
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

STAGED SIMULATION FOR IMPROVING SCALE AND PERFORMANCE
OF WIRELESS NETWORK SIMULATIONS

Kevin Walsh
Emin Gün Sirer

Department of Computer Science
Cornell University

Ithaca, NY 14853-7501, U.S.A

ABSTRACT

This paper describes staged simulation, a technique for im-
proving the run time performance and scale of discrete event
simulators. Typical wireless network simulations are lim-
ited in speed and scale due to redundant computations, both
within a single simulation run and between successive runs.
Staged simulation proposes to reduce the amount of redun-
dant computation within a simulation by restructuring dis-
crete event simulators to operate in stages that precompute,
cache, and reuse partial results. This paper presents a gen-
eral and flexible framework for staging, and identifies the
advantages and trade-offs of its application to wireless net-
work simulations. Experience with applying staged simula-
tion to the ns2 simulator shows that it can improve execution
time by an order of magnitude in typical scenarios and make
feasible the simulation of large scale wireless networks.

1 INTRODUCTION

The design and evaluation of distributed systems and net-
work protocols relies to a large extent on network simula-
tion. Traditional network simulators, however, do not run
efficiently or scale well with increasing simulation size.

A significant source of inefficiency in discrete event sim-
ulators is redundant computation. We identify two different
classes of redundancy in traditional discrete-event simula-
tors. The first class of redundant computation occurs within
a single run of the simulator. Traditional network simu-
lators reevaluate complex functions whenever their results
may have changed, even though in reality the results may
have changed very little, if at all, since the last time they
were evaluated. A second class of redundant computation
stems from a lack of retained information between multiple
runs of the simulator. Executing each simulation indepen-
dently and without the benefit of past runs leads to comput-
ing many functions from scratch in each run. These two
sources of redundancy pose significant bottlenecks for wire-
less network simulations, where network parameters change
frequently.

This paper introduces staged simulation, a general tech-
nique to improve the scale and performance of wireless net-
work simulation by exposing, identifying, and eliminating
sources of redundant computation. Staging involves restruc-
turing the events in a discrete-event simulator into an equiv-
alent set of sub-computations, caching their results, and
reusing them whenever matches are identified. We introduce
three techniques, called function decomposition, refinement,
and batching to complement function caching and improve
its effectiveness. We apply these techniques both within a
single simulation, a technique called intra-simulation stag-
ing, and between multiple similar runs of the simulator,
called inter-simulation staging.

We have applied staging to the event processing engine
of ns2 (VINT 1995), a well-established simulator whose de-
sign is typical of many discrete event simulators. Staging
improved execution time by an order of magnitude over the
standard ns2 implementation under typical simulation sce-
narios. As a natural consequence of eliminating redundant
computation, staging in ns2 also reduced the running time
from O(n2) in the size of the simulated wireless network to
O(n), making feasible large scale simulations with tens of
thousands of nodes. Staging maintains strict compatibility
with existing simulation scripts and extensions, with no loss
in simulator generality or accuracy. More advanced and spe-
cialized simulation engines can benefit equally from staging.
Specifically, we expect to see a comparable speedup and im-
provement in scalability in parallel and distributed wireless
network simulators.

The contributions of this paper are as follows. First, we
identify and expose a general technique for improving dis-
crete event simulator performance. Second, we show how
common simulation scenarios can benefit substantially from
our optimization techniques. These benefits include drasti-
cally reduced simulator run time and good scalability with-
out changing the simulator interface or degrading result ac-
curacy. Finally, we validate our technique through system-
atic application to wireless simulation in a well-established
network simulator.

Walsh and Sirer

2 THE STAGING APPROACH

The goal of staging is to eliminate redundant or nearly re-
dundant computations in simulations. Traditional wireless
simulators perform many redundant computations within
a single run. Examples of common redundancies include
sending packets along a particular path or computing neigh-
bor sets. Similarly, across multiple runs of a simulator we
find a large overlap in computation, especially when numer-
ous runs of a simulation are made with only slightly vary-
ing parameters. For example, studies of proposed ad hoc
routing protocols typically call for several sets of simulation
runs, each set evaluating the effect of a single protocol or
topology parameter (see, for example, Broch et al. 1998 and
Royer and Toh 1999). In all, many dozens or hundreds of
runs might be executed with very similar input parameters.

The simplest, most fundamental technique for eliminat-
ing redundant computations is function caching. This space-
for-time trade off involves caching the results of idempotent
functions and later reusing those results whenever the same
function is invoked with the same inputs. While function
caching forms the foundation for staging, it, by itself, is not
sufficient to realize performance gains in practice. Typical
events in discrete event simulators have time-varying, con-
tinuous inputs, which preclude matching function inputs be-
tween calls.

Staging significantly improves on function caching by in-
troducing three techniques, called function decomposition,
refinement, and batching. These techniques restructure com-
putations such that their results are reusable even when a
change in inputs would normally preclude reuse.

