
Costs of Security in the PFS File System∗

Kevin Walsh
Department of Mathematics and Computer Science

College of the Holy Cross
kwalsh@holycross.edu

Fred B. Schneider
Department of Computer Science

Cornell University
fbs@cs.cornell.edu

July 24, 2012

Abstract

Various principles have been proposed for the design of trustworthy systems. But
there is little data about their impact on system performance. A filesystem that perva-
sively instantiates a number of well-known security principles was implemented and
the performance impact of various design choices was analyzed. The overall perfor-
mance of this filesystem was also compared to a Linux filesystem that largely ignores
the security principles.

1 Introduction

PFS (Principled Filesystem) pervasively instantiates several principles often proposed to
guide the design and implementation of trustworthy systems: Mutual Suspicion [Schroeder
1972], Complete Mediation [Anderson 1972], Least Privilege [Saltzer and Schroeder 1975],
and Minimization of Trusted Computing Bases [Nibaldi 1979]. An analysis of PFS perfor-
mance thus gives insight into the impact these principles have in practice. That analysis
is the subject of this paper. We observe in PFS an increase in the amount of filesystem
code overall, though the trusted computing base for the filesystem—code whose compro-
mise could result in a violation of filesystem security goals—was greatly reduced in size.

∗Supported in part by NICECAP cooperative agreement FA8750-07-2-0037 administered by AFRL,
AFOSR grant F9550-06-0019, National Science Foundation grants 0430161, 0964409, and CCF-0424422
(TRUST), ONR grants N00014-01-1-0968 and N00014-09-1-0652, and grants from Microsoft. The views
and conclusions contained herein are those of the authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed or implied, of these organizations or the U.S.
Government.

1

And contrary to common wisdom, we found that increased run-time overhead that could be
attributed to security enforcement was not always significant.

Trustworthiness is the primary design goal for PFS, but we accept the reality that PFS
might have vulnerabilities. So the design of PFS attempts to blunt the impact that a success-
ful attack might have—on PFS, on the underlying operating system, or on applications and
services unrelated to the filesystem. For comparison, conventional filesystem implementa-
tions locate the bulk of their code within the operating system kernel, where it executes in
supervisor mode. The subversion of such a system would be largely unconstrained, so an
attacker who successfully attacks it gains complete control over all other software running
on the machine. To mitigate against such risks, PFS executes outside of the operating sys-
tem kernel. Moreover, both PFS client code and PFS code itself are governed by access
control policies. So damage from compromised PFS code is easier to contain.

Traditionally, filesystems enforce a form of discretionary access control (DAC) [De-
partment of Defense 1985], where an authorization relation defines what accesses each
principal is permitted to perform on each object. The objects include files and directories,
and the principals include users and groups of users. The usual implementation of DAC
employs an access control list (ACL) for each object, where the owner of an object is the
only principal authorized to modify that ACL. The ACL enumerates the privileges each
principal holds for that object.

PFS enforces DAC. But unlike conventional filesystems, PFS has distinct objects for
file, directory and inode allocation lists, for disk configuration data like boot sectors and
partition tables, and for (nominally) unused portions of disks. In short, PFS enforces a
pervasive form of DAC in which every byte stored on a disk is part of some object and,
therefore, has an owner and an ACL.

PFS Pervasive Discretionary Access Control (PDAC) Policy:
• Every sequence of bytes stored by PFS on disk has an owner.

• Every sequence of bytes stored by PFS on disk has an ACL, specified by
the owner or by some principal acting on the owner’s behalf, where the
ACL lists principals, assigning each either read or read/write privi-
leges.1

• A request to read or write disk data—whether on disk or in memory—
made on behalf of some principal is allowed to proceed only if that prin-
cipal and corresponding privilege appear on the ACL for that data.

We include among the principals the individual components that constitute PFS, so requests
by the filesystem itself to access filesystem data are governed by PDAC.

As a practical matter, PFS exports a typical filesystem interface to its clients. Its inter-
nals, though, differ from that of conventional filesystems in part because PFS was designed
to run on α-Nexus,2 which exports a somewhat unconventional operating system interface.

1The operating system for which PFS was designed implements a separate mechanism for loading and
executing code, independent of PFS. For this reason, PFS omits the traditional execute privilege for files.

2α-Nexus is a cousin of the Nexus [Sirer et al. 2011] operating system.

2

Access control in α-Nexus is implemented using credentials-based authorization [Schnei-
der et al. 2011]. PFS both uses this authorization framework internally and exposes the
underlying authorization interfaces to clients. With credentials-based authorization, poli-
cies and credentials are specified by formulas in a logic. The NAL logic used by α-Nexus
supports a rich variety of principles, any of which can now serve as owners of objects or ap-
pear on ACLs. PFS consequently can implement more expressive DAC policies than those
found in traditional filesystems (which typically require a file’s owner and ACL entries to
name users or enumerated groups of users). A group comprising a set of processes, for
example, can be characterized using a predicate over program manifests—the constituents
are processes that execute programs whose manifests satisfy the given predicate. This ex-
pressiveness is particularly useful for authorization of access to meta-data stored on disk,
because it allows a group of PFS components, each executing as a process, to serve as an
owner or to appear on an ACL.

