whenever the kernel needs to access the meta-data.

• When PolicyMgr invokes the kernel to create a shared memory region, it specifies

the block IDs for each page (page status flags are always empty initially), and the

kernel stores and manages the meta-data thereafter.

We chose the later, because a component that manages the meta-data would become part

of the TCB for MSFS DAC Policy, whereas the kernel is already part of this TCB. Moreover,

the kernel code to manage the meta-data is actually simpler, so likely less error-prone,

than the code needed for the kernel to access meta-data that is stored and managed by

a process. Finally, the kernel accesses this meta-data more frequently than other compo-

nents, so it pays to locate the meta-data within the kernel.

4.4.5 Filesystem Driver Components

The filesystem driver layer manages file and directory meta-data for the filesystem stored

by each disk partition. A single component implementing all filesystem drivers would

have to hold privileges to access blocks in every disk partition, which is inconsistent with

Least Privilege. So we used privilege separation and decomposed this layer into multi-

ple components. In MSFS, each disk partition r has a separate component FSDr . FSDr

executes the filesystem driver code given by that partition’s type code, and FSDr is con-

figured with the range of block IDs that define that partition.

When a disk in MSFS is first formatted, the DiskFormatter component becomes owner

of all blocks on the disk. DiskFormatter creates a partition table and, for each partition r in

the partition table, invokes chown nominate to propose a new owner, FSDr , for the blocks

in that partition. FSDr then invokes chown accept to become owner of these blocks. For
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stability across reboots, the NAL principal name used for FSDr is a NAL group:

{|v : (∃p : KCPU .pcrs(h).epoch(p) says pgm hash(v, hFSDr ))|}.

As with PolicyMgr , the group definition includes a hash hFSDr computed over a program

manifest, where the program manifest describes the code being executed by FSDr . The

manifest here also includes the range of blocks IDs that define partition r, so that filesys-

tem driver components configured to manage different partitions will have different NAL

names, hence will hold different privileges, even if the components execute the same

filesystem driver code.

The top layer of the filesystem, VFS, employs an IPC channel to invoke FSDr for var-

ious file and directory operations. When a process P , executing on behalf of principal

A (e.g., a user), requests that a file be created or enlarged, FSDr invokes chown nominate

to propose that A become owner of blocks that will store contents of that file. Process P

then invokes chown accept to become owner of those blocks. These roles are interchanged

when a file is truncated or deleted. Once the owner of the file becomes the owner of blocks

storing the contents of the file, the α-Nexus shared memory guard and PolicyMgr enforce

DAC for those blocks. Thus FSDr is not in the TCB for MSFS DAC Policy enforcement.

Users and other principals own the contents of files, but FSDr owns other blocks in

partition r, including blocks that store directories. We could have further decomposed

MSFS. One alternative would be to employ separate components for directory manage-

ment. Or, using domain decomposition, we could have separated instances of directory

management code for different directories into different components. These alternative

architectures could allow users and other principals to own blocks storing directories,

thereby permitting FSDr to hold fewer privileges. The potential benefits of finer grained

components, however, are offset by the disadvantage of creating dependencies on the

particular filesystem format—FAT32—used in our prototype.
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4.4.6 VFS Components

The VFS layer manages state on behalf of filesystem clients. A collection of one VFSP

component for each client P comprise the layer. Client P invokes VFSP to perform vari-

ous file and directory operations, and VFSP implements a guard to ensure requests only

from P are performed.

Client P always executes on behalf of some principal A, a user or a group of users,

and P relies on this delegation when accessing the filesystem. In MSFS, the trust A places

in client P is, by default, specified by the NAL formula P → A. So P adds A to its alias

table, along with a proof of P → A. Client P also issues a credential that conveys NAL

formula P says (VFSP → P ), from which VFSP → P follows. Together with P → A, this

implies VFSP → A, because → is transitive. Thus VFSP can also use A as an alias and

make request to filesystem drivers and to α-Nexus shared memory regions on behalf of

A.

If client P uses an mmap-oriented interface to access files, then P must invoke the

shm map system call directly, rather than having VFSP make the request on its behalf.

This is necessary on α-Nexus, because the kernel creates the virtual memory mappings in

whichever process invoked the system call. In this case, P uses alias A to satisfy the ker-

nel’s shared memory guard, since A is presumably on the ACL for the blocks in question.

Using a separate VFSP component for each client P helps reduce the TCB size for

any security goal a client might have. For instance, if VFSP becomes compromised, then

security goals relating to client P may be violated (recall that VFSP → P means that P

has placed full trust in VFSP ). But some other client P ′ need not have placed any trust in

VFSP , so P ′ need not be affected by the compromise of VFSP . Were the VFS layer a single

component, then a compromised VFS layer could cause security goals to be violated for

all clients that use MSFS.

VFSP is responsible for specifying the identity of A to other components—by adding
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alias A to its alias table and by selecting that alias when sending IPC requests—yet VFSP

need not be trusted by the recipients of these requests, because the kernel checks that

P → A holds during each IPC system call. So absent a proof of VFSP → A′, for some

other principal A′, VFSP can’t substitute a bogus identity A′ when making requests, even

if VFSP is compromised. By contrast, were the entire VFS layer a single component, VFS

would need to be trusted to chose the right identity from among many valid alias table

entries when making a request on behalf of a client.

In our MSFS implementation, P places full trust in VFSP . Least Privilege would favor

a design in which a client P does not place full trust in VFSP , but instead grants P only

enough privileges to perform its task. These privileges would include only privileges to

make requests to various MSFS components and α-Nexus shared memory regions on be-

half of P . There are several ways to accomplish this in NAL, but we found it unnecessary

to implement these restrictions in light of optimizations described in Section 4.4.8.

4.4.7 Data Replication in MSFS

In our decomposition of MSFS into components, certain data is used by multiple com-

ponents. The VFS components share a mount table data structure containing informa-

tion about each mounted filesystem. And filesystem driver and disk driver components

share io request queue data structures. A straightforward implementation would use

α-Nexus shared memory to store these shared data structures. But this restricts autho-

rization to only two types of privileges—read or read/write—and these privileges are

enforced at a relatively coarse granularity—4KB memory pages. Least Privilege would

favor a design where MSFS components hold fewer and more fine-grained privileges. For

example, while VFS components executing on behalf of the administrator can create or

delete entries in mount table, other VFS components only read the entries and increment

or decrement various reference counts. Similarly, only filesystem drivers insert entries
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into an io request queue, and only disk drivers mark those entries as completed.

We avoid the limitations concerned with authorizing access to a common data struc-

ture by replicating information across different data structures. Different privileges are

then associated with the different replicas. MSFS employs this approach, using α-Nexus

IPC channels to keep the replicas synchronized. For mount table and io request queue

data structures, straightforward coherence protocols suffice to accommodate the differ-

ent privileges held by the components that need access. The performance cost of this

approach to Least Privilege is the overhead for implementing a coherence protocol for

the replicas.

4.4.8 MSFS Implementation Optimizations

In building MSFS, we explored a few techniques that improve performance without sac-

rificing many benefits to system trustworthiness that Mutual Suspicion brings. The op-

timizations we consider admit slightly less aggressive instantiation of security principles

in return for large gains in performance.

Shortening Communication Paths

We can sometimes gain efficiency without much changing the privileges each component

must hold and without enlarging TCBs much. For example, consider the steps involved

in handling client P ’s request to access a cached file.

1. P sends a request to VFSP .

2. VFSP calculates the current file offset and sends a request to FSDr .

3. FSDr calculates a block reference for the cached data and responds to VFSP .

4. VFSP accesses the block by invoking the α-Nexus shared memory API with the

shared memory region ID contained in the block reference, then responds to P .
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But P can easily perform the offset calculations done by VFSP in step 2. Moreover, the

identity of FSDr is known at the time a file is opened and is not secret from P . So we can

eliminate VFSP and use a different sequence of steps:

1’. P calculates the current file offset and sends a request to FSDr .

2’. FSDr calculates a block reference for the cached data and responds to P .

3’. P accesses the block by invoking the α-Nexus shared memory API with the shared

memory region ID contained in the block reference.

This optimization leads to fewer IPC messages during file accesses, at the cost of duplicat-

ing in the client some VFS functionality (i.e., maintaining the current file offset). However,

the new client code is not likely to change the TCB for client security goals, since the client

already places full trust in VFSP , which implements nearly identical code. Moreover, the

duplicate functionality is straightforward to implement in the client, so even a small gain

in performance justifies this optimization.

As a further optimization, we amortize the overhead of step 2’ when P makes multi-

ple accesses to the same file. When a file is first opened, P invokes FSDr to obtain a block

reference for the first block of the file, and P caches the shared memory region ID con-

tained within that block reference. During subsequent accesses to the same file, P uses

the previously cached shared memory region ID rather than contacting FSDr .

Notice, these optimizations do not give P additional privileges. It may seem that

P gains the ability to make arbitrary changes to the current file offset or to influence

the offset calculations, since these are now located within P . But in fact, P can already

completely determine the output of the offsets calculations done by VFSP—P need only

invoke the seek method. P can also already access shared memory regions, as it does for

mmap-oriented file access. Thus there is no way for P to violate MSFS DAC Policy. Even

if P were to perform incorrect offset calculations or access the wrong shared memory

region, the only consequence would be that P receives incorrect data or its request is
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rejected when it makes the system call to access the shared memory region.

Leveraging Fate Sharing

Fate sharing [158]—which occurs when failures are not independent—creates an oppor-

tunity to improve performance without sacrificing security. In particular, if components

place full trust in each other, then isolating them from each other contributes nothing to

security. By merging these components, we eliminate overhead. One simple example in

MSFS is the DDRM, which executes in the kernel rather than as a process outside of the

kernel. Even were they isolated from each other, the compromise of the kernel or of the

DDRM could lead to the compromise of the other. So isolating these components would

not increase trustworthiness.

We also leverage fate sharing by merging each client P with the corresponding MSFS

component VFSP . To achieve this, we incorporated VFS code into the standard C li-

brary used by α-Nexus programs—that change is transparent to application program-

mers. Eliminating the isolation boundary between P and VFSP allows IPC calls to be

replaced with more efficient local function calls. This optimization has two potential con-

sequences: P can now cause the compromise of VFSP ; and VFSP can now cause the

compromise of P . The former is not a concern in MSFS, because P holds at least as many

privileges as VFSP . We accept the later, because VFS code in MSFS is quite small and

simple, so it is unlikely to cause a compromise.