Function decomposition splits a large computation is split
into several smaller sub-computations that are each depen-
dent on only a subset of the inputs to the original compu-
tation. By carefully choosing the decomposition, we can
reduce or eliminate the dependency on frequently varying
inputs. For example, replacing a function f (x,y, t) with
an equivalent, decomposed version f ′(g(x,y), t) can allow
g(x,y) to be cached and reused even when the parameter t
varies between calls.

Refinement further expands the applicability of function
caching by taking advantage of the continuity of the physi-
cal model underlying the computation. When a small change
in inputs is expected to lead to little or no change in the
computed results, computing bounds then refining them to
precise results can be more efficient than computing the
same result from scratch. For instance, computing upper and
lower bounds on node mobility may allow the simulator to
eliminate costly computations to determine neighborhoods.
In this case, the upper and lower bounds are computed such
that they are valid for a range of inputs and so can be cached
and reused even when inputs vary slightly between calls.

The third staging technique, batching, reorders the com-
putations within the simulator so that many independent,

fine-grained computations can be executed more efficiently
in a single pass. Function decomposition and refinement
both transform the event stream in a simulator into an equiv-
alent, but much finer grained, sequence of computations.
Many of these computations are not time dependent, and
so can be reordered without affecting simulation accuracy.
Batching groups related computations together, and replaces
them with a single computation which computes all the
needed results efficiently in a single pass. Batching not only
allows the utilization of more efficient global algorithms in-
stead of independent local computations, but can also im-
proving processor and memory cache performance by im-
proving locality.

Staging fundamentally involves a space-time trade off.
For staging to be worthwhile, the target computation must
be more expensive than the cost of storing and fetching
cached results from a potentially large table. Additionally,
the cached results will likely increase the amount of mem-
ory required for the simulation, due to the cost of storing the
cached results. Although this increase in memory use may
increase virtual memory paging by increasing the working
set, it may conversely reduce the working set by eliminating
memory intensive computations.

The remainder of this paper illustrates the use of staging
in a widely used network simulator under typical usage sce-
narios. We give examples of existing, ad hoc applications
of staging in current state of the art simulators, identify new
opportunities for staging, and evaluate the effectiveness of
both intra- and inter-simulation staging in a ubiquitous and
mature network simulation engine.

3 TRADITIONAL WIRELESS
SIMULATION

Efficient and scalable wireless network simulators are crit-
ical to network research, but present unique challenges in
their implementation. They differ from other simulators in
several key ways, each of which introduces redundant com-
putation at runtime. As a result, many commonly used wire-
less simulators are slow and do not scale gracefully with net-
work size.

The fundamental reason redundant computation is preva-
lent is that wireless mobile networks have highly dynamic
characteristics, which imply that simulation state must be
recomputed dynamically and often. As nodes move about
a simulated field, the network-level topology may change
rapidly. Link characteristics, routing information, and net-
work topologies must be maintained and recomputed during
the simulation, and mobile nodes must continually update
their positions in order to provide accurate information to the
network model. In addition, complex physical models make
wireless simulation expensive. Since wireless is a broad-
cast medium, a straightforward simulation approach treats
the network as a single broadcast LAN, incurring O(n2) run

Walsh and Sirer

time in a network with n active nodes.
Existing wireless network simulators address some of the

challenges of wireless networks. These range from general-
purpose simulators, such as ns2 and OpNet (Chang 1999), to
special-purpose and custom simulators including SWiMNet
(Boukerche et al. 1999), MobSim++ (Liljenstam, Rönngren,
and Ayani 2001), DaSSF (Liu et al. 2001), and GloMoSim
(Zeng, Bagrodia, and Gerla 1998). These simulators have
widely varying designs, including parallel or distributed
event engines and specialized language features. Distributed
simulators achieve scalability and performance by recruiting
multiple simulator hosts. Even in such systems, each simu-
lator host may perform a large amount of redundant compu-
tation that can be eliminated to improve efficiency.

We chose to study wireless simulation in the ns2 network
simulator because it is widely used in academic research,
and because it is has a well-established and validated set of
protocols. The protocol implementations in ns2 total over
150,000 lines of code, and provide accurate models for node
mobility, wireless energy consumption, radio propagation
and MAC-layer protocols.

Ns2 tends to be slow and scale poorly with increasing
number of nodes. As we show in the following sections,
staged simulation can drastically reduce the amount of work
required to simulate a wireless system by reducing redun-
dant computation. These results are not specific to ns2, but
can be applied likewise to more advanced simulation en-
gines as well.

4 STAGED SIMULATION IN NS2

In the baseline ns2 implementation, the wireless physical
layer and mobility models are the largest consumers of pro-
cessing time in typical simulation scenarios. These compo-
nents pose the most significant bottlenecks to efficiency and
scaling. Consequently, we focus on staging computations
related to node mobility and the wireless physical layer.