We assume a threat model that includes (i) processes executing on the same machine
as PFS and (ii) users who might (“insiders”, including administrators) or might not (“out-
siders”) have legitimate access to that machine. PFS, however, is not designed to defend
against adversaries with physical access to the system’s disks, memory, processors, or other
hardware.3 PFS also trusts certain services provided by α-Nexus and trusts that α-Nexus
will not itself make unauthorized requests to access filesystem data. Assurance for an oper-
ating system like α-Nexus is an independent matter.

In conventional filesystems, a filesystem administrator owns the meta-data that specifies
the owner of every file and directory. So the filesystem administrator can change the owner
and, by implication, can modify ACLs to gain access to files and directories. Some conven-
tional filesystem implementations even grant filesystem administrators unrestricted access
to all data stored on disks regardless of DAC policies. In PFS, filesystem administrators
have considerably less authority. PFS filesystem administrators are authorized to configure
the filesystem, but they do not own user files or directories, nor do they own most of the
filesystem meta-data stored on disks. Consequently, PFS filesystem administrators are not
permitted to read or write user files or meta-data, nor are they able to change owners or
ACLs for user files. This protection follows naturally from treating filesystem administra-
tors no differently from other principals, given the pervasive enforcement of DAC by PFS.
Filesystem administrators in PFS can reformat disks, however, so a filesystem administra-
tor can compromise the availability of PFS user data. Such power seems necessary for a
filesystem administrator to manage the system.

The rest of this paper is organized as follows. In Section 2, we provide an overview
of principles, commonly advocated for building secure systems, that we instantiate in PFS.
Features of α-Nexus and NAL on which PFS depends are described in Section 3. Section 4
details the design and implementation of PFS, with specific attention to how the security

3Many prior filesystems (e.g., [Blaze 2003; Halcrow 2005; Microsoft TechNet 2010; Gough 2012]) do
focus on defending against physical attacks, particularly off-line attacks against stolen disks. Such filesystems
typically encrypt data stored on disks or make use of cryptographic hashes to monitor data integrity; PFS does
not, but could.

3

principles of Section 2 are implemented, including trade-offs that entailed. Section 5 eval-
uates PFS to quantify costs and benefits of these principles. We close with a discussion of
related work.

2 Security Principles

Like prior work, we view a system as a set of components, each with state and behavior
that can be analyzed independently. Only certain prespecified components are assumed to
be trustworthy relative to some set of security goals. A component whose behavior deviates
from its specification is considered compromised; we make no assumptions about possible
deviations. The smallest unit of compromise is a single component, and we do not admit
the notion of a partially compromised component. Yet the behavior of even a compromised
component could be constrained to violating only certain security goals. For example, a
compromised component might be able to violate PDAC for some bytes on disk, but not for
others.

Components cooperate by interacting. They might share state, transfer control to each
other, or synchronize their behaviors. Without loss of generality, we assume that all inter-
action between components occurs by sending and receiving requests, responses, or other
messages over prespecified channels.4 If, by sending messages, one component can cause
another to perform arbitrary actions, then the recipient is placing full trust in the sender.
Conversely, a recipient that performs only certain actions at the request of a sender can
be considered suspicious of the sender. Full trust may lead to violations of security goals,
because it enables compromise to spread: a component that places full trust in some com-
promised component C may itself become compromised by virtue of receiving and acting
on messages from C. Thus, suspicion is best encouraged and full trust avoided, leading to
a classic security principle:

Principle: Mutual Suspicion. Prefer designs that reduce the likelihood that
any compromised component can cause the compromise of another [Schroeder
1972].

This principle can be instantiated by employing a variety of authorization mechanisms,
alone or in combination. Examples include the following.

• Restrict the language of requests and responses. This justifies adopting an applica-
tion programming interface (API) that specifies a set of interfaces and a protocol or
message format understood by those interfaces. When a recipient implements such
an API, senders are able to instigate only those actions defined by the API; other
actions at the recipient are prevented.

• Check incoming requests and ignore those that violate some policy. To implement
this, a guard (or reference monitor [Anderson 1972]) can be employed. The guard

4Familiar shared memory and method invocation semantics can be formulated in terms of sending and
receiving messages over channels, as can all other types of interaction.

4

intercepts requests, performs checks, then forwards to the intended recipient only
those requests found to comply with the policy.

• Sanitize incoming messages before acting on them. Web servers, for example, com-
monly protect against SQL injection and XSS attacks [Su and Wassermann 2006] by
implementing a transformation that, for every request the Web server receives, re-
places suspect character sequences with harmless ones before any further processing.

Implicit in the above examples is an assumption that all requests to recipients are inter-
cepted. A familiar security principle summarizes this obligation:

Principle: Complete Mediation. Authorize, using an appropriate enforcement
mechanism, every request for a component to perform some action [Anderson
1972].