Relocating Guards

By changing how and when authorization checks are performed, we can change their per-

formance overhead. One approach is to amortize some or all of the work done for checks,

with a single check serving for multiple requests. A canonical example with filesystems

is when access control checks are only performed when a file is first opened, rather than
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for every access.

MSFS amortizes the cost of checks done for I/O requests that initiate DMA transfers.

Rather than have the kernel check whether the process that owns a shared memory region

speaks for PolicyMgr before each DMA transfer, the kernel performs this check only when

shared memory regions for the block cache are allocated. The use of the α-Nexus alias

table abstraction is also a form of amortization, because some of the proof checking done

by the kernel is performed when an alias table entry is created rather than each time it is

used.

4.5 Filesystem Evaluation

One way to quantify the consequences of various design decisions made in MSFS is by

calculating TCB sizes of various prototype implementations and comparing that to tradi-

tional filesystem implementations. A second way is to measure and compare the perfor-

mance of these systems. The results of both—detailed below—confirm that instantiating

security principles for MSFS using NAL and credentials-based authorization did not re-

sult in measurably worse performance.

4.5.1 TCB Contributions

With so many guards and the need for communication across isolation boundaries, one

might expect the MSFS code base to be larger than a monolithic kernel-mode filesys-

tem. So we counted the lines of code that implement MSFS along with the α-Nexus code

for system services closely related to supporting MSFS. These counts are shown in Fig-

ure 4.4 (a). Then, as a point of comparison, we examined two alternative designs, here

called UFS and KFS, that support the same filesystem interface but with different compo-

nents.
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MSFS Kernel-mode LOC
Shared memory 1900

DDRM 4658
MSFS User-mode LOC
User-mode driver lib. 49839

SATA disk driver 28216
FAT32 fs driver 7230

VFS layer 1915
Policy management 2267

Other filesystem code 4562
MSFS Total LOC 100587

(a)

UFS Kernel-mode LOC
Shared memory 1900

DDRM 4658
UFS User-mode LOC
User-mode driver lib. 49839

SATA disk driver 28029
FAT32 fs driver 6442

VFS layer 771
Policy management 1689

Other filesystem code 4081
UFS Total LOC 97409

(b)

KFS Kernel-mode LOC
Shared memory 1773

SATA disk driver 28029
FAT32 fs driver 6442

VFS layer 771
Policy management 1689

Other filesystem code 4081
KFS User-mode LOC

n/a 0

KFS Total LOC 42785

(c)

Figure 4.4: Lines of code (LOC) for MSFS (a) and two alternative designs, UFS (b) and
KFS (c). All filesystem code is counted. Some α-Nexus system services that are closely
related to supporting these filesystems is also counted. KFS counts are estimates.

• Figure 4.4 (b) shows code sizes for UFS, an implementation that places most filesys-

tem code in a single component executing as a process above the α-Nexus kernel.

We obtained the UFS implementation from our MSFS implementation by eliminat-

ing some guards and replacing most IPC-related code with equivalent code using

local function calls.

• Figure 4.4 (c) shows estimates for code sizes that would result from implementing

a traditional kernel-mode filesystem design, KFS. In this design, all filesystem code

executes within the α-Nexus kernel. We did not implement the KFS design, because

α-Nexus does not support executing disk drivers within the kernel.

As expected, Figure 4.4 shows that instantiation of security principles in MSFS leads to

increased total code size. This is seen in the 100587 total lines of code (LOC) for MSFS,

compared to 97409 LOC for UFS and 42785 LOC for KFS, designs that instantiate Least

Privilege and Mutual Suspicion less aggressively than MSFS.

Figure 4.4 likely exaggerates the impact on total code size that is caused by instanti-

ating security principles. First, we did not include counts for the large body of kernel

code common to all of the designs. If that code were included, then the relative LOC dif-

ferences would be much smaller. Second, the large increase in total code size above KFS
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α-Nexus Linux

MSFS UFS KFS FUSE FAT32
(mutual (monolithic (monolithic (mutual (monolithic (monolithic
suspicion) user-mode) kernel-mode) suspicion) user-mode) kernel-mode)

Contrib. to TCB for DAC 8825 97409 42785 - 78695 46801

Contrib. to TCB for isolation 6558 6558 42785 - 46609 46801

Figure 4.5: Lines of code (LOC) contributed by various filesystem designs to the TCB for
two security goals. For all designs, enforcing DAC also requires enforcing isolation. So
the TCB for DAC is a strict superset of the TCB for isolation. Counts for Linux do not
include disk driver code.

is due mostly to the user-mode driver library (49839 LOC). The SATA disk driver used

in MSFS and UFS requires this library, because the driver was originally programmed

against Linux’s kernel-mode driver API rather than against α-Nexus’s user-mode driver

API.14 Much of the user-mode driver library code (roughly 85%) provides a compatibility

layer that emulates Linux’s kernel-mode driver API, and that code would not be nec-

essary had we implemented a user-mode SATA disk driver for α-Nexus from scratch.

The remainder of the user-mode driver library code (roughly 15%) implements helper

routines for handling interrupts, I/O requests, and thread scheduling (e.g., locks and

mutexes).

If we exclude the entire user-mode driver library, then the LOC for UFS is 4785 lines

larger than for KFS. Most of this additional code for UFS is for the DDRM (4658 LOC),

which implements checking for I/O requests, interrupt handling, and other device driver

concerns. This code is present in MSFS as well. The LOC for MSFS is 3178 lines larger

than for UFS. The additional code implements guards that check requests between MSFS

components, code that is not needed for UFS.

If the larger size of MSFS made that system more vulnerable to compromise, compar-

ing performance with smaller-size systems would be pointless. We calculated the contri-

butions to the size of the TCB for MSFS, UFS, and KFS relative to each of two security

14For KFS, we assume the size of an kernel-mode driver for α-Nexus would be comparable to the kernel-
mode SATA disk driver for Linux.
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goals: enforcement of MSFS DAC Policy, and the integrity of kernel and process isolation

boundaries. We also made estimates for two filesystems running on Linux [88].

• Linux FUSE: A Linux user-mode implementation of the EXT2 filesystem based on

FUSE [133]. This system is a Linux analog to α-Nexus’s UFS design.

• Linux FAT32: The standard Linux implementation of the FAT32 filesystem using a

traditional kernel-mode design. This is the Linux analog to α-Nexus’s KFS design.

For Linux implementations, we calculated the contribution to the TCB for Linux’s DAC

policy, rather than for the MSFS DAC Policy. We include only code relating to the filesys-

tem and exclude the bulk of the kernel code base. We also excluded Linux disk driver

code—Linux supports many such drivers, but they always execute within the Linux ker-

nel. We thereby highlight the impact of different filesystem designs on the relative sizes

of TCBs.

Figure 4.5 shows the results. Although from Figure 4.4 (a) we see that MSFS has the

largest code base of the three α-Nexus designs (MSFS, UFS, KFS), Figure 4.5 shows that

MSFS adds the least amount of code to TCBs. Only 6558 LOC for MSFS—about 7% of the

MSFS code base—is in the TCB for integrity of the kernel or of other processes executing

above the kernel, and only 8825 lines of MSFS code are part of the TCB for enforcing MSFS

DAC Policy. KFS has the least amount of code (42785 LOC, from Figure 4.4 (c)) among

the α-Nexus designs, but by situating all of this code within the kernel, KFS achieves

only a moderately sized TCB for both security goals, as shown in Figure 4.5. UFS rep-

resents a partial instantiation of the security principles that drive the design of MSFS.

And UFS achieves a smaller TCB than KFS for kernel and process isolation (6558 LOC

and 42785 LOC, respectively, from Figure 4.5), but UFS requires a large amount of code—

97409 lines—in the TCB for MSFS DAC Policy enforcement versus 42785 LOC for KFS.

The TCB contributions shown in Figure 4.5 for the three α-Nexus designs indicate

that pervasively instantiating security principles can reduce TCB size in comparison to a
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traditional kernel-mode design or a design that only partially instantiates security princi-

ples. Although we do not have a Linux filesystem analog to MSFS, the TCB contributions

shown in Figure 4.5 for the two Linux implementations are consistent with this conclu-

sion. Linux FUSE—an analog of UFS—has a smaller TCB for kernel and process isolation

than Linux FAT32—an analog of KFS—though only slightly (46609 LOC and 46801 LOC,

respectively, from Figure 4.5). And for DAC enforcement, Linux FUSE requires a large

amount of code—78695 lines—in the TCB versus 46801 LOC for Linux FAT32.15

One might be concerned about our choice of FAT32 as the basis for MSFS. Would a

more modern filesystem format like EXT3 change our conclusions, because FAT32 is sub-

stantially simpler than EXT3? The same concern arises when comparing Linux FUSE

(which implements EXT2, the predecessor to EXT3) and Linux FAT32. So we measured

the Linux EXT3 code base which, like Linux FAT32, follows a traditional kernel-mode

design. We found that it contributes 53654 LOC to each TCB. This is indeed more than

the 46801 LOC contributed by Linux FAT32. But this only means our use of FAT32 likely

causes the α-Nexus results in Figure 4.5 to understate the case for design driven by Mu-

tual Suspicion. If we replaced MSFS’s FAT32 implementation with EXT3, the code base

of MSFS would likely be even larger than it currently is, and the TCBs for UFS and KFS

would also be larger. But MSFS would achieve the same small TCBs, since none of the

code in MSFS TCBs depends on the choice of filesystem format.

4.5.2 The Cost of Isolation

Filesystem clients and MSFS components communicate with each other by sending IPC

messages, accessing shared memory, and invoking system calls. So the performance of

MSFS depends on the performance of these communications channels. We implemented

four micro-benchmarks to quantify the performance cost of communication between iso-

15If we had counted device driver code for Linux, as we did for α-Nexus, all of the Linux TCBs shown in
Figure 4.5 would appear larger by a constant amount. This does not change our conclusions.