We incrementally describe four different types of staging,
each employing a different approach to eliminating redun-
dant computation. The first is an example of reusing com-
mon intermediate results across function calls. The second
demonstrates the use of restructuring to enlarge the overlap
in computation across calls. The third optimization illus-
trates precomputation as a staging technique, and the final
one demonstrates inter-simulation staging by reusing results
across multiple runs of the simulator.

4.1 Grid-based Neighborhood Computation

For staging to be effective, redundant computations need to
be readily identifiable. The monolithic structure of the de-
fault ns2 implementation, however, obscures the redundant
computations it performs at runtime. Specifically, ns2 in

particular, and wireless network simulators in general, per-
form numerous calculations to ultimately determine the set
of nodes that will receive a given packet. These calculations
depend on the positions of sending and receiving nodes,
packet transmission and detection power levels, geography,
and radio and antenna models. We note that many of these
inputs will be identical or similar across computations, and
show in Section 5 that the resulting redundant operations are
significant and lead to non-linear scaling with network size.

To expose parts of this redundancy, we first apply a very
simple grid-based staging approach where we reuse previ-
ously computed power levels for nearby nodes. We first di-
vide the coordinate space into a grid of buckets, with each
bucket holding a list of nodes positioned within the corre-
sponding grid rectangle. This data structure can then be used
to quickly determine if a group of nodes falls entirely out-
side the possible transmission range of a node, thereby elim-
inating the need to perform individual calculations for each
node. Nodes in the remaining buckets, which may or may
not be in range, are checked individually as before. In order
to maintain the grid as nodes move during the simulation,
we compute all of the times at which a node will cross a grid
boundary, scheduling events at these times to update the grid
as needed.

While grid-based decomposition in simulators is not
novel, it serves as an initial application of staging that en-
ables us to identify and eliminate other redundant applica-
tions through more advanced applications of staging in the
subsequent sections. Nevertheless, grid-based neighborhood
computation employs staging in two distinct ways. First, by
grouping nodes into buckets, the simulator can reuse a sin-
gle computed result for all nodes within the bucket. Further-
more, since the grid data structure will remain fixed across
many packet transmissions, we can share and reuse a single
global grid structure. We assume here, as is typical typi-
cal in ad hoc network research, that all nodes use uniform
and constant transmission and reception parameters. This
assumption does not present a limitation of the staged simu-
lation approach, but simplifies our examples considerably.

4.2 Neighborhood Caching

Variations on the grid approach allow more advanced ap-
plications of staging using auxiliary computations to reduce
redundancy in computation across packet transmissions. In
typical simulation scenarios, inter-packet spacing is very
short in comparison to the speed at which nodes move. De-
pending on node mobility and traffic patterns, many hun-
dreds or thousands of packets may be transmitted from a sin-
gle node before nodes move a significant distance. That is,
we should expect the inputs to, and hence the results of, the
neighborhood computation for a node to be reusable across
many packet transmissions.

Since inputs will vary slightly, we should not expect the

Walsh and Sirer

neighborhood set to be identical to that computed during
the previous packet transmission. However, a conservative
upper-bound, or superset, of the neighborhood set will re-
main valid for some time after it is computed, depending
on the amount of node mobility and the tightness of the
bound. This holds similarly for a lower-bound or subset of
the neighborhood set. We therefore restructure the neigh-
borhood set computation to first compute upper and lower
bounds on the result, then refine these bounds into an exact
result. After restructuring the computation, intra-simulation
staging is used to cache and reuse the common intermediate
results, the two bounds, across many packet transmissions.

This restructuring introduces one additional parameter,
∆t, to control the caching policy. This parameter fixes the
desired epoch duration for which the bounds on the neigh-
borhood set will be valid. If smax is the maximum possible
node speed in the movement scenario, then the maximum
change in distance between two nodes in an epoch is just
∆r = 2smax∆t. If two nodes are within distance r − ∆r at
some time, then they will remain within range r for ∆t sec-
onds into the future. Similarly, nodes beyond distance r+∆r
need not be considered at all for ∆t seconds into the future.

We maintain a cache to capture the upper and lower
bounds on the neighborhood set of each node. At most one
cache entry is maintained for each node in the network. A
cache entry, illustrated in Figure 1, is composed of an expi-
ration time and two sets, Nr−∆r and Nr±∆r, containing lists
of the nodes within a ball of radius r−∆r and those in the
annulus with radii r ±∆r. During packet transmission, the
cache manager computes the set of nodes within range of a
given node by first looking for a valid cache entry. Finding
an entry that has not yet expired, it can immediately con-
sider all nodes in the list Nr−∆r to be within range. The
second list Nr±∆r is then scanned, and each node found to
be within range is appended to the final result. At the same
time, it can cheaply but conservatively update the lists, mov-
ing some nodes from Nr±∆r to Nr−∆r and eliminating others
from Nr±∆r entirely. If, on the other hand, no cache entry is
found during packet transmission, the cache manager con-
sults the underlying mobility (grid) manager and constructs
a cache entry with expiration ∆t seconds into the future.