What obligations are entailed to enforce Complete Mediation depend on the mechanisms
used to authorize requests. For guards or sanitization, Complete Mediation requires that all
requests to a component be checked by an appropriate guard or be appropriately sanitized.
And when Mutual Suspicion is instantiated by selecting a restricted set of APIs, Complete
Mediation requires that requests must be conveyed through the appropriate API and not
through some side-channel.

Complete Mediation presumes that components interact only over known, well-defined
channels. Component isolation is implicit in that. An operating system typically imple-
ments isolation between processes by using a virtual memory architecture that prevents one
process from accessing state associated with another process. And within a single process,
software techniques (e.g., [Wahbe et al. 1993; Bershad et al. 1995]) can provide isolation
between objects or code modules. In all cases, boundaries created by isolation mechanisms
define the components.

If a sender can cause a recipient to perform some action, then we say the sender holds
a privilege for that action at that recipient. When a user name is listed on the ACL for
a file, for example, components executing on behalf of that user hold privileges for the
corresponding file action. Privileges are sometimes a function of the system state or history
in a way that is less explicit. For example, if a filesystem enforces per-process disk quotas,
then whether a process has a privilege to create files depends on the process’s current or
past disk usage. Filesystem ACLs and disk quotas are typically enforced dynamically by
guards. Privileges can also be implemented statically, for instance, by restricting at compile
time the set of APIs against which a program can link.

Assurance that a system’s security goals will not be violated requires analyzing all com-
ponents that hold privileges for instigating any action that might violate those goals. This
suggests a conservative approach to granting privileges.

Principle: Least Privilege. Grant each component of the system the fewest
privileges necessary to complete its task [Saltzer and Schroeder 1975].

5

Least Privilege facilitates implementing Mutual Suspicion. One way a component can cause
the compromise of another is by abusing privileges that instigate actions at that other com-
ponent. Eliminating (unnecessary) privileges thus helps reduce the likelihood that a com-
promised component will have sufficient privileges to compromise other components.

Of course, instantiating Mutual Suspicion, Complete Mediation, and Least Privilege in
a system does not by itself eliminate the possibility that a system’s security goals might
be violated. These security principles merely help limit the impact of compromised com-
ponents. Some components, by necessity, perform tasks that could violate a security goal.
This set of components is called the trusted computing base (TCB) [Nibaldi 1979] for that
security goal.5

Components in the TCB for each security goal must all be trusted not to violate that
security goal. One way to reduce the risk that such trust is misplaced is prescribed by:

Principle: Minimization of Trusted Computing Bases. Make each TCB as
small as possible, consistent with the tasks it has to perform [Nibaldi 1979].

A smaller TCB should be easier to analyze; a larger TCB is more likely to have bugs, hence
is more easily attacked. In an ideal system design, TCBs would be chosen to minimize
the probability that security goals are violated. Minimization of Trusted Computing Bases
only approximates what is sought, equating greater TCB size with increased probability of
compromise.

3 α-Nexus Operating System

Several key features of α-Nexus were particularly useful for PFS. α-Nexus processes ex-
hibit strong isolation from each other by default, making Mutual Suspicion between pro-
cesses the norm rather than the exception. Processes in α-Nexus interact with each other
and with the kernel by communicating over channels that have simple and straightforward
semantics, chosen to support Complete Mediation. So it is trivial for an α-Nexus process to
implement a guard that mediates on all incoming inter-process communication (IPC) mes-
sages. The credentials-based authorization architecture implemented by α-Nexus is useful
for building guards that instantiate Least Privilege. And α-Nexus executes device drivers
and various system services outside of the operating system kernel, facilitating smaller
TCBs. In this section, we briefly describe how these features are used in PFS.6

5More broadly, a TCB may be construed to include not only software components, but also hardware and
associated firmware. In this paper we consider only software, since PFS trusts the hardware and firmware on
which it executes.

6A notable feature of α-Nexus is its reliance on a TPM [Trusted Computing Group 2011] secure co-
processor as a hardware-protected root of trust. Although α-Nexus relies on the attestation and secure storage
facilities of the TPM to protect the confidentiality and integrity of certain data, our PFS prototype does not
require a TPM.

6

3.1 Credentials-based Authorization in α-Nexus

In α-Nexus, each request from a principal to access a resource is accompanied by a set of
credentials that convey information about relevant system state; a guard allows the request
to proceed only if the credentials provide evidence sufficient to discharge the policy being
enforced. Checking a policy is therefore a form of proof checking. Credentials, policies,
and the names of principals are expressed using NAL [Schneider et al. 2011], and NAL
provides the axioms and inference rules used to reason about credentials. In the imple-
mentation, α-Nexus provides a guard library and NAL proof checker to simplify credential
management and policy enforcement. α-Nexus also implements mechanisms to ensure that
credentials and requests can’t be forged. For brevity, we outline a simplified treatment of
α-Nexus authorization here.

A principal name identifies a set of one or more principals. NAL is sufficiently ex-
pressive to provide a unique principal name for each installation of α-Nexus, each process
running on a α-Nexus kernel, and each user for a given α-Nexus installation.7 Thus the
principal name for a process can appear on an ACL, as can the principal name for a user.