137



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

α-Nexus Linux

L
at

en
cy

 (
µ

s)

(a)

Syscall Latency

 0

 1

 2

 3

 4

 5

 6

α-Nexus Linux

L
at

en
cy

 (
µ

s)

(b)

IPC Latency

Figure 4.6: Syscall latency (a) and IPC latency (b) micro-benchmark results for α-Nexus
and Linux, showing median result for each experiment. Error bars show the range in
which the middle 80% of results fall.
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lated components in MSFS. These micro-benchmarks measure system call and IPC per-

formance; we consider shared memory below, in Section 4.5.3 and Section 4.5.3. We ran

the micro-benchmarks on α-Nexus and Linux, and we compared the results in order to

confirm that α-Nexus system call and IPC performance is not unusual. The four micro-

benchmarks we implemented are as follows.

• Syscall latency: Perform a single null system call.
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• IPC latency: Send a single-byte request to another process over an IPC channel16 and

receive a single-byte response.

• Syscall throughput: Transfer 16 MB from the kernel to a process using system calls.17

• IPC throughput: Transfer 16 MB from one process to another using request-response

pairs sent over an IPC channel.18

For the two throughput micro-benchmarks, we vary the amount of data transferred by

each system call or request-response pair from 512 bytes to 16 KB. All experiments were

performed on a 2.66 GHz Intel Core 2 platform with 3 GB of RAM. We performed 100

trials for each experiment. Results for the syscall and IPC latency micro-benchmarks are

shown in Figure 4.6, and results for the syscall and IPC throughput micro-benchmarks

are shown in Figure 4.7.

α-Nexus versus Linux Micro-benchmark Performance

Comparing the results for α-Nexus versus Linux across all four micro-benchmarks, the

largest differences between the two operating systems occurs in the syscall latency micro-

benchmark (0.228 µs median latency on α-Nexus versus 0.209 µs median latency on Linux,

from Figure 4.6 (a)) and in the syscall throughput micro-benchmark (for 16 KB messages,

6869 MB/s median throughput on α-Nexus versus 8090 MB/s median throughput on

Linux, from Figure 4.7 (a)). In the later case, the difference between α-Nexus and Linux

is most pronounced when transferring 16 KB messages from the kernel to a process, and

there is a much smaller difference in median throughput for α-Nexus versus Linux when

16We use pipes to implement IPC on Linux.
17On Linux, reads to /dev/zero are used for this micro-benchmark. On α-Nexus, an equivalent system

call, unrelated to MSFS, is used instead. This micro-benchmark is meant to measure the speed at which
kernel data can be written into a process’s memory. So for each system call, the kernel zero-fills a message
buffer specified by the micro-benchmark client, and the client does not copy or otherwise access the data
returned from each system call.

18This micro-benchmark is meant to measure the speed at which one process’s data can be copied into
another process’s memory over a α-Nexus IPC channel or Linux pipe. So for each send or receive system
call, the kernel copies a request or response messages from one process’s memory to the other’s, but neither
process copies or otherwise accesses the request or response messages.
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transferring smaller messages. α-Nexus imposes a 4 KB maximum message size for IPC,

so we were unable to compare α-Nexus and Linux IPC throughput using 16 KB messages.

Therefore, to minimize confounding effects, in the remainder of this paper we limit trans-

fers to at most 4 KB per system call and 4 KB per IPC message.

Despite some differences, the overall similarity between α-Nexus and Linux micro-

benchmark performance suggests that differences between α-Nexus and Linux system

call and IPC mechanisms are unlikely to account for any large differences in performance

for filesystems running on α-Nexus versus filesystems running on Linux.

System Call versus IPC Performance

The results in Figures 4.6 and 4.7 illustrate a familiar trade-off between isolation and per-

formance. IPC allows senders and recipients to be isolated from each other, while the

system call mechanism only isolates the kernel from processes. But system calls achieve

better performance than IPC. On α-Nexus, for instance, system calls have lower latency

than IPC—0.228 µs median syscall latency, from Figure 4.6 (a), versus 5.02 µs median

IPC latency, from Figure 4.6 (b). And α-Nexus system calls have higher throughput than

IPC—6116 MB/s median syscall throughput, from Figure 4.7 (a), versus 612 MB/s median

IPC throughput, from Figure 4.7 (b), both using 4 KB messages.

Compared to a monolithic kernel-mode filesystem, such as Linux FAT32, MSFS re-

places some operations that involve system calls with operations that involve IPC, and

it replaces some operations that require only local function calls with operations that re-

quire system calls or IPC. Consider, for instance, the file open and close operations. In

MSFS, each of these operations requires at least one IPC message (5.02 µs median latency

on α-Nexus, from Figure 4.6 (b)), whereas in Linux FAT32, each operation requires only a

system call (0.209 µs median latency on Linux, from Figure 4.6 (a)). So we should expect

the median latency of open or close operations to be at least 5.02 µs − 0.209 µs = 4.81 µs

slower in MSFS than in Linux FAT32.
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4.5.3 Filesystem Performance

We measured the performance of MSFS and Linux FAT32 implementations using four

benchmarks:

• Open/close latency: Open and close a 1 MB file.

• Read latency: Read a single byte from an already-open 16 MB file using the streams-

oriented filesystem interface.

• Read throughput: Read all bytes from an already-open 16 MB file using the streams-

oriented filesystem interface.

• Enumerate latency: Enumerate 4096 files and 1365 directories in a 5-level tree.

The benchmarks are implemented by a client that can run in two configurations. For the

uncached configuration, the benchmark client requests that all caches (including the filesys-

tem’s block cache and the disk’s internal data cache) be emptied before each trial. For

the cached configuration, the benchmark client loads the caches before each trial so that all

requests are satisfied by the filesystem’s block cache and no disk I/O is performed. The

experiments used a single 160 GB, 7200 RPM SATA disk with a FAT32-formatted parti-

tion. According to manufacturer specifications, the disk hardware can achieve 78 MB/s

sustained read throughput and has an average seek latency of 4.16 ms.

Open/Close Latency

Results for the open/close latency benchmark are shown in Figure 4.8.

Uncached open/close latency. For the uncached configuration of the open/close latency

benchmark, Figure 4.8 (a) shows that MSFS achieves a median latency of 48.5 ms, which

is approximately 6x worse than the 8.07 ms median latency achieved by Linux FAT32. We

conjectured that this difference is largely due to the difference in how MSFS and Linux
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Figure 4.8: Open/close latency benchmark performance of MSFS and Linux FAT32 for
the uncached (a) and cached (b) benchmark configurations, measured in milliseconds
(ms) and microseconds (µs), respectively. Each box shows the median latency achieved
for one experiment, and error bars show the range in which the middle 80% of results fall.

FAT32 enforce DAC. Linux FAT32 enforces DAC only for the contents of files and direc-

tories. And because of limitations of the FAT32 filesystem, Linux FAT32 does not retrieve

policy meta-data from the disk. Instead, Linux FAT32 uses a single pre-configured owner

and ACL for all files and directories. By contrast, MSFS enforces DAC for all data on

disk. And for every block accessed by MSFS’s FAT32 filesystem driver, FSDr , MSFS’s

PolicyMgr requires several additional accesses to retrieve that block’s owner and ACL

from the policy table stored on disk. There is little cache locality in these accesses for a

single benchmark trial, so the cost of these disk accesses adds up.

We performed two experiments to confirm our conjecture that MSFS DAC enforce-

ment accounts for the observed differences in performance of MSFS and Linux FAT32 for

the uncached configuration of the open/close latency benchmark. First, we counted how

many disk access requests were initiated by MSFS and by Linux FAT32. For MSFS we

counted 12 accesses for each uncached trial, 10 of which were initiated by PolicyMgr and

2 of which were initiated by FSDr . For Linux FAT32 we counted only 2 accesses for each

uncached trial. If disk accesses are random, and if the disk’s seek latency dominates per-

formance costs in the uncached open/close latency benchmark, then, based on the 4.16 ms

average seek latency claimed by the disk manufacturer, we should expect MSFS to require
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about 12∗4.16 ms = 49.92 ms and Linux FAT32 to require about 2∗4.16 ms = 8.32 ms. These

numbers are close to the median observation (48.5 ms and 8.07 ms for MSFS and Linux

FAT32, respectively, from Figure 4.8 (a)). This suggests that the difference in performance

we measured is indeed due to the different extents to which the two implementations en-

force DAC. It also suggests that MSFS performance could benefit by reducing the number

of disk accesses it requires to retrieve policy meta-data.

To confirm, we performed a second experiment, using a modified version of MSFS.

We replaced PolicyMgr with a different implementation, ConstPolicyMgr . ConstPolicyMgr

performs no disk accesses. Instead, it assumes a single pre-configured owner and ACL for

every block, thereby enforcing a DAC policy similar to what is enforced by Linux FAT32.

The modified version of MSFS achieved 8.58 ms median latency for the uncached config-

uration of the open/close latency benchmark, a performance result that is much closer to

Linux FAT32 (8.07 ms median latency, from Figure 4.8 (a)) than to MSFS (48.5 ms median

latency, from Figure 4.8 (a)). This measurement adds further support to our conjecture

about the source of the difference in uncached open/close latency benchmark perfor-

mance observed between MSFS and Linux FAT32.

Cached open/close latency. Disk seek latency should not affect performance for the

cached configuration of the open/close latency benchmark, because no disk I/O is per-

formed in that configuration. Figure 4.8 (b) shows that MSFS achieves a median cached

open/close latency of 17.4 µs. This is approximately 3x worse than the 5.62 µs me-

dian latency shown in the same figure for Linux FAT32. For comparison, MSFS with

ConstPolicyMgr achieves a median latency of 17.1 µs for the cached configuration of the

open/close latency benchmark, which is only a slight improvement over MSFS’s 17.4 µs.

This means DAC enforcement by PolicyMgr is not likely to be the source of the 3x dif-

ference between MSFS and Linux FAT32 cached open/close latency benchmark perfor-

mance.
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Figure 4.9: Read latency benchmark performance of MSFS and Linux FAT32 for the un-
cached (a) and cached (b) benchmark configurations, measured in milliseconds (ms) and
microseconds (µs), respectively. Each box shows the median latency achieved for one
experiment, and error bars show the range in which the middle 80% of results fall.

We conjectured that the 3x difference (17.4 µs for MSFS versus 5.62 µs for Linux FAT32)

reflects the cost of IPC between isolated components in MSFS as compared with the cost

of local function calls in Linux FAT32. For cached trials, open and close operations in

MSFS each involve one IPC message, whereas these operations each involve only a single

system call for Linux FAT32. From Figure 4.6 and the calculations in Section 4.5.2, the

overhead of these IPC messages above system calls is about 2 ∗ 4.81 µs = 9.62 µs. This

accounts for most of the 17.4 µs− 5.62 µs = 11.78 µs difference between MSFS and Linux

FAT32 cached open/close latency benchmark performance.