In the above caching scheme, there is some additional
overhead during cache misses, when computing Nr±∆r,
since a larger radius is considered than previously necessary.
This overhead is controlled directly with the parameter ∆t,
which fixes the longevity and the accuracy of cache entries.
In addition, there is overhead associated with scanning the
list of nodes in Nr±∆r during each cache hit, but this is also
limited by appropriately choosing the ∆t parameter. We an-
alyze these overheads in Section 5.

{

node

node
node

node

node

nodenode

non−neighbor

neighbor

neighbor
potential

Legend

PSfrag replacements

r
∆r∆r

Nr−∆r

Nr±∆r

Figure 1: Computing Bounds on Node Movement Enables the
Simulator to Examine Only the Nodes Located in an Annulus
Nr±∆r During Packet Transmission by Node at Center

4.3 Perfect Caching

There is a large overlap in computation when construct-
ing cache entries for nodes using the neighborhood caching
scheme. We use precomputation to address this redundancy
by computing many cache entries simultaneously. When
constructing a cache entry, a node normally examines all
nodes within a potentially large radius. If many nodes in a
reasonably dense network are active, and each periodically
construct cache entries on-demand and independently, each
pair of nodes will eventually be considered twice.

A staged simulation approach, which we term perfect
caching, eliminates redundancy by precomputing all cache
entries simultaneously. This approach maintains the same
data-structures as neighborhood caching. But, rather than
calculating cache entries on-demand, it precomputes all
cache entries at the beginning of every ∆t epoch. All normal
queries for neighborhood information are then guaranteed to
hit the cache. There are several possible advantages to pre-
computation. First, we only need to examine each pair of
nodes at most once, rather than twice, to compute all of the
entries. Second, the positions of all nodes can be updated a
single time at the start of the generation process. Previously,
it was necessary to update the positions of all nodes within
range of the sender during each cache miss. Finally, mem-
ory locality should improve when precomputing all entries
simultaneously as compared to individually on-demand.

The overhead of this technique is a scheduled event dur-
ing each ∆t epoch, and possibly some wasted computation
if some nodes do not send packets during an epoch, and thus
do not use their cache entries. In a sparse or quiet network,
perfect caching might construct more entries than needed
during the simulation. This problem can be addressed di-
rectly by appropriately choosing the ∆t epoch parameter.

4.4 On-disk Caching

A final inter-simulation staging application improves on per-
fect caching, and demonstrates how staging can be applied
across multiple similar runs of the simulator. The intra-

Walsh and Sirer

simulation examples above reduce the amount of compu-
tation significantly, but also add some additional events to
the event queue leading to more work in the event sched-
uler. Event queue management is a well-studied problem,
especially in the particular case of the Calendar Queue used
in ns2. However, we can eliminate the work done by many
events by looking at a set of simulation runs together. This
application of inter-simulation staging therefore builds on
the previous optimizations by reducing the number of sched-
uled events generated by the grid manager and the cost
of constructing neighborhood cache entries in the perfect
caching scheme.

First note that, by itself, perfect caching generates strictly
more events than the on-demand caching approach, and may
actually compute results that are not used in any particu-
lar simulation run. But, also observe that perfect caching
will perform identical work during multiple simulation runs
using the same mobility scenario. In the second and sub-
sequent runs of the simulator we can eliminate these extra
events, as well as most cache maintenance, by writing all
cache entries to disk every ∆t seconds during the first sim-
ulator run. Subsequent runs can obtain cache entries from
disk rather than maintaining an underlying cache manager
or grid. This technique then introduces two phases. The
generation-phase is identical to perfect caching except that
all cache entries are spooled to disk. The use-phase does
not maintain a grid, does not need to track changes to node
positions, and requires no scheduler events. Instead, cache
entries are read from disk serially as needed during packet
transmission. A set of runs with the same mobility model
will use the more expensive generation-phase for the first
run, and the less expensive use-phase for all remaining runs.

5 EVALUATION

We have implemented each of the optimizations detailed in
Section 4 in the ns2 simulator. We find that even the simplest
application of staging reduces the run time of the simula-
tor significantly, and allows for practical simulation of much
larger network sizes than previously feasible. We show that
more advanced intra-simulation techniques improve stabil-
ity and robustness of the simulator, while the application of
inter-simulation staging improves performance yet further.
With the latest staged implementation, we regularly simu-
late networks of over 1000 nodes in the time it previously
took to simulate networks of hundreds of nodes.

In addition to evaluating total simulation run time using
our techniques, we also characterize the effect of each pa-
rameter we have introduced. For staging to be effective, it
must be possible to easily or automatically find near-optimal
choices for these parameters and, at the very least, avoid pa-
rameter choices that would lead to run time behavior worse
than the default, non-staged implementation. We first de-
scribe our test environment and changes required to add

Table 1: Default Simulation Parameters for Experiments

Network load
model Constant bit rate
concurrent data streams 30
packet size & rate 512 bytes × 8 packets/s

Node mobility
model random-waypoint
maximum node speed 5 m/s
pause time 10 s
field density ≈ 31 nodes / km2

Simulation
routing protocol AODV
simulation time 400 s

staging to the simulator, then present the results of our stag-
ing techniques.