A principal may issue credentials, and information conveyed by each credential is at-
tributed to the principal that issued it. For instance, at the request of an executing process
P , the α-Nexus kernel will issue a credential specifying a manifest for P , where the mani-
fest describes the program code that P executes, configuration parameters for P , and so on.
The resulting credential can then be used by guards when checking policies. A principal
can also issue a credential to express full trust in, or delegate specific privileges to, another
principal. For instance, a user Alice may issue a delegation credential to establish that pro-
cess P speaks for Alice unconditionally. Subsequently, P can request access to resources
or issue credentials on behalf of Alice; we need only arrange for the delegation credential
from Alice to accompany the request or credential that P issues. Alternatively, Alice may
issue a delegation credential to establish that P speaks for Alice conditionally—say, only
in regards to reading file f . In either case, even if only the principal name for Alice appears
explicitly on the ACL for f , both Alice and P hold the privileges associated with that ACL
entry.

A NAL group, denoted {|P : φ(P)|}, is constructed from a set of principals, called
constituents, and is specified intensionally by giving a characteristic predicate φ: the con-
stituents of group {|P : φ(P)|} are those principals P that satisfy φ(P). NAL groups are
principals, and each constituent P speaks for the group. Consider, for instance, a predicate
φh(P) that is defined to hold exactly when H(P) = h, where h is the hash of some known
program code and configuration and H(P) is the value of a hash taken over the contents of
the α-Nexus-issued program manifest credential for P . If Alice places group {|P : φh(P)|}
on the ACL for file f with read privileges, then Alice has effectively granted to the group’s
constituents—processes executing program code having hash h—privileges to read f . In
PFS, the guard enforcing this ACL would authorize a process P ’s request to read f only if

7NAL principal names are derived from user IDs (as opposed to login names) and process IDs; these IDs
are never reused, even across reinstallation of α-Nexus.

7

it can prove that P is a constituent of that group. Such a proof would proceed most directly
by presenting the appropriate program manifest credential for P from α-Nexus.

PFS defines several NAL groups as above. In the remainder of this paper, we use
HashGroup(h) to abbreviate NAL group {|P : φh(P)|}, where h is some fixed hash value.
Note that the name of the group—HashGroup(h)—is stable across reboots, because it is
independent of the process names chosen by the kernel at run-time. So these groups are
suitable for use on ACLs that are stored on disk. By contrast, process names are transient
and so are unsuitable for inclusion directly on filesystem ACLs.

3.1.1 α-Nexus Alias Tables

Many authorization policies, both for PFS operations and for α-Nexus system calls, are
similar in structure: the requesting principal must prove that it speaks for one of a set of
prespecified principals, such as the filesystem administrator, the owner of some object, or a
principal found on an ACL. Guards in α-Nexus are specialized for supporting these cases,
and PFS leverages this specialization to amortize the cost incurred by guards for checking
NAL proofs.8

As an example, suppose there are sufficient credentials to prove that a process P speaks
for Alice , and P routinely requests access to files on Alice’s behalf. Once a trusted guard
verifies the proof of delegation, then we can record that outcome for use up until the time
when credentials appearing as premises of that proof are revoked. Similarly, once it has
been proven and recorded that some predicate φ(P) holds for principal P , then it follows
that P speaks for {|P : φ(P)|}. P can thus make multiple requests on behalf of that group
without incurring the cost of the guard checking that proof anew each time.

α-Nexus implements this optimization by maintaining, for each process P , an alias
table containing a set of aliases {. . . , Ai, . . .} and a corresponding set of proof schemas
{. . . , pfi , . . .}. Each proof schema pfi would be a proof that P speaks forAi if no credential
that pfi uses has been revoked. The first entry of process P ’s alias table always contains the
alias P and the (trivial) proof that P speaks for itself. Thus, building a guard that enforces
an authorization policy specified by an ACL is straightforward: process P specifies an index
i into its alias table when making a request; the guard need only access P ’s alias table to
check whether pfi is a sound proof that P speaks for Ai and, if so, compare alias Ai against
the principals and privileges listed on the ACL.

A process can add entries to its alias table using a system call, and other system calls
delete entries, lookup and enumerate entries, etc. Much of the checking for pfi can be
performed when pfi is added to the alias table. Later, when a lookup is performed, α-Nexus
only needs to check whether credentials that are premises of pfi are still valid, which is
decidedly cheaper than re-checking the entire proof pfi . If premises of pfi are no longer
valid, then the lookup operation fails and alias Ai is not used.

8The specialized guards implemented by α-Nexus and described here were replaced by a more generic type
of guard in the current version of Nexus.

8

3.2 α-Nexus Shared Memory and IPC Channels

α-Nexus processes communicate and synchronize with each other by using shared memory
regions and IPC channels. These are named using opaque identifiers, chosen at the time the
region or channel is created.

• The α-Nexus shared memory API provides two access mechanisms. A process can
invoke the shm read and shm write system calls to read or write data in a shared
memory region. Or, a process can invoke the shm map system call to create virtual
memory mappings for the underlying memory pages—thereafter, the process can
access that data directly, without kernel intervention.