Read Latency and Read Throughput

File reads in MSFS and in Linux FAT32 involve system calls and not IPC. A Linux client

invokes the VFS layer, which resides in the Linux kernel, using the read system call. An

α-Nexus client P reads a file in MSFS by invoking VFSP using a local function call, since

VFSP resides within client P ’s address space, and VFSP in turn accesses the MSFS block

cache using the shm read system call. So given the similarity between the system call

performance of α-Nexus and Linux (as discussed previously in Section 4.5.2), we should
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Figure 4.10: Read throughput benchmark performance of MSFS and Linux FAT32 for
the uncached (a) and cached (b) benchmark configurations. Each box shows the median
latency achieved for one experiment, and error bars show the range in which the middle
80% of results fall.

expect that MSFS and Linux FAT32 will have similar filesystem read performance, as well.

Figure 4.9 shows results for the read latency benchmark, and Figure 4.10 shows results

for the read throughput benchmark.

Uncached read latency and throughput. For the uncached configuration of the read

latency benchmark, Figure 4.9 (a) shows a median latency of 6.67 ms for MSFS versus

6.29 ms for Linux FAT32, a difference of about 6%. Here, MSFS and Linux FAT32 both ex-

hibit high variability—the slowest 10% of reads for Linux FAT32 take longer than 9.75 ms

while the fastest 10% take less than 2.56 ms, for example. We attribute the high variabil-

ity to variability in disk seek latency, which should be distributed uniformly (assuming

random seeks) between about 0 ms and 2 ∗ 4.16 ms = 8.32 ms, given the 4.16 ms average

seek latency claimed by the disk manufacturer. For the uncached configuration of the

read throughput benchmark, Figure 4.10 (a) shows a median throughput of 46.1 MB/s for

MSFS versus 45.1 MB/s for Linux FAT32, a difference of about 3%. These results are not

surprising since uncached read performance for both MSFS and for Linux FAT32 is likely

constrained largely by disk performance.19

19Neither MSFS nor Linux FAT32 appears able to achieve the 78 MB/s sustained read throughput that is
claimed by the disk manufacturer. We did not investigate this discrepancy further.
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Cached read latency and throughput. Figure 4.9 (b) shows a marked difference between

cached read latency achieved by MSFS versus Linux FAT32—MSFS achieves a median

cached read latency of 0.996 µs versus 2.70 µs for Linux FAT32. However, latency for

Linux FAT32 shows high variability, with 10% of trials measuring 1.40 µs or less, a value

much closer to the median cached read latency in MSFS (0.996 µs). Such variability in

Linux performance could be due to scheduling and lock contention between the filesys-

tem and background processes, drivers, and interrupts. α-Nexus is a research prototype

and, as such, executes few background activities that cause contention. This explana-

tion is also consistent with the higher variability observed for the uncached configuration

of the read latency benchmark for Linux FAT32 as compared to MSFS, shown in Fig-

ure 4.9 (a).

For the cached configuration of the benchmark, median read throughput for MSFS

and Linux FAT32 differ by less than 4%—3560 MB/s median throughput for MSFS versus

3430 MB/s for Linux FAT32—as shown in Figure 4.10 (b). We suspect that the filesystems

here are constrained only by the ability of the α-Nexus and Linux system call mechanisms

to perform high throughput data transfers between the kernel and the benchmark client.20

Mmap-oriented file access. A filesystem client can access the contents of a file using the

mmap-oriented interface, rather than the streams-oriented interface we have used thus

far. With the mmap-oriented interface, a client first creates a virtual memory mapping,

then directly accesses the data one or more times. So performance here depends on ac-

cess patterns. A client that accesses the same data multiple times need only create the

virtual memory mappings once, effectively amortizing the performance cost of this oper-

20Data is read from the filesystem using 4 KB transfers. An upper bound on cached read throughput for
this message size can be obtained by considering the system call throughput micro-benchmark, discussed
in Section 4.5.2 and shown in Figure 4.7 (a). In that micro-benchmark, α-Nexus and Linux both achieve
a median throughput of about 6000 MB/s for 4 KB transfers. That result is higher than achieved for the
cached configuration of the read throughput benchmark, but it does not include the cost of copying data
from the filesystem block cache into a process’s address space. Instead, it only measures the performance
for the kernel to zero-fill 4 KB message buffers in response to system calls.
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Figure 4.11: Cached read latency (a) and throughput (b) as measured by three filesystem
benchmark clients. The Streams client uses a streams-oriented interface, as in previous
experiments. The Mmap-1 client uses a mmap-oriented interfaces and includes the cost
of creating a virtual memory mapping on every access. And the Mmap-* client uses
a mmap-oriented interface but creates a single virtual memory mapping for use by all
accesses. Each box shows the median latency achieved for one experiment, and error
bars show the range in which the middle 80% of results fall.

ation across multiple accesses. In addition to the default Streams client, which we have

used for running filesystem benchmark experiments, we created two new benchmark

clients, called Mmap-1 and Mmap-*, each derived from the Streams client. Mmap-1 cre-

ates a virtual memory mapping and directly accesses file contents during each trial of the

benchmark. Mmap-* creates a virtual memory mapping only once, during the first of 100

trials, then for each subsequent trial measures only the performance cost of directly ac-

cessing file contents. So Mmap-* models a filesystem client for which the cost of creating

a virtual memory mapping is amortized over many data accesses.

Figure 4.11 shows the results of running the read latency and read throughput bench-

marks on MSFS for the three clients, Streams, Mmap-1 and Mmap-*. We show results

only for the cached configuration of the benchmark, so disk performance has no influ-

ence. Figure 4.11 (a) shows that Mmap-1 has the worst median cached read latency of

the three clients, 1.09 µs, versus 0.996 µs for Streams and nearly zero for Mmap-*. And

Figure 4.11 (b) shows that Mmap-1 also has the worst median cached read throughput,

3000 MB/s, versus 3560 MB/s for Streams and 4490 MB/s for Mmap-*. So the cost of cre-
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ating virtual memory mappings in each trial offsets any possible efficiency gains of sub-

sequent direct accesses to file contents. By contrast, Mmap-*, which amortizes the costs

of creating virtual memory mappings, achieves the lowest latency and highest through-

put among the three clients. In fact, cached read latency for Mmap-* becomes too small

to measure with our current benchmark infrastructure. In the best case, we expect read

latency to be a few cycles (≈ 1 ns for our test platform).

The trade-offs between streams-oriented and mmap-oriented interfaces are not spe-

cific to MSFS or to α-Nexus. Linux FAT32 supports both interfaces, and we measured its

performance using the modified filesystem benchmarks. We omit Linux FAT32 results be-

cause we observed only minor differences compared to the results in Figure 4.11 obtained

for MSFS.

Enumerate Latency

When implementing MSFS components that access meta-data in the block cache, we had

to chose either the streams-oriented interface or the mmap-oriented interface. For the

MSFS FAT32 filesystem driver, we chose to use the streams-oriented interface, because we

didn’t expect this component to access any single piece of meta-data frequently enough

to justify the cost of creating virtual memory mappings.

Each trial of the enumerate latency benchmark causes filesystem components to per-

form many access to meta-data—over one thousand directories are enumerated, and each

directory operation requires access to meta-data stored in the block cache. So we imple-

mented a version of MSFS, called MSFS-* to quantify the cost of this design decision. In

MSFS-*, the FAT32 filesystem driver uses the mmap-oriented interface to the block cache.

The cost of creating a virtual memory mapping for each piece of meta-data is amortized

over all accesses to that meta-data. For the uncached benchmark configuration, amor-

tization is only across a single trial of the benchmark, since caches are flushed between

trials, while for the cached benchmark configuration, amortization is across all trials. Fig-
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Figure 4.12: Enumerate latency benchmark performance of MSFS, MSFS-*, and Linux
FAT32 for the uncached (a) and cached (b) benchmark configurations, measured in sec-
onds and milliseconds (ms), respectively. MSFS-* is a modified version of MSFS that
uses the mmap-oriented interface internally when accessing meta-data in the block cache.
Each box shows the median latency achieved for one experiment, and error bars show the
range in which the middle 80% of results fall.

ure 4.12 shows results for the enumerate latency benchmark for MSFS, MSFS-*, and Linux

FAT32.

Uncached enumerate latency. For the uncached configuration of the enumerate latency

benchmark, Figure 4.12 (a) shows that the median latency for MSFS and Linux FAT32

differ by 0.14 s, or about 4%, with 3.41 s for MSFS and 3.27 s for Linux FAT32. Here, as

for other uncached filesystem benchmarks, performance is likely dominated by the cost

of accessing the disk. The higher median latency for MSFS-* (4.35 s, as compared to 3.41 s

for MSFS), indicates that there is insufficient spacial locality in access to meta-data during

a single benchmark trial. Thus MSFS-* incurs the overhead of creating virtual memory

mappings to access meta-data in the block cache, but MSFS-* can amortize this overhead

across only a few meta-data accesses per block.

Cached enumerate latency. MSFS exhibits approximately 3.5xworse performance com-

pared to Linux FAT32 for the cached configuration of the enumerate latency benchmark,

as shown in Figure 4.12 (b), with MSFS achieving a median latency of 125 ms versus a
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median latency of 43 ms for Linux FAT32. However, the median latency for MSFS-* is

50 ms for the same benchmark, also from Figure 4.12 (b). Here, MSFS-* amortizes the cost

of creating virtual mappings over all 100 benchmark trials, so the overhead for MSFS-*

to access meta-data in the block cache is similar to direct access. By contrast, MSFS ac-

cesses meta-data using system calls to the block cache. It is not surprising then that the

cached enumerate latency benchmark performance for MSFS is worse than for MSFS-*:

125 ms median latency for MSFS versus 59 ms for MSFS-*. And the median latency for

MSFS-* (59 ms) is much closer to the median latency for Linux FAT32 (43 ms) than for

MSFS (125 ms). This suggests that the cost of isolation, in the form of an increased cost for

the FAT32 filesystem driver to access meta-data versus direct access, is the largest source

of performance differences between MSFS and Linux FAT32 in this benchmark. Other

reasons for a difference in performance include the performance costs for communication

between isolated MSFS components, the overhead for guards on the channels between

MSFS components, and costs incurred for DAC enforcement when accessing meta-data.