5.1 Evaluation Platform and Environment

We take as our baseline a modified ns2 version 2.1b9a simu-
lator. All simulations were completed on a single-processor
machine equipped with 1.7GHz Pentium 4 processor and
256MB of physical memory. Physical memory is an impor-
tant constraint in ns2; more generous machines can simulate
proportionally larger networks before becoming memory-
limited. Before implementing our staging techniques, we
made a few non-standard modifications to improve the base-
line ns2 code. Most notably, we disabled all unused packet
headers to reduce packet sizes and improve memory local-
ity, and implemented more efficient packet tracing. This
improved run time by 85% for a 250 node network. The
performance results detailed in the this paper are computed
relative to this optimized ns2 baseline implementation.

Staging can impact the performance of a simulator by in-
troducing fine-grain events and changing the event distribu-
tion observed by the event scheduler. Calendar queue sched-
ulers are particularly sensitive to such perturbations (Oh and
Ahn 1999). To counteract the sensitivity of the calendar
queue scheduler to the event distribution, we modified the
calendar queue event scheduling algorithm to re-optimize
the event queue after 30 seconds of simulated time, effec-
tively avoiding occasional mis-predictions by the scheduler.

Overall, our simulation runs closely resemble those dis-
cussed in Broch et al. (1998), a very common setup. We
used standard CMU Monarch mobility and communication
model generators from the standard ns2 distribution. As
an exemplar of typical wireless network research, we chose
the AODV ad hoc routing protocol implementation included
with ns2. Our results are not specific to these choices of ap-
plication, mobility model, or communication pattern. These
system parameters, summarized in Table 1, closely follow
the standard values used in ad hoc networking literature. Al-

Walsh and Sirer

Table 2: Levels of Ns2 Optimization for Experiments

Level Optimizations
L0 Ns2 baseline: improved tracing and packet size

Intra-simulation staging
L1 L0 + Grid-based
L2 L1 + Caching
L3 L2 + Perfect caching

Inter-simulation staging
L4a L3 + On-disk caching (generation)
L4b L3 + On-disk caching (use)

though the nominal reception radius for our antenna model
is only 250 meters, we use the transmission detection radius
of 551 meters for all optimizations in order to properly ac-
count for interference effects.

5.2 Simulator Performance

We first examine how the different applications of staging
affect total simulation execution time using a 1000 node net-
work. In this experiment, we fix grid granularity at 250 me-
ters and ∆t at 2 seconds, and later describe their selection
and the sensitivity of staging to these parameters. We run
our simulations with various applications of staging enabled,
as shown in Table 2. For each level of staging, we run the
simulator on five randomly generated networks and present
the average of the execution times. The sample standard de-
viation for each data point is less than 0.2%.

The speedup achieved by increasing levels of staging rel-
ative to the baseline simulator is shown in Figure 2. These
results, obtained using a 1000 node network, highlight espe-
cially the benefits of the simplest intra-simulation staging L1

technique and of the inter-simulation staging technique. Op-
timization level L4b, the second phase inter-simulation stag-
ing approach, improves simulation run time significantly in
comparison to using only intra-simulation techniques. Also,
the one-time cost of the first phase, L4a is no worse than
the best possible intra-simulation technique L3. Thus, in this
case inter-simulation staging imposes no additional cost dur-
ing the first run of a series, but offers a significant speedup
during subsequent runs.

5.3 Scaling With Network Size

In order to evaluate how staging affects simulation scale,
we simulated networks with varying number of nodes while
holding the application-level load constant and increasing
the field size to maintain a constant node density.

Figure 3 shows that staging can improve the scalabil-
ity of wireless simulators by reducing redundant compu-
tations. This experiment also demonstrates the benefits of
inter-simulation staging, which achieves 56% improvement

1x

5x

10x

15x

20x

E
xe

cu
tio

n
tim

e
sp

ee
du

p
(n

or
m

al
iz

ed
)

PSfrag replacements

L0 L1 L2 L3 L4a L4b

Figure 2: Speedup in Execution Time with Increasing Staging
Relative to Baseline Ns2 Implementation using a 1000 Node Net-
work

over the intra-simulation staging techniques in 1000 node
networks. Although the different intra-simulation staging
approaches show similar performance in this experiment,
they exhibit different behaviors as optimization parameters
or network characteristics change. As we show in the next
two sections, the more advanced optimizations offer in-
creased robustness and stability, an advantage not evident
in Figure 3.

Additional experiments indicate similar performance ben-
efits using networks of varying density, up to more than
twice the density used above. Very dense networks, how-
ever, expose a trade-off in our disk-based inter-simulation
optimization. In our implementation, cache entries are
stored on disk during the first simulator run, and must be
read from disk and processed during each subsequent run.
While most of these disk accesses are easily pipelined and
dispatched in the background, there is still a non-negligible
CPU cost for dispatching and processing data stored on disk.
As network density increases, the cache entries grow larger
and cache processing may become more expensive than sim-
ply recomputing results from in-memory data.