• IPC channels in α-Nexus support synchronous and asynchronous message-passing
semantics. A process invokes the ipc send system call to send an IPC request over
a channel and (optionally) await the corresponding IPC response. A process that
creates an IPC channel can invoke the ipc recv system call to receive IPC requests
from some sending processes then, if necessary, invoke the ipc reply system call to
return an IPC response to that sender.

α-Nexus implements DAC for shared memory regions. Each shared memory region is
owned by the process that created it, and that process controls access to the region by spec-
ifying an ACL that contains NAL principal names having read or read/write privileges.
The shm read, shm write, and shm map system calls take a parameter i, specifying an
index into the requester’s alias table. Before performing any action in response to any of
these system calls, a kernel guard performs a lookup for entry i in the requester’s alias table
and, if the lookup succeeds, checks if the resulting alias and the requested access modes
appear on the appropriate ACL. Should an owner request changes to an ACL, the kernel
examines existing virtual memory mappings for all processes and deletes those found to
be inconsistent with the new ACL. The kernel’s shared memory guard is kept deliberately
simple, because it is in the TCB for all security goals.

A process that creates an IPC channel is the owner of that channel, but α-Nexus does
not implement DAC for IPC channels. Instead, Complete Mediation for IPC requests and
IPC responses is achieved by implementing guards within processes that send and receive
IPC requests and responses. Thus a channel owner runs a guard to authorize IPC requests
arriving over the channel; other processes run guards to authorize IPC responses.

The α-Nexus kernel implements authentication for IPC channels so that guards have a
reliable way to attribute IPC requests and IPC responses to the principals that sent them.
The ipc send and ipc reply system calls take a parameter i, specifying an index into
the sender’s alias table. The kernel performs a lookup with that index. If the lookup suc-
ceeds, then the kernel annotates the IPC request or response with an encoding of alias Ai.
Otherwise, the kernel discards the message. By annotating an IPC message with alias Ai,
the kernel is attesting that principal Ai—or, rather, a process that speaks for Ai—sent the
message. The recipient’s guard examines IPC message annotations in the course of its own
checking, and it is the sender’s responsibility to ensure the alias that was selected satisfies

9

the recipient’s guard. Because all processes place full trust in the kernel, the recipient’s
guard can accept and act on the kernel’s annotations in lieu of performing is own proof
checking.

3.3 α-Nexus Device I/O Privileges

Device drivers in α-Nexus run as processes above the kernel. Each physical I/O device
is associated with a device driver process. The process and device interact using a set
of (unique) I/O addresses associated with the device; device drivers are not authorized to
access other I/O addresses. Device drivers request I/O to instigate direct memory access
(DMA) transfers between system memory and devices, but they are not normally authorized
to request I/O that causes DMA transfers to memory outside of the device driver process’s
virtual memory or to memory that is otherwise unsuitable for DMA transfers.9

Neither the kernel nor other processes place full trust in device driver processes. α-Nexus
implements a guard, called the device driver reference monitor (DDRM) [Williams et al.
2008], that tracks relevant system state (and history) in order to distinguish between safe
and unsafe I/O operations. Whether a particular I/O operation is permitted by the guard
depends on system state including, for example, current DMA-compatible memory alloca-
tions, the history of I/O operations previously requested, and the identity and state of the
device to which the I/O is addressed.

Complete Mediation requires that the DDRM be invoked for every I/O request. To
implement this, a device driver process makes system calls to request that the kernel execute
I/O instructions on the process’s behalf; α-Nexus disables native hardware I/O instructions
for all device driver and other processes. The α-Nexus kernel invokes the DDRM before
performing any action in response to a device driver process’s I/O-related system calls. In
order that the DDRM can accurately check whether a requested I/O operation is safe, the
kernel also notifies the DDRM of relevant changes to system state, such as when DMA-
compatible memory is allocated or deallocated.

The DDRM is an example of Mutual Suspicion using an external guard—a guard that
is implemented not by the intended recipient of requests (i.e., the hardware device) nor
by the channel that conveys requests (i.e., the device I/O mechanism), but by some other
principal. Using an external guard increases the costs associated with enforcing a policy.
In this case, I/O operations incur extra latency by involving the kernel instead of being
executed directly by the device driver process. Using an external guard was necessary here
because the recipient, a physical device, does not implement a guard and can’t be easily
modified to do so.10

9Memory pages used in DMA transfers must be properly aligned, have virtual memory paging disabled
(i.e., “pinning” the pages in memory), and be physically contiguous with low physical addresses.

10Some hardware platforms include support for enforcing policies in hardware similar to those enforced by
the DDRM. These platforms partially obviate the need for the DDRM.

10

DiskDisk
Disk & InterruptHardware

Filesystem
Block

Disk Drivers

Filesystem Drivers

VFS

Cache

Cache Management

Disk Formatting

Filesystem Loader

Processes
Clients

Controllers

Application

Policy Management

Figure 1: Structure of the PFS filesystem.

4 Design and Implementation of PFS

The basic design and some of the code for PFS derive from a Linux filesystem [Linux
Kernel (version 2.6.29.2) 2009]. PFS is organized into three main layers, augmented by
several code modules for concerns that cut across multiple layers. The layers and major
modules are shown in Figure 1.