None of these costs are incurred by Linux FAT32.

In hindsight, using the mmap-oriented interface within the FAT32 filesystem driver

component to access meta-data, as done for MSFS-*, might have been a better implemen-

tation choice for MSFS. However, we can’t reach a firm conclusion without a realistic

model for client file and directory access patterns.

Merging Clients and VFS Components

Thus far, the filesystem benchmarks use MSFS implementations in which each VFS com-

ponent, VFSP , executes within the address space of the corresponding client P , instead of

as an isolated process, and P invokes VFSP using local function calls rather than IPC. In

Section 4.4.8, we justified this optimization by arguing that the performance cost of IPC

outweighs the benefits to trustworthiness that stem from isolation between P and VFSP .

Here we revisit that.
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We implemented a version of MSFS without this optimization, and we then used the

four filesystem benchmarks—open/close latency, read latency, read throughput, and enu-

merate latency—to compare the performance of the optimized and unoptimized versions.

(For brevity, we omit graphs for these benchmarks and only summarize the results here.)

For the uncached configuration of the filesystem benchmarks, we observed only mi-

nor differences in performance between the optimized an unoptimized versions of MSFS.

This was expected, since here, both versions of MSFS are constrained largely by disk per-

formance, and the performance costs incurred for disk access far outweigh the overhead

of IPC above local function calls.

For the cached configuration of some filesystem benchmarks, isolating VFS compo-

nents caused a noticeable performance degradation. For the cached configuration of the

open/close benchmark, we observed an increase of 10.2 µs in the median latency achieved

by the unoptimized MSFS as compared to the optimized MSFS. We attribute this increase

to the overhead of IPC, because the increase is only slightly larger than twice the 5.02 µs

median α-Nexus IPC latency, from Figure 4.6 (b), and each trial for the unoptimized MSFS

makes two additional IPC invocations—one IPC invocation from P to VFSP for open, and

a second for close—that were not present in the optimized implementation.

A similar analysis holds for the cached configuration of the enumerate latency bench-

mark, for which we also observed a performance decrease for the unoptimized MSFS

versus the optimized MSFS.

For the cached configurations of the read latency and read throughput benchmarks,

we expected the unoptimized MSFS to perform poorly, since each access to file contents

now involves an IPC invocation from P to VFSP versus a local function call in the opti-

mized MSFS. Moreover, in the unoptimized MSFS, file data is now is transferred through

both an IPC channel and system calls versus only system calls for the optimized MSFS.

Results for the cached configurations of the read latency and read throughput bench-

marks using the unoptimized MSFS implementation were 5.20 µs and 530 MB/s, respec-
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tively, in the median case. This is substantially worse than the performance of the opti-

mized MSFS for the same benchmarks (0.966 µs median latency, from Figure 4.9 (b), and

3560 MB/s median throughput, from Figure 4.10 (b)).

The poor file read performance for the unoptimized MSFS can be explained by con-

sidering the results from the micro-benchmarks discussed in Section 4.5.2. For the cached

configuration of the read latency benchmark, the median latency (5.20 µs) is only 4%

worse than the 5.02 µs median α-Nexus IPC latency (from Figure 4.6 (b)). Similarly,

for the cached configuration of the read throughput benchmark, the median through-

put (530 MB/s) is about 15% worse than the 612 MB/s median α-Nexus IPC throughput

(from Figure 4.7 (b)) for 4 KB messages.

We have no simple metric to weigh the benefits of isolation for VFSP and P against

the degraded performance we observed for the unoptimized implementation. But the

magnitude of the performance degradation suggests the optimization is worthwhile for

common use cases.

4.6 Discussion

4.6.1 Secure Filesystems

We are not the first to consider the design and implementation of a trustworthy filesystem.

Halcrow [64] provides a comprehensive overview of secure filesystems for Linux. Wright

et al. [151] and Riedel et al. [115] examine the performance and trustworthiness of secure

filesystems, in both distributed and non-distributed settings, for a variety of operating

systems. Here we discuss only a few secure filesystems that are particularly germane to

our work. We organize the discussion according to the trust (or, conversely, suspicion)

between filesystem components, local and remote disks or storage services, clients, and

users.

152



Suspicion of local disks. Many secure filesystems are intended to protect against theft

of locally installed disks. Here, the filesystem employs encryption to prevent a disk from

leaking filesystem data to an attacker who gains possession (hence, control) of the disk.

One approach to implementing such a cryptographic filesystem places the filesystem code

entirely within the operating system kernel (e.g., [65, 93, 122, 152, 156]). So, all processes

place full trust in the filesystem code, which includes disk device drivers and code for

implementing encryption and decryption. The entire filesystem is in the TCB for every

system security goal.

A more common approach moves encryption and decryption code out of the kernel by

executing some or all of the filesystem as a process above the kernel (e.g., [23,61,108,134]).

These filesystems can, in principle, instantiate Mutual Suspicion and Least Privilege by

granting filesystem processes only enough privileges to service client requests and to per-

form encryption and decryption. The result would be that filesystem code—at least, the

portion executing as a user-space process—can violate only those security goals that de-

pend on that filesystem. Consequently some filesystem code need not be in all TCBs. The

user-space filesystem process would not be able to violate the isolation of client processes,

for instance, even if the filesystem were to become compromised. In practice, however,

user-space filesystems often execute with full administrative privileges and are trusted

by the kernel (hence, by all processes). Therefore they are in the TCB for every system se-

curity goal. Rather than increased trustworthiness, the motivation for moving filesystem

code out of the kernel instead appears to be programming convenience, administrative

convenience, and the desire to avoid accidental compromise of the kernel due to bugs in

filesystem code.

Untrusted remote storage. Cryptography can also be useful when disks or other stor-

age services are accessed remotely (e.g., [10,59,74,84,129,130,134,154]). These filesystems

encrypt data so that full trust need not be placed in a remote storage service. Conse-
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quently, the remote storage service holds few privileges beyond the ability to delete data

or otherwise deny service. Filesystems that access data on a remote storage service do

not rely on local disk device drivers, and in some cases (e.g., [10,154]) the filesystem is an

application or library, rather than a system service. This makes Least Privilege easier to

instantiate—an ordinary user can create and configure the filesystem without the coop-

eration of system administrators, and the resulting filesystems hold no more privileges

than the user that created it. Eliminating disk device drivers could also lead to smaller

TCBs.

Suspicion between filesystems and remote storage services. A remote storage service

provides an opportunity for both the local filesystem and the remote storage service to

be suspicious of each other. Saksha [75] instantiates Mutual Suspicion in an effort to

ensure proper resource accounting and billing. Using signed transaction logs and other

cryptographic techniques, Saksha ensures that neither the local filesystem nor the remote

storage service holds privileges that can be used to violate the system’s security goals.

Suspicion between users. Using cryptography as an isolation mechanism impedes the

ability to share data. For instance, CFS [23] uses symmetric per-user encryption keys

within the filesystem. Such keys must not be revealed to processes executing on behalf of

other users, since any user that gains possession of another user’s key can subsequently

access any of that other user’s data. This limits sharing files among users, unless the

users place full trust in each other. Sharing files is also difficult if the filesystem places full

trust in filesystem clients. pStore [10], for example, can’t easily share files between users,

because a substantial part of pStore executes as a library within each client’s address

space. The same problem arises in TrustedDB [9], which executes the client and filesystem

together as a single component on a micro-kernel or hypervisor, without any isolation

between client and filesystem.
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Untrusted clients. In most filesystems, each client is a process that executes on behalf

of some user, and a user is assumed to place full trust in such a client. Alcatraz [87]

addresses the threat posed by filesystem clients that are not trustworthy, intercepting and

suppressing any write request to the filesystem that was issued by an untrusted client.

Solitude [72] queues write requests from a target client so that an administrator can first

examine the requests and then, if desired, grant privileges to the process retroactively.

These filesystems eliminate privileges that would normally be held by filesystem clients.

Neither filesystem relies on encryption. VPFS [144, 145], by contrast, is a cryptographic

filesystem that protects data stored by a single, trusted client from interference by all

other clients. VPFS justifies this approach on Least Privilege grounds: no VPFS client

holds privileges that can be used to access data stored by a different filesystem client.

Authorization and Authentication. Secure filesystems vary substantially in their sup-

port for authorization and authentication. Much work is this area is driven by the chal-

lenges of distributed authorization spanning multiple administrative domains. Closest

to our work is a filesystem by Garg and Pfenning [56], called PCFS. That filesystem

uses proof-carrying authorization [6] to support a wide variety of authorization poli-

cies. Clients provide proofs and credentials to the filesystem guard, which enforces au-

thorization policies specified in a formal logic. PCFS includes mechanisms for auto-

mated proof construction, credential and proof caching, and revocation. MSFS guards

rely on the α-Nexus alias table abstraction to achieve some of the same benefits as PCFS,

though MSFS lacks a general proof search procedure that can be used by filesystem

clients. Miltchev et al. [95] survey a large number of other secure distributed filesys-

tems, both production systems and experimental prototypes, paying particular attention

to the authentication and authorization mechanisms these filesystem support.
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4.6.2 Security Principles

We based the design of MSFS on an interpretation of these security principles in the con-

text of a system comprising many isolated components, each treated as a principal that

acts independently of other components, but where some components can become com-

promised. This is not the only possible interpretation, and there is even debate about their

usefulness in practice.

All of the security principles we use date to the 1970s, yet software appears to be no

more secure today than it was then. This criticism of the principles is discussed, and

largely dismissed, by Smith and Marchesini [127], who also discuss other concerns:

• The security principles are vague, easily misinterpreted, and likely impossible to

fully achieve in practice.

• The security principles were developed in a very different context—commercial

multi-user operating systems, in the case of Saltzer and Schroeder, and military and

defense settings in which secrecy is (or was) paramount, in the case of Nibaldi. Thus

one might worry that the principles address the wrong problems, present the wrong

solutions, and address the wrong threats for today’s pervasive, Internet-enabled,

personal computing platforms.

• The security principles fail to address political, economic, and commercial realities.

As a result, there are significant incentives for system designers to ignore these se-

curity principles, and few incentives to follow them.