This trade-off is present to some extent in any result
caching scheme, and designers must be careful that cache
overhead is less than the cost of recomputation. But in prac-
tice we find that only the disk-based caching optimization
might impose a significant processing overhead, for certain
networks, and that the optimization offers a net improvement
in performance for networks of reasonable density.

5.4 Optimization Parameters

It is important to characterize the effect of any new simula-
tion parameters introduced by our optimization techniques.
We study simulation performance under various choices for
optimization parameters and examine the robustness and sta-
bility of the different optimization levels. Recall that the

Walsh and Sirer

 0

 50

 100

 150

 200

 0 250 500 750 1000

E
xe

cu
tio

n
tim

e
(m

in
ut

es
)

Number of nodes (constant density)

(1000, 860.7)

PSfrag replacements

L0
L1
L2
L3

L4a
L4b

Figure 3: Effect of Network Size on Total Simulation Run Time
Holding Node Density Constant

grid-based intra-simulation approach introduces a granular-
ity parameter, and the caching intra-simulation approach a
∆t lookahead parameter.

We first evaluate the effect of varying grid granularity on
each level of staging. Intuitively, it is clear that a very fine
granularity will give rise to many grid-crossing events as
nodes move about in the topology, and also leads to more
work in packet transmission, as many empty bins will be
scanned for nodes. Conversely, a very coarse granularity
reduces to a single bucket and, essentially, a scan over all
nodes during each packet transmission or cache miss. A rea-
sonable choice is to use the node transmission radius, which
requires a scan of roughly nine buckets during each trans-
mission or cache miss.

We run the simulator on a single 250 node network with
the same configuration as before and ∆t fixed at 2 seconds,
but vary the grid granularity. Figure 4 verifies our intuitive
description of the effects of grid granularity. Interestingly,
we find that any choice of granularity other than the two ex-
tremes yields a substantial improvement in run time under
L1 staging, with only minor variation between 500 and 2000
meters, with the optimum choice approximately 1500 me-
ters.

In this experiment, even the right-most extreme performs
much better than the ns2 baseline implementation since we
avoid creating events and copies of the packet for nodes out-
side the transmission range. Further, much of the degrada-
tion due to a poor choice in granularity is mitigated by the
use of the higher levels of staging. In these cases, the poorly-
tuned grid is consulted only in the rare case of a cache miss.

The choice of grid granularity depends on the particular
choice of node mobility and load patterns. In practice, we
find that the optimal choice of granularity can be as low as
250 meters, but is rarely higher than 2000 meters. In all
cases we have examined, the trends are similar to those pre-
sented above, making automatic tuning a feasible approach.

 0

 5

 10

 15

 20

 25

 0 500 1000 1500 2000 2500 3000

E
xe

cu
tio

n
tim

e
(m

in
ut

es
)

Grid granularity (meters)

(2, 232.8)

PSfrag replacements

L0

L1
L2
L3

L4a
L4b

Figure 4: Effect of Varying Grid Granularity on Simulation Run
Time

5.5 Caching Lookahead Parameter

The overhead of constructing cache entries is controlled by
the ∆t parameter to the neighborhood caching routine. Re-
call that ∆t specifies the desired expiration time when con-
structing a cache entry. A larger value means that a larger
radius must be examined to build a cache entry, leading to a
larger data structure, but allowing the cache entry to remain
valid for longer. We set up our simulator as the previous
experiment, but fix the grid granularity at 250 m.

Figure 5 shows how ∆t controls the cache hit rate (top),
and the sizes of the two neighborhoods sets Nr−∆r and Nr±∆r

stored in cache entries (bottom). We only show the results
for L2 caching; those for L3 perfect caching and the first
phase L4a of intra-simulation staging are identical. For ref-
erence, the actual average neighbor set size for queries is
shown as constant Nr.

The overheads associated with caching are limited by the
cache hit rate and Nr±∆r. A very small value for ∆t leads to
many cache misses, each of which is potentially expensive.
Conversely, a large value for ∆t forces both cache hits and
misses to process a larger set Nr±∆r. The cache is effective
for reasonable values of ∆t, roughly 2 to 4 seconds, with
high hit rate but still reasonably sized Nr±∆r. The curves for
the neighborhood set sizes can be explained geometrically
based on the known transmission radius, and the average
number of neighbors of transmitting nodes. The cache hit
rate is a function of the average inter-packet spacing. While
our implementation does not pick ∆t automatically, the fig-
ure shows that a near-optimal value for parameter ∆t can be
computed as a function of the packet rate, node density, and
transmission radius.