• A bottom layer comprises disk drivers. These manage DMA transfers between sys-
tem memory and disks. The disk drivers are based on the Linux libATA [Garzik
2012] driver library.

• A middle layer comprises filesystem drivers, each implementing a standard file and
directory tree view of the data stored in one partition of the disk. We implemented
one filesystem driver for use in PFS; it is an adaptation of an open source FAT32
filesystem driver [Riglar 2010].11

• A top layer creates a virtual filesystem (VFS). VFS presents a single file and direc-
tory namespace to clients, and it hides some details of filesystem drivers. The VFS
interface for clients includes a streams-oriented interface, in which a client invokes
read and write methods to access file contents, and an mmap-oriented interface, in
which file contents are mapped into a client’s virtual address space for subsequent
direct client access.

PFS runs on standard Intel x86-compatible hardware with dual Serial ATA (SATA) disk
buses, each capable of controlling between one and four physical disks.

PFS data is stored on disks in 4,096-byte blocks; this size coincides with the memory
page size on our hardware. The kth block on the jth disk of disk bus b is uniquely identified
by the tuple 〈b, j, k〉, called a block ID. Block 0 of each disk stores a partition table for

11We chose the FAT32 format for ease of implementation. Other filesystem formats, such as EXT3 or NTFS,
would also be straightforward to deploy by adapting available drivers.

11

that disk. Each entry in the partition table defines a partition, specifying a type code and
a range of block numbers. The type code identifies a filesystem driver that manages the
corresponding range of blocks (our prototype only supports one type code, FAT32, because
it only implements that one filesystem driver). A PFS disk-formatting module writes a new
partition table to block 0 once, during system installation, and the PFS filesystem-loader
module reads this block during each reboot.

The owner and ACL for each block are stored on disk and thus persist across reboots.
PFS does not impose constraints on what NAL principal names are used to specify owners
or ACL entries, so PFS benefits from NAL’s flexibility. Typical principals include users,
named sets of users (i.e. traditional enumerated groups), and NAL groups whose con-
stituents are processes. This authorization information is first written during initial system
installation, and PFS flushes changes to disk whenever a block’s ACL is modified or the
block’s owner changes.

4.1 File Access Requests

It is instructive to consider the sequence of events that occur when a client reads a file.
Suppose some client sends VFS a request, specifying a file handle and a count of bytes to
read.

1. Upon receiving the request, VFS looks up the file handle in a per-client file descriptor table

to obtain that client’s current offset for file accesses and a unique ID for the file. The
unique ID is a pair, comprising a reference to the underlying filesystem driver for that
file and an ID chosen by that filesystem driver. VFS calculates the range of bytes to
be read then forwards a request, with the byte range and unique ID, to the appropriate
filesystem driver.

2. A filesystem driver, upon receiving such a request, translates the file ID and range into a
set of block IDs. This computation can require access to meta-data stored on the disk or
cached in memory. Once the block IDs are computed, the filesystem driver checks if the
requested blocks are cached. If the blocks are not, then the filesystem driver sends the
block IDs in a data transfer request to the appropriate disk driver.

3. A disk driver translates each such request into a series of I/O requests. A hardware
interrupt on completion of the transfer initiates a completion action at the disk driver.
The disk driver then notifies the filesystem driver where the data can be found in the
cache.

4. The filesystem driver likewise notifies VFS where the data can be found in the cache.

5. The VFS layer updates the current file offset in the client’s file descriptor table

then passes the data from the cache to the waiting client.

Filesystem drivers communicate with disk drivers through a shared io request queue

data structure that contains data transfer requests to be serviced (asynchronously) by the

12

disk driver. Filesystem drivers insert new requests into this data structure, and they poll
to check whether previously inserted requests have completed. Requests are not necessar-
ily performed first-in, first-out, because disk drivers sometimes re-order requests, combine
overlapping requests, or aggregate requests for nearby blocks.

4.2 Caching

To mask the high latency and low throughput of physical disks, PFS caches disk blocks
in memory. A PFS cache management module tracks the status of cached blocks, and it
monitors global memory usage and block access patterns. A cache replacement algorithm
makes decisions about which cached blocks should be flushed or evicted from the block
cache, as well as which blocks on disk should be preemptively loaded into the block cache.
Our prototype implements most of the cache replacement strategy as part of the cache man-
agement module, since this module has comprehensive information about current and past
cache usage across all filesystems; other arrangements are possible.

PFS avoids the expense of copying blocks when requests or responses move between
layers of the filesystem. Thus, messages within and between layers can refer to the unique
copy of data stored in the block cache; all parts of the filesystem share access to the block
cache. Disk hardware also shares access to cached blocks, performing DMA transfers di-
rectly between the block cache and disks.