These points have been raised by other authors as well. For instance, Viega and Mc-

Graw [141] concede that it is easier and likely more profitable to ignore Least Privilege

than it is to instantiate Least Privilege with any degree of completeness.

Mutual Suspicion. Though it was formulated first, Mutual Suspicion is the least fre-

quently cited of the three security principles we discuss here, and it is also seemingly
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the least controversial. The original formulation of Mutual Suspicion by Schroeder [124]

was descriptive rather than prescriptive. Our interpretation of the principle is closer to

Nelson et al. [101], who argue that each component of a system should be responsible for

protecting itself by limiting reliance on information from external sources. Subsequent to

that work, Woo and Lam [149] apply Mutual Suspicion in a similar way to users in an

authentication system.

Minimization of Trusted Computing Bases. TCBs are often discussed in terms of a

single set of system-wide security goals and a corresponding single TCB for the system.

Rushby [118], for example, examines how to minimize the TCB for embedded systems

that support only a single application. A general system, even one with a single user or

application, will have many security goals and, therefore, it could have many different

TCBs. Trade-offs arise when, in the course of reducing the size of one TCB (e.g., by mov-

ing functionality out of one component and into another), we inadvertently enlarge the

size of some other TCB.

Bernstein [20] advocates for Minimization of TCBs as the key to building secure sys-

tems, and validates the benefits of this security principle by designing and implementing

Qmail, a mail transfer agent. Qmail, which is now widely deployed, was designed with

trustworthiness as an explicit goal, and it appears to have largely achieved that goal.

It has an internal architecture similar to MSFS: functionality is decomposed across nu-

merous fine-grained components, components are mutually suspicious of each other and

hold as few privileges as possible, and guards are located on the communications chan-

nels between components.

Arbaugh et al. [7] argue that insufficient attention is paid to the lower layers of a

system—hardware, firmware, BIOS, and bootstrapping code—when defining a TCB. Ar-

baugh et al. insist that the precise semantics of these lower layers should be fully under-

stood and their implementations vetted, before they are included in a TCB. More recently,

157



Smith and Marchesini [127] reiterate this point, but also argue that these lower layers, par-

ticularly hardware components, are increasingly too complex and too poorly understood

to make a suitable foundation for building a secure system.

If a TCB is interpreted as being dynamic, rather than static, then the necessity of in-

cluding all lower layers in a TCB can be avoided. Flicker [92], for instance, removes the

operating system kernel from the TCB for certain application-level security goals, even

though most of the application runs on top of the kernel. This is accomplished using

new hardware mechanisms that support a dynamic root of trust [4, 100]: the kernel is

temporarily suspended, and a small application-specified set of code is loaded into a se-

cure, attested environment. The small piece of code thus runs directly on the lower-layer

hardware and need not place full trust in the kernel.

Least Privilege. Least Privilege can be instantiated for users and the privileges they

hold. Motiee et al. [96] provide empirical evidence that Least Privilege is rarely followed

for Windows users. The authors of that study fault the authorization and authentication

mechanisms supported by Windows for making Least Privilege impractical.

Interpreted broadly, Least Privilege applies not just to users, but to other principals as

well. Much prior work concerns the application of Least Privilege to processes. Applying

Least Privilege to a process typically means relying on setuid and similar system calls to

change a process’s privileges to some set different than what is held by the user that in-

voked the process. Tsafrir et al. [138] examine the poorly understood and poorly defined

semantics of such system calls and the difficulties this raises for Least Privilege. Krohn et

al. [77] investigate other ways in which common operating systems stand in the way of

Least Privilege for processes.

Bernstein [20] argues that Least Privilege—at least, its most common interpretation—

is “fundamentally wrong.” Here, instantiating Least Privileges is interpreted to involve

two steps. First, identify the components of the system and enumerate all privileges those
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components hold. Second, successively remove privileges from components as long as

the system still functions properly. The resulting assignment of privileges to components

might then be said to instantiate Least Privilege, because each component holds only

privileges that are necessary for the system to function properly. In a compelling exam-

ple of a system designer being misled by Least Privilege, Bernstein discusses the case

of a DNS resolver that, rather than being decomposed into several mutually suspicious

components that each hold only a few privileges, was simply “Least Privilege-ized” as a

single component, to little effect.

One might instead take Least Privilege as a mandate to decompose a system into fine-

grained components such that security-critical privileges are held by few of the resulting

components. Here, the difficulty is in choosing the appropriate decomposition and ar-

ranging for the now-isolated components to communicate with each other. There have

been several attempts to simplify and automate these tasks. Programmers can rely on a

library [76] to make programming across isolation boundaries more convenient. Mono-

lithic applications can also be decomposed into components automatically, based on pro-

gram annotations [30, 114, 157]. Here, Least Privilege is taken to mean that the system

should place full trust only in certain components, called privileged components, and that

other, unprivileged components should hold few or no security-critical privileges. Thus,

the automated approaches above decompose an application into two components—one

privileged and one unprivileged—each executing as a processes on top of the kernel and

communicating over an IPC channel. Swift [33] provides automatic decomposition for a

more general case of Least Privilege, splitting an application across two or more mutu-

ally suspicious machines. Buyens et al. [31] discuss a variety of automated and manual

program-restructuring techniques for instantiating Least Privilege. These techniques in-

clude splitting large components within an application into finer-grained components

and splitting coarse-grained privileges into finer-grained privileges.

Finally, Smith and Marchesini [127] argue that the model of subjects, objects, and priv-
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ileges, upon which both Mutual Suspicion and Least Privilege rest, may no longer be

adequate: is a Web page an inactive object that is acted upon, or is it an active subject that

makes requests and may hold privileges?

160



CHAPTER 5

CONCLUDING REMARKS

This dissertation describes NAL, a logic for specifying credentials and authorization

policies. Instead of designing NAL from scratch, we started with an existing bare-bones

authorization logic (CDD) that abstracts the essence of such logics, and we instantiated

its notion of principals and its underlying predicate logic. Then, by building a suite of

document-viewer applications and a filesystem, we demonstrated that NAL, despite its

simplicity, is expressive and convenient enough to be a practical basis for implementing

authorization in real systems.

NAL provided a vehicle for us to understand and bridge the gap between what autho-

rization logics provide and what real systems need. The implementation of credentials

and of principal names is one area where such a gap often exists. There are, for example,

significant practical differences between credentials implemented by digital signatures,

by hashes, and by ordinary messages on authenticated channels. These differences in-

clude the cost to create and validate credentials, whether secrets must be stored or shared,

whether certain memory must be accessible to the credential holders, and whether the

credential can be forwarded. Only in contemplating authorization for real applications,

did these differences become apparent and did the design-trade-offs they enable become

clear.

An imperative in the design of NAL and in our approach to supporting authorization

was to empower system designers with flexibility for defining policies and implementing

guards. This caused us to resist adding to NAL special-purpose constructs that shape

policy by directly supporting revocation of credentials or by enforcing bounds on cre-

dential usage. Such constructs are only one way to create an authorization logic that is

inherently non-temporal for use in a setting, like a computer system, where principals’ be-

liefs actually do change over time. A system designer—informed by the semantics of an

application—should know the best means for handling changes in principals’ beliefs and,
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therefore, should be given the flexibility to implement that means. The state predicates

that can appear in NAL formulas provide that flexibility, because changes in principals’

beliefs are necessarily correlated with changes in system state.

NAL’s flexibility also led us to take a very different view about the role of guards (or

reference monitors) in systems. We propose in this dissertation that guards be seen as

checking requester trustworthiness, where the authorization policy enforced by a guard

defines criteria by which requester trustworthiness is evaluated. Identity-based and rep-

utation-based authorization illustrate an axiomatic basis for deciding whether a requester

is trustworthy, and this basis is widely used in practice. We argued in this dissertation,

however, that analytic and synthetic bases are also worth supporting; and our document-

viewer applications illustrated the power and convenience of these bases.

Our thesis that authorization be viewed not as an end to itself but rather as a proxy

trustworthiness test is not limited to NAL or even to authorization logics. And there is

reason to believe that guards that assess trustworthiness can implement a wider class of

authorization policies than the more familiar “filtering” approach to building a guard,

in which the guard is seen as only examining a series of requests and filtering out those

requests that fail to satisfy certain checks. Clarkson and Schneider [38], for example,

discuss security goals (i.e., hyperproperties) whose enforcement would require a guard

to reason about the set of requests that a principal will not (or cannot) make. A guard that

relies on analytic or synthetic bases for predicting trustworthiness can do just that.

Our MSFS filesystem, the most complex of the systems we implemented for this dis-

sertation, makes extensive use of NAL for authorization between filesystem components,

but primarily relies on an axiomatic basis for this authorization. One exception is disk

driver code, which is authorized to perform I/O by virtue of the presence of a reference

monitor (i.e., the DDRM) for that code, a synthetic basis for authorization. Some work has

been done to relocate the synthesis of trustworthy disk driver code to compile time, by

inlining the reference monitor. And in principle, compile-time analysis of that code can
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eliminate the need to add run-time checks. Here, α-Nexus’s lack of support for high-level

languages, for which program analysis is more tractable, is a limiting factor for using

an analytic basis for authorization. Higher-level languages would also allow for finer-

grained principals than are currently possible given the types of isolation boundaries

provided by α-Nexus.

There are aspects of NAL that we did not fully explore. Restricted delegation, in par-

ticular, is used only occasionally in our document-viewer applications; MSFS replaces

most uses of restricted delegation with a construction based on NAL groups. Axiomatiz-

ing restricted delegation can be subtle, an issue explored in some depth by Howell [68].

Although MSFS and our document-viewer applications enforce novel authorization

policies, they rely on a fairly limited range of credentials to discharge those policies.

Moreover, trust relationships between principals in these applications tend to be shallow:

the reader of a document in ConfDocs places trust in a guard implemented by ConfDocs ,

which in turn places trust in an analysis engine and certain hardware (e.g., a TPM)—but

the analysis engine and hardware are trusted axiomatically. A richer instantiation of our

approach to authorization would be more complex. An analysis engine for TruDocs might

be trusted, for example, because it was written in a way that is easily subjected to formal

and even mechanical analysis. It is an open question whether NAL is expressive and con-

venient enough to specify authorization when principals rely on rich trust relationships.

It is also unclear whether the benefits of such webs of trust outweigh the complexity they

bring.