Surprisingly, even with such varying cache behavior there
is very little overall change in total simulation run time. Fur-
ther experiments indicate that over the entire range of values
in Figure 5, run time varies by at most 5% over the range of
∆t values shown. The L2, L3, and L4a staging levels all per-

Walsh and Sirer

 84
 88
 92
 96

 100

C
ac

he
 h

its
 (

%
)PSfrag replacements

Caching parameter ∆t (seconds)

Nr

Nr−∆r

Nr±∆r

 0

 10

 20

 30

 40

 0 2 4 6 8 10 12 14 16 18 20

S
et

 s
iz

e
(a

ve
ra

ge
)

PSfrag replacements

Caching parameter ∆t (seconds)

Nr
Nr−∆r
Nr±∆r

Figure 5: Effect of Varying Caching Parameter ∆t on Cache Hit
Rate and Neighborhood Sizes

form similarly, while the second phase L4b inter-simulation
approach improves run time by approximately 30% as com-
pared to L3, independent of the ∆t parameter. As with the
grid granularity, nearly any reasonable choice of parameter
will work well for the highest levels of staging.

6 RELATED WORK

Several important examples of staging can be found in ex-
isting simulators. In our analysis of the ns2 implementation,
we identified applications of staging, but find that the tech-
nique of staging is not widely applied in the implementa-
tion or recognized in the literature. There has been no prior
recognition or development of the technique of staging as a
general approach to simulation optimization.

The NixVector (Riley, Ammar, and Fujimoto 2000) ap-
proach improves wired-network routing efficiency in the
ns2 simulator by computing and caching routes on demand
rather than maintaining a complete routing table. This ap-
proach has not been applied between multiple runs of the
simulator, nor does it eliminate redundancy when inputs
vary slightly between computations.

A second example from ns2 is a grid implementation very
similar to our L1 staging. A key difference is that we ex-
pose and explore the parameter space of grid granularities,
while the previous attempt uses a hard-coded granularity of
1 meter. In typical scenarios, this choice leads to perfor-
mance worse than the baseline. Similarly, Wu and Bonnet
(2002) propose an alternative packet transmission routine
for ns2, essentially equivalent to our L1 staging with granu-
larity parameter ∞. Again, we have shown that this choice of
granularity is particularly inefficient as compared to nearly
any other choice. These examples illustrate the importance
of properly characterizing staging parameters and relating
them to system variables such as the transmission radius and
expected number of neighbors.

In the context of discrete event simulators, we find occa-

sional use of staging or similar techniques to improve perfor-
mance. Splitting (Glasserman, Heidelberger, Shahabuddin,
and Zajic 1996), cloning (Hybinette and Fujimoto 1997),
and updateable simulations (Ferenci et al. 2002) are three
related techniques which eliminate identical computations
in multiple runs of the simulator. These techniques do not
exploit redundant computations within a single run of the
simulator, nor do they address computations which are sim-
ilar but not identical.

Boukerche et al. (1999) propose a two-phase design for
Personal Communications System (PCS) network simula-
tion using SWiMNet. This design is used to facilitate vari-
ous lookahead optimizations in a parallel simulation engine,
rather than to eliminate redundant computation or optimize
multiple runs of the simulator.

A popular technique for improving scale and performance
uses distributed simulation (for example Boukerche et al.
1999, Liu et al. 2001, and Liljenstam, Rönngren, and Ayani
2001), sometimes combined with specialized language fea-
tures (for example Zeng, Bagrodia, and Gerla 1998). These
approaches are complimentary to our optimizations, since
staged simulation can be applied equally well to both dis-
tributed and centralized designs. Other techniques are used
to reduce simulation run time, such as model abstraction
and approximation (Huang, Estrin, and Heidemann 1998,
Gadde, Chase, and Vahdat 2002). Our approach differs from
model abstraction in that we do not alter in any way the final
result of computations. Additionally, abstraction may not be
possible if the system of interest has not yet developed stable
or well-understood models.

Finally, we note that staging as a concept is a general
technique, employed most notably in compilers and iterative
programming. Chambers (2002) discusses a staged compi-
lation technique that combines partial precompiling of code
coupled with dynamic optimizations at runtime. Iterative
programming is a general framework for describing compu-
tation. Like staged simulation, it relies on reusing results, in-
termediate values, and extraneous values from previous iter-
ations. Liu, Stoller, and Teitelbaum (1996) discuss methods
for automatically extracting this information using program
and data-flow analysis. We find this particular approach un-
suitable for large and complex simulator implementations,
where data-flow and simulation behavior depend very heav-
ily on the particulars of a simulation run. Additionally, the
use of multiple languages compounds the difficulty of low-
level automatic program analysis.

7 CONCLUSIONS

We propose a general technique, termed staged simula-
tion, for reducing the run time of discrete event simulators.
The central idea is to eliminate of redundant or partially-
redundant computations typical in simulations by caching
and reusing the results of computations. The technique con-

Walsh and Sirer

sists of identifying redundant computation both within sin-
gle runs as well as across consecutive runs of the simulator.
Staging then relies on precomputing, caching and reusing
partial results to eliminate redundant computation. It ap-
plies these techniques to function results, intermediate com-
putations, and auxiliary values not normally computed. Our
technique is general and applicable to a wide range of de-
signs, including parallel and distributed simulation engines.