4.3 Heuristics for Decomposing PFS

While the basic organization of PFS, as described above, is dictated by functionality re-
quirements, there was considerable flexibility about how to decompose PFS into compo-
nents. Clearly, we should prefer small, fine-grained components, since that offers more
opportunities to instantiate Mutual Suspicion, Least Privilege and Minimization of Trusted
Computing Bases. Were PFS implemented as a single large component, for example, then
the entire code base for PFS would be in the TCB for all security goals. If, instead, PFS
is decomposed into small components, each with only a small amount of state and code,
then each component conceivably could be granted only a relatively small set of privileges.
Some components might even be excluded from some of the TCBs.

PFS is decomposed into fine-grained components, according to the following heuristics.

• Domain decomposition [Foster 1995]: Define a single component for each cohe-
sive subset of the system state, and include in that component all code necessary for
managing and manipulating this state. For example, file descriptor tables contain-
ing information about open file handles might be assigned to one component; and
partition tables describing disk layouts might be assigned to another component. If
some security goal concerns only a portion of the system state (e.g., file descriptors
or partition tables), then this decomposition helps minimize TCB size for that goal.
However, the price of this organization is that a single task that involves much of the
system state now involves interactions between many components.

13

• Functional decomposition [Foster 1995]: Define a distinct component for each sep-
arate task. Such a decomposition often results in components whose boundaries co-
incide with natural units of code. For example, several code modules in PFS are
each implemented as independent components, including: DiskFormatter , to exe-
cute the disk-formatting module; FSLoader , to execute the filesystem-loader mod-
ule; CacheMgr , to execute the block cache management module; and PolicyMgr , to
execute code for managing block owners and ACLs. As with domain decomposition,
functional decomposition helps minimize TCB size by isolating critical functionality
from unrelated parts of the system. However, functional decomposition can require
replicating or sharing data when tasks being assigned to different components use the
same data.

• Privilege separation [Kilpatrick 2003; Provos et al. 2003]: Decompose code into
components according to privileges, placing code requiring similar privileges in the
same component and placing code requiring different privileges in different compo-
nents. This approach should result in designs that allow many opportunities to instan-
tiate Least Privilege. But the approach presumes that privileges are defined before the
system is decomposed. In PFS, this was the case only for privileges associated with
device drivers that are enforced by the DDRM.

In applying the above heuristics, we must consider the impact on TCB sizes. For
instance, certain PFS components are in the TCB for PDAC enforcement because they
are responsible for protecting the integrity of the enforcement mechanisms for this policy.
Consistent with Minimization of TCBs, we endeavored to reduce the number and size of
such components. Execution of all other PFS components is governed by that enforcement
mechanism. In particular, those components are prohibited from accessing blocks (cached
in memory or stored on disk) that contain contents of user files—those blocks are owned
by users, so they do not include PFS components on their ACLs (an instance of Least Priv-
ilege). We instantiate Least Privilege for blocks storing other information, as well: The
owner of each such block is the PFS component that creates and manages the block’s data,
and a PFS component is included on the corresponding ACL only if that component needs
to access that data to complete its task. In fact, PFS components rarely share access to
block data, so most ACLs for these blocks contain only a single entry—an entry granting
the owner of the block full access.

Granularity of a decomposition affects performance, so heuristics must be applied care-
fully. A run-time cost is associated with supporting isolation for a component, so in de-
signs with many finer-grained components, the total costs for implementing isolation will
be larger. System performance can also suffer, due to overhead for supporting interaction
between a larger number of components. This overhead includes the cost of provisioning
channels, the extra cost to communicate over such channels as compared to using shared
memory, and the costs incurred by mechanisms for Least Privilege, Complete Mediation
and Mutual Suspicion concerning messages sent over channels. PFS locates most compo-
nents outside the kernel, where each component executes as a separate process. In some

14

DD

FSD

CacheMgr

DiskFormatter

FSLoader

PolicyMgr

Client VFS

Shared
IPC

§ 4.4

§ 4.8

§ 4.7 § 4.5

§ 4.9

§ 3.2

AliasDriver

§ 3.3, § 4.7 § 3.1.1 § 3.2

I/O

shm_read()

change_acls()

shm_change_acl()

P P

r

b

Legend:

Process boundary

Logical boundary

(no isolation)

Kernel boundary

f() Interface with guard

§ 4.3

§ 4.3

Tables
Kernel

MemorySupport

chown_nominate()
chown_accept()

shm_write()
shm_map()

α-Nexus

Figure 2: Final implementation of the PFS filesystem, showing major components and some
of the interfaces between components. Numbers refer to the sections of this paper in which
each component or interface is discussed.

cases, we judged the higher performance costs associated with supporting process isolation
to outweigh its contribution to trustworthiness.

One such case is discussed in Sections 4.11.2 and 5.3. There, more than one PFS com-
ponent is executed in a single process, even though this means sacrificing some isolation.
In another case, discussed in Section 4.7, a small amount of PFS code is situated within
the kernel, thereby enlarging the TCB for all security goals. All else equal, a filesystem
decomposed into many fine-grained components ought to exhibit worse performance than
one decomposed into fewer coarse-grained components.