NAL does not specify a language for terms and predicates, and we have adopted

various different language elements (e.g., lists, sets, numbers and arithmetic, and binary

and text data) as convenient for implementing applications. This ad-hoc approach leaves

unresolved several issues. Systems that uses a logic for authorization require careful at-

tention to predicate and function naming, as noted in Section 2.2. α-Nexus and the ap-

plications described in this dissertation were all written by the same small group of pro-
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grammers, so we had an easy time controlling names for predicates and terms used in

policies and credentials. Even so, it has proved challenging to ensure names used in one

application do not conflict with names used by other applications or the kernel.

Inconsistent use of predicate and function names is just one way in which a principal

P can inadvertently issue contradictory credentials, i.e., credentials that allow P says false

to be derived. Treating a group as a principal, as NAL does, admits contradictions from

pooling credentials issued by multiple principals. And NAL’s inference rules admit ex

falso quodlibet (literally, “from falsehood, whatever you please”). P says F holds for any

formula F whenever P issues a set of contradictory credentials.

From one perspective, adopting ex falso quodlibet is beneficial, because it exposes latent

errors in the principals that issue credentials. But perhaps the machines, processes, and

other principals we study in this dissertation are not (yet) ready for such a high standard,

and an authorization mechanism should instead seek to minimize the consequences of

contradiction. For instance, while system designers might rightly adopt ex falso quodlibet

when analyzing the potential consequences of some set of credentials, guard implementa-

tions might instead use a paraconsistent logic [42]—unlike NAL, such logics do not admit

ex falso quodlibet—so that contradictory credentials cannot be used in proofs that authorize

requests. It is not clear, however, if such concerns outweigh the appeal of using a single

logic as the basis both for design and for implementation.

The current NAL proof checker is hand-coded in C, so we have little assurance in

its correctness. The run-time cost of executing the proof checker and the costs to store

and transmit proofs were a concern, so we paid some attention to efficiency in the proof

checker implementation and in the representation of proofs within the implementation.

There is much prior work on efficient proof representation and validation (e.g., [43,94,98,

99]). Our proof checker employs only a few of these existing techniques; our reliance on

C hinders further optimization. Initial work has been completed implementing a NAL

proof checker in Coq [37]; that proof checker would certainly provide greater assurance
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than the current proof checker, and Coq may provide opportunities for more efficient

proof representation as well.

A proof checker implemented in C has the advantage that application programmers—

as opposed to logicians—are likely to be familiar with that programming language. Ap-

plication programmers are unlikely to be familiar with the intricacies of writing proofs

using Coq. Alpaca [81], by contrast, strives to make the construction of proofs simple for

application programmers by providing a library with an intermediate programming-like

environment for generating lemmas and proofs. That proof checker and library is im-

plemented in Python, a language that is both familiar to application programmers and

higher level than C.

One difficulty we encountered in writing NAL proofs involves a trade-off between

shared context and the level at which proofs are written. Proofs can be easy to write and

understand if clients and the proof checker share application-specific context, such as lem-

mas or proof fragments useful for constructing proofs for typical requests, or application-

specific proof search strategies. An application-specific context can also help reduce the

size of proofs. Credentials and cryptographic keys used in proofs, for example, are quite

large. But if a proof checker maintains a database of credentials for use in proofs or of

cryptographic keys used for credentials, then proofs sent to that proof checker would

not need to include this information. But maintaining such application-specific context

makes a proof checker more complex, and it requires coordination between clients and

proof checkers. These considerations led us to share very little context between proof

checkers and applications. But, proofs for our applications are consequently difficult to

understand and difficult to generate. The proofs, however, are mostly self-contained,

since they rely only on axioms and inference rules shared by all proof checkers.

We have noted how credentials-based authorization can aid in the creation of a com-

prehensive audit facility. Our applications create audit logs, but the simplistic approach

they use to do so—writing the complete proof for each access to a file, for example—is
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inadequate. Such audit logs reveal both too much and too little information. In ConfDocs ,

the audit log reveals details about confidential documents and must, therefore, be pro-

tected from unauthorized access. More generally, since credentials convey attributes of

principals, any approach to authorization that makes decisions based on credentials could

impinge on the privacy of individuals.1 However, guards in MSFS create audit logs with

very little information that could impinge on the privacy of individuals. This is because

MSFS relies on two levels of credentials-based authorization for every request:

• a first level, in which the kernel authorizes a process’s request to send a message on

behalf of a given principal name;

• and a second level, in which a guard in MSFS checks an access control list to deter-

mine if that principal is authorized to perform the requested operation.

This two-level scheme is beneficial for privacy, enabling principals to make requests or

issue credentials that reveal only enough information for some constrained use, but it

also hinders the ability to audit, because the credentials (and proofs) are not all located in

one place. The same difficulties for audit arise whenever authorization for one operation

depends on authorization of operations elsewhere in the system.

In conclusion, this dissertation continues a line of inquiry that began when the first

authorization mechanisms were developed for time-shared and multi-programmed com-

puter systems, nearly fifty years ago. Since then, authorization has been recognized as

one of the key enablers for trustworthy systems, and numerous mechanisms have been

proposed to address new and existing challenges. This dissertation proposes that au-

thorization not be viewed as primarily concerning a set of mechanisms, but that it be

viewed in terms of evaluating trustworthiness of principals. Our experience using NAL

and credentials-based authorization gives reason to hope that taking this view is progress

for better security as computer systems become more pervasive and interconnected.

1We define privacy to be the right of an individual to control the dissemination and use of information
about that individual.
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APPENDIX A

NAL INFERENCE RULES

NAL’s axiomatization is similar to CDD [1,2], augmented with rules for sub-principals

and groups, and with standard rules for quantification in a predicate calculus [136, 140].

The SAYS-I rule of NAL is called UNIT in CDD; Abadi shows that CDD’s BINDM axiom

is equivalent to NAL’s SAYS-E (also known as C4) in the presence of SAYS-I and DEDUCE

(both of which are present in NAL). We assume, but do not show in the axiomatization,

rules for variable renaming and substitution.

The derivation of any NAL formula F can be represented as a proof tree whose nodes

correspond to NAL formulas.

• Leaves correspond to axioms and assumptions. Each assumption has a unique label

Λi.

• Each internal node in the tree corresponds to the conclusion G of some NAL infer-

ence rule. The formulas that correspond to the node’s immediate predecessors are

the premises needed to conclude G using the rule.

• The root of the tree corresponds to F .

Rules FORALL-I and EXISTS-E below involve side conditions that refer to “uncanceled

assumptions”. In a proof tree that derives F , an assumption A with label Λi is defined to

be canceled if and only if any path from the node that corresponds to F to the node that

corresponds to A passes through a node derived by applying inference rule IMP-I(Λi);

otherwise A is considered uncanceled.
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A.1 NAL Rules from Constructive Predicate Logic

TRUE:

true
IMP-E:

F , F ⇒ G

G
IMP-I(Λi):

Λi :
F
...

G

F ⇒ G

AND-I:
F , G

F ∧ G
AND-LEFT-E:

F ∧ G

F
AND-RIGHT-E:

F ∧ G

G

OR-LEFT-I:
F

F ∨ G
OR-RIGHT-I:

G

F ∨ G
OR-E:
F ⇒ H , G ⇒ H , F ∨ G

H

FORALL-I:
F

(∀v : F)

v is not free in any uncanceled assumptions in the derivation of F

FORALL-E:
(∀v : F)

F [v := τ ]

free variables of term τ are free for v in F

PROP-FORALL-E:
(∀x : F)

F [x := G]

free variables of formula G are free for x in F

EXISTS-I:
F [v := τ ]

(∃v : F)

free variables of term τ are free for v in F
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PROP-EXISTS-I:
F [x := G]

(∃x : F)

free variables of formula G are free for x in F

EXISTS-E:
F ⇒ G , (∃v : F)

G

v is not free in G or in any uncanceled assumptions

in the derivation of F ⇒ G

A.2 NAL Definitions and Rules Derived from CDD

false : (∀x : x)

¬F : (F ⇒ false)

A→ B : (∀x : (A says x)⇒ (B says x))

A
v:F−−→ B : (∀v : (A says F)⇒ (B says F)) for v not free in A or B

DEDUCE:
A says (F ⇒ G)

(A says F)⇒ (A says G)

SAYS-I:
F

A says F
SAYS-E:

A says (A says F)

A says F
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A.3 NAL Extensions

SUBPRIN:

A→ A.τ

EQUIV SUBPRIN:
τ1 = τ2

A.τ1 → A.τ2

MEMBER:
P [v := A]

A→ {|v : P|}
free variables of A are free for v in P

→ GROUP:
(∀v : P ⇒ (v→ A))

{|v : P|} → A

v is not free in A

A.4 NAL Derived Inference Rules

FALSE:
false

F

→ TRANS:
A→ B , B → C

A→ C

v :F−−−→ TRANS:
A

v :F−−→ B , B
v :F−−→ C

A
v :F−−→ C

HAND-OFF:
B says (A→ B)

A→ B

REST-HAND-OFF:
B says (A

v :F−−→ B)

A
v :F−−→ B

GROUP MONOTONICITY:
(∀v : P ⇒ P ′)

{|v : P|} → {|v : P ′|}
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APPENDIX B

NAL GUARD LIBRARY AND PROOF CHECKER

We implemented a NAL guard library in C.1 Our goal was not to build a production-

quality system but rather to ascertain whether a NAL guard—and in particular, the code

for checking NAL proofs—could be fast enough to be on the critical path for accesses.

However, we did not pay special attention to low-level performance optimizations.

Preliminary measurements suggest that our NAL proof checker achieved these per-

formance goals. A typical authorization in ConfDocs requires proofs involving roughly

1000 inference rules, and our proof checker validates these proofs in approximately 300

milliseconds—fast enough so that a user of ConfDocs senses no delay. A significantly

faster implementation would be required if the proof checker were invoked on the criti-

cal path for authorizing accesses to all α-Nexus kernel resources. However, the power of

a general purpose proof checker is unlikely to be needed for that setting, because policies,

credentials, and proofs there assume only a few simple forms. So special-purpose proof

checkers, which can be considerably faster, would be deployed. In addition, the cost of

invoking the NAL proof checker can be amortized over many authorization checks. The

α-Nexus shared memory guard provides such an example; it relies on partially-checked

proofs stored in the invoking process’s alias table.