We show that staging is an effective technique for re-
ducing simulation run time without loss of accuracy, and
is effective in a wide range of simulation scenarios includ-
ing varying mobility and communication patterns, network
sizes, and node densities. We implement three levels of
intra-simulation staging and one level of inter-simulation
staging in the ns2 wireless networking simulation system.
Simple intra-simulation optimizations are found to reduce
simulator run time by a factor of 9 and to improve simulator
scalability from networks of hundreds of nodes to networks
of ten thousand nodes. An application of inter-simulation
staging can reduce run time even further to a factor of 21
over the non-staged implementation. We find that the tech-
niques are robust in the choice of parameters, and these pa-
rameters appear easy to estimate automatically as a function
of other simulation variables and observed runtime behavior.

REFERENCES

Boukerche, A., S. Das, A. Fabbri, and O. Yildiz. 1999, May.
Exploiting model independence for parallel PCS network
simulation. In Workshop on Parallel and Distributed Sim-
ulation, 166–173.

Broch, J., D. A. Maltz, D. B. Johnson, Y.-C. Hu, and
J. Jetcheva. 1998, October. A performance comparison
of multi-hop wireless ad hoc network routing protocols.
In ACM/IEEE Intl. Conference on Mobile Computing and
Networking, 85–97.

Chambers, C. 2002, March. Staged compilation. ACM SIG-
PLAN Notices 37 (3).

Chang, X. 1999. Network simulations with OPNET. In Win-
ter Simulation Conference, ed. P. Farrington, H. Nemb-
hard, D. Sturrock, and G. Evans, 307–314. Piscataway,
NJ: IEEE Press.

Ferenci, S., R. Fujimoto, M. Ammar, K. Perumulla, and
G. Riley. 2002. Updateable simulation of communications
networks. In Workshop on Parallel and Distributed Simu-
lation, 107–114.

Gadde, S., J. Chase, and A. Vahdat. 2002, January. Coarse-
grained network simulation for wide-area distributed sys-
tems. In Communication Networks and Distributed Sys-
tems Modeling and Simulation Conference.

Glasserman, P., P. Heidelberger, P. Shahabuddin, and T. Za-
jic. 1996, December. Splitting for rare event simulation:
Analysis of simple cases. In Winter Simulation Con-
ference, ed. J. Charnes, D. Morrice, D. Brunner, and

J. Swain, 302–308. Piscataway, NJ: IEEE Press.
Huang, P., D. Estrin, and J. Heidemann. 1998. Enabling

large-scale simulations: Selective abstraction approach to
the study of multicast protocols. In MASCOTS, 241–248.

Hybinette, M., and R. Fujimoto. 1997, December. Cloning:
a novel method for interactive parallel simulation. In Win-
ter Simulation Conference, ed. S. Andradóttir, K. Healy,
D. Withers, and B. Nelson. Piscataway, NJ: IEEE Press.

Liljenstam, M., R. Rönngren, and R. Ayani. 2001. Mob-
Sim++: Parallel simulation of personal communication
networks. IEEE DS Online 2 (2).

Liu, J., L. Perrone, D. Nicol, M. Liljenstam, C. Elliott, and
D. Pearson. 2001, June. Simulation modeling of large-
scale ad-hoc sensor networks. In European Simulation In-
teroperability Workshop.

Liu, Y., S. Stoller, and T. Teitelbaum. 1996, January. Discov-
ering auxiliary information for incremental computation.
In ACM SIGPLAN-SIGACT Symposium, 157–170.

Oh, S., and J. Ahn. 1999. Dynamic calendar queue. In An-
nual Simulation Symposium.

Riley, G. F., M. H. Ammar, and R. Fujimoto. 2000. Stateless
routing in network simulations. In MASCOTS, 524–531.

Royer, E., and C. Toh. 1999, April. A review of current rout-
ing protocols for ad-hoc mobile wireless networks. IEEE
Personal Communications 6 (2): 46–55.

The VINT Project. 1995. Ns-2 network simulator. Available
at: <http://www.isi.edu/nsnam/ns> [accessed
July 1, 2003].

Wu, S., and C. Bonnet. 2002. An alternative packet trans-
mission procedure for mobile network simulation. In Intl.
Symposium on Performance Evaluation of Computer and
Telecommunication Systems.

Zeng, X., R. Bagrodia, and M. Gerla. 1998. GloMoSim: A
library for parallel simulation of large-scale wireless net-
works. In Workshop on Parallel and Distributed Simula-
tion, 154–161.

AUTHOR BIOGRAPHIES

KEVIN WALSH is currently a Ph.D. candidate in Com-
puter Science at Cornell. His e-mail address is <kwalsh@
cs.cornell.edu>.

EMIN GÜN SIRER is currently an Assistant Professor in
Computer Science at Cornell. His e-mail address is <egs@
cs.cornell.edu>.