Finally, the three heuristics described above can conflict. Consider the io request queue

data structure implementing a list of pending disk transfers. This data structure is manipu-
lated both by I/O scheduling code and by disk driver code. Domain decomposition would
suggest placing both the I/O scheduling code and disk driver code into a single component,
because they share state. But privilege separation would suggest having two separate com-
ponents, one for the scheduler and another for the disk driver, because only the disk driver
code requires privileges to perform disk I/O. In the end, decomposition of a system into
components requires taste and experience to understand how best to resolve such conflicts.

Below, we describe the aforementioned PFS components in some detail, justify how
the remainder of PFS was partitioned into components, and describe the privileges each
PFS component holds. Figure 2 provides a guide for the discussion by illustrating the final
structure we arrived at for the PFS implementation, including the major components of PFS
and some of the interfaces between those components.

15

4.4 Cache Management Component

For each page of memory allocated for the block cache, CacheMgr tracks: a block ID, a
reference count, usage statistics, and a page status flag. The page status flag can be either
empty, for a page that is allocated but not yet filled with data, or filled, for a page that has
been filled with data for the appropriate block from disk. In the later case, a block status flag
is either dirty, for a page containing cached block data that has been modified in memory
and not yet flushed to disk, or clean, otherwise. Block and page status flags are used to
ensure that clients and PFS components do not access a page in the block cache before it is
filled with appropriate data. The flags also help ensure that changes made to cached blocks
are flushed to disk before block cache memory pages are deallocated.

PFS components and clients refer to cached blocks using cache references. Cache refer-
ences are passed as parameters when invoking the CacheMgr API. That interface is an IPC
channel that allows incrementing and decrementing reference counts, reading or updating
usage statistics, and reading block and page status flags. Because efficient access to cached
blocks is so critical to system performance, PFS stores the contents of cached blocks in
α-Nexus shared memory regions. A single ACL controls access to all blocks in a single
shared memory region, so blocks with different owners or different ACLs are stored in dif-
ferent shared memory regions. For example, a separate shared memory region is created
for each file. This enables PFS to instantiate Least Privilege for access to blocks.

Cache references are pairs comprising a shared memory region ID and a page offset.
A process accesses the contents of a block by first extracting the shared memory region
ID from the cache reference, then invoking interfaces in the α-Nexus shared memory API:
for mmap-oriented access, a process invokes the shm map system call; for streams-oriented
access, a process invokes shm read or shm write system calls.12

When a process requests access to data in an α-Nexus shared memory region, the re-
quester provides the absolute offset and length of the data sought. For a client that uses
streams-oriented access to files, VFS calculates these offsets then invokes shm read or
shm write system calls on behalf of the client. For a client that uses mmap-oriented access
to files, the client calculates the needed offsets and the client invokes shm map directly.

Cache references rather than block contents typically appear in messages between pro-
cesses; and processes access and manipulate blocks indirectly through system calls. This
indirection can improve performance by avoiding copying. And the interposition of an API
for accessing and manipulating blocks, in effect, exposes only a limited set of operations
(hence, privileges) as compared to a design in which block data is copied between pro-
cesses and accessed directly by processes. For example, CacheMgr holds privileges to
initiate prefetching and eviction for blocks, but CacheMgr does not hold privileges to read
or write cached blocks. And a disk driver can’t directly read or write blocks stored in the
cache or on disk, even though it holds privileges for initiating DMA transfers between the
block cache and disks. Thus, our use of indirection enables PFS to better instantiate both

12PFS’s use of α-Nexus shared memory regions is similar to a more traditional filesystem implementation’s
use of a kernel buffer cache or page pool.

16

Mutual Suspicion and Least Privilege.

4.5 Policy Management Component

The PFS PolicyMgr component manages policy meta-data comprising the owner and the
ACL for each block stored in PFS.13 For each installed disk, PolicyMgr maintains a policy table

data structure to store policy meta-data for that disk. Each entry in policy table encodes
a range of block IDs, a NAL principal name for the owner of those blocks, and an ACL
enumerating NAL principal names and the privileges those principals hold.

PDAC dictates that access to a block—whether stored in the block cache or on disk—
is allowed only if the requester appears on the appropriate ACL. Blocks stored on disk
can only be accessed using disk transfers, so PFS authorizes disk transfers only in certain
limited situations, e.g., to flush a cached block to disk or to load a disk block into the
block cache. The mechanism for enforcing these restrictions is described in Section 4.7.
For blocks stored in the block cache, the shared memory guard that the α-Nexus kernel
provides is sufficient for enforcing PDAC; we need only configure each shared memory
region’s owner and ACL. PolicyMgr creates the shared memory regions used for the block
cache, hence the PolicyMgr process is the owner for these shared memory regions and,
consequently, PolicyMgr can configure each shared memory region’s ACL. PolicyMgr
determines the contents of that ACL by reading policy table for the blocks that are ex-
pected to be stored in the shared memory region. All those blocks must have the same ACL,
otherwise PolicyMgr will not create the shared memory region.

Each policy table is stored on the corresponding disk, and therefore policy meta-data
persists across reboots. Portions of a policy table are cached in memory and used when
PolicyMgr creates a shared memory region for the block cache. PolicyMgr uses the same
mechanisms to read or write this meta-data on disk