Proofs accepted by the NAL guard library are specified in two parts. The first part

is a schema for obtaining and validating a set of credentials. Section 2.4.2 describes the

types of credential specifications accepted by the guard library and how the guard library

processes those credentials. We provide additional implementation details below. The

second part of a proof is a proof schema, which acts as a program to transform a set

of premises into a conclusion according to the axioms and inference rules of NAL. This

appendix describes how proof schemas are represented in α-Nexus and how the guard

1C is the only high-level language α-Nexus supports, so we had little choice here. Admittedly, other
languages would have been better suited to the task.
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library’s proof checker determines if a proof schema is well formed.

B.1 Formula Representations

NAL formulas and terms have various representations in the implementation.

• A text-based representation is used for display purposes and when necessary due to

constraints on the objects in which formulas or terms are embedded. TruDocs and

ConfDocs , for example, use a text-based representation to embed formulas in text

documents. It is the least compact encoding, and it is the most expensive to parse.

We built the parser and lexical analyzer using GNU Flex [110] and Bison [128]. Un-

like the other representations, we do not define a canonical form for the text-based

representation. Thus, we cannot check if two formulas or terms in this text-based

representation are identical.

• A serialized binary representation is used when a compact, machine-readable im-

plementation is needed, such as when storing formulas or terms on an ACL, in

a database on disk, in an IPC message, or in a parameter or return value for an

α-Nexus system call. This representation is used by MSFS when storing principal

names on disk, for instance. This representation is based on DER [71], a format

widely used for cryptographic keys and X.509 digital certificates [67]. It is a more

compact representation for formulas and terms than the text-based representation.

It can be parsed relatively efficiently with a simple, special-purpose DER parser.

• An expanded representation using C data structures is used as an intermediate rep-

resentation when manipulating formulas in memory. Because this representation is

not flat, it is not suitable for sending over channels or embedding in objects. The

expanded representation is convenient for manipulating programmatically, so it is

used internally by the NAL guard library’s proof checker and by most applications

that use NAL.
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B.2 Stack-Based Proof Checking

Proof schemas are trees, and they are conveyed to our proof checker using a postfix-like

representation. The formula corresponding to the root of the tree is preceded by a list

of inference rule names, axiom names, and meta-rules (which allow terser encodings for

some constructions). We adopted this representation because it promised performance

advantages over the more familiar Hilbert-style proof representation as a sequence of

formulas, each accompanied by a justification (itself the name of an axiom or inference

rule and list of previous line numbers that identify premises). In particular:

• Our postfix-like representation tends to be shorter than the Hilbert-style represen-

tation, because it does not contain intermediate formulas or references to lines in

the proof. Our postfix-like representation only contains the formulas at the root and

leaves of the tree, plus names (which are short) of the inference rules used to derive

intermediate formulas.

• Our postfix-like representation allows proof-checking with a smaller footprint for

its working memory. In the Hilbert-style representation, checking line i requires

that lines 1 through i − 1 be available in a convenient (i.e., expanded) form in

working memory; only later lines can be stored in encoded form or on disk. In

our postfix-like representation, the working memory need only contain a stack that

stores premises for the next inference rule to be checked. Since each NAL infer-

ence rule involves only a few premises, this means the stack depth need only store

a few elements (where each element stores an entire NAL formula in its expanded

representation).

A NAL proof schema in our postfix-like representation specifies a series of reductions

to be performed on judgments. Each judgment has the form of a sequent2 Σ ` F , where Σ is

2The NAL axiomatization in Appendix A does not use sequents; the proof checker does, because that is
more convenient. There is a trivial translation from proofs in terms of the axiomatization of Appendix A
into the sequent-based logic used by our NAL proof checker.
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a set of formulas that represent uncanceled assumptions in the derivation of F . Initially,

there is an empty stack of judgments. Each line of the proof is read, then a reduction is

initiated according to a rule selected based on that line. The available rules are stored

in a rule base. Roughly speaking, a line corresponding to a rule requiring n premises is

processed as follows. The proof checker:

(1) pops judgments Σ1 ` F1, . . . ,Σn ` Fn from the stack,

(2) checks that F1, . . . ,Fn are suitable for use as premises for the rule,

(3) checks any side conditions for the rule,

(4) constructs the rule’s conclusion G based on the premises F1, . . . ,Fn, and

(5) pushes a judgment
⋃n
i=1 Σi ` G on to the stack.

Once all input lines have been processed, the proof is deemed well-formed if the stack

contains a single sequent ∅ ` F where F matches the root of the proof tree being checked.

Our NAL proof checker has a built-in, hard-coded entry in the rule base for each NAL

inference rule that involves checking a side condition or modifying a sequent. Each such

rule can be characterized in terms of (i) the contents of the stack top when the rule is

activated, and (ii) how executing the rule changes the stack. Built-in rules include the

following.

• assume F .

Push {F} ` F .

• imp-i F .

Pop Σ ` G then push Σ \ {F} ` F ⇒ G.

• forall-i v.

Pop Σ ` F then push Σ ` (∀v : F), provided v is not free in any formula of Σ.

• forall-e τ .

Pop Σ ` (∀v : F) then push Σ ` F [v := τ ], provided free variables of term τ are free

for v in F .
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• prop-forall-e G.

Pop Σ ` (∀x : F) then push Σ ` F [x := G], provided free variables of formula G are

free for x in F .

• exists-i (∃v : F).

Pop Σ ` F [v := τ ] then push Σ ` (∃v : F), provided free variables of term τ are free

for v in F .

• prop-exists-i x.

Pop Σ ` F [v := G] then push Σ ` (∃v : F), provided free variables of formula G are

free for v in F .

• exists-e.

Pop Σ ` F ⇒ G, and Σ′ ` (∃v : F), then push Σ ∪ Σ′ ` G, provided v is not free in G

or in any formula of Σ.

• member {|v : P|}.

Pop Σ ` P [v := A], then push Σ ` A→ {|v : P|}, provided free variables of A are free

for v in P .

• group-sfor.

Pop Σ ` (∀v : P ⇒ (v→ A)), then push Σ ` {|v : P|} → A, provided v is not free in A.

• rename F .

Pop Σ ` G then push Σ ` F , if F =α G, where (=α) denotes alpha equivalency .

All other NAL axioms and inference rules, because they do not involve checking side

conditions or modifying sequents, are implemented using a routine that adds to the proof

checker’s rule base. This routine effectively extends the proof checker’s logic by mak-

ing new axioms, inference rules and derived inference rules available for use in a proof

schema. As part of initialization for the NAL proof checker, this routine is invoked for

each of the remaining NAL axioms and inference rules.
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Finally, the NAL proof checker supports a few additional rules that manipulate the

stack in simple ways. These do not correspond to NAL inference rules, and they do not

derive any new formulas. They simply allow some proofs to be represented in a more

compact form.

• pushdown n.

Move the top element of the stack down n elements.

• pullup n.

Move the nth highest stack element up, to be at the top of the stack.

• dup n.

Create n copies of the top element of the stack and push these duplicates on to the

stack.

B.3 Implementation Details

The NAL proof checker is approximately 5000 lines of code, including about 2500 lines

concerned with manipulating and parsing NAL formulas and converting between the

various formula representations. The code for the proof checker can be instantiated in

several ways:

Stand-alone service An α-Nexus process monitors a well-known IPC port for requests

from clients. Three kinds of IPC requests are supported:

• check: Check if a given proof schema is well-formed.

• add derived inference rule: Given a name and a proof schema for a derived

inference rule, check whether the proof schema is well formed and, if so, add

a new entry in the rule base for that derived inference rule. The proof checker

maintains a separate rule base for each IPC client, and subsequent invocations
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of the proof checker by the same IPC client can use the derived inference rule in

a proof schema by using the given name. Proofs for other clients are unaffected.

• add inference rule: Add an arbitrary new axiom or inference rule to the rule

base for that IPC client. The proof checker makes no effort to check soundness

of the new rule, so care must be taken when making this kind of request—

unsound axioms or inference rules might cause the proof checker to declare a

proof schema well-formed even if it is not, hence a guard in that IPC client that

invokes the proof checker may declare arbitrary requests to satisfy an autho-

rization policy.

Library Routines The proof-checker can be compiled as a library and linked into a pro-

gram. The entry points to the library are: check, add derived inference rule, and

add inference rule.

Interactive Command The proof checker can be invoked from the shell, e.g., by a hu-

man user. The command reads an input file containing zero or more inference rules

(which are added to the rule base for that invocation of the proof checker), zero or

more derived inference rules (which are checked and then added to the rule base),

and one or more proof schemas (which are checked).

Guard Library The NAL guard library is a wrapper around the proof-checker library

routines. The guard library interface allows an α-Nexus guard object to be created.

Each guard object maintains a separate proof checker rule base and is configured

with a NAL formula representing the authorization policy to be checked. A pro-

gram processing a request invokes guard check, which causes the guard object to

(i) invoke the proof checker on the provided proof schema,

(ii) validate that what is proved matches the authorization policy, and

(iii) check that each premise of the proof schema is backed by a valid credential.
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A guard object includes helper routines for validating credentials (e.g., digital sig-

nature checks as well as methods to read certain accessible parts of the system state,

time of day, etc.); this set of routines can be extended to handle new kinds of cre-

dentials.

B.4 External Theories

The axiomatization of NAL presented in Appendix A omits the various other theories that

might be required by applications. In the interest of expedience, we implemented only

the theories—portions of arithmetic and set theory—needed for reasoning about objects

used by our applications and by MSFS.

The proof checker does not directly check proofs of claims about arithmetic or other

objects that appear in beliefs. These are handled by invoking a set of pre-installed external

proof checker routines.3 The invocation occurs whenever, in the process of checking a

proof schema, the NAL proof checker encounters a line

extern proof checker name : string

where proof checker name is the name of some pre-installed external proof checker rou-

tine and string typically contains, explicitly or implicitly, a formula F (using a syntax

known to that external proof checker routine) to be proved followed by a purported proof

of F . F is then returned by proof checker name to the NAL proof checker if and only if

the proof provided for F checks.

3An alternative is to use add inference rule and extend the NAL proof checker by adding inference
rules for each new theory. We rejected this approach both because it is inconvenient and because it precludes
using more efficient decision procedures and model checkers where they exist.
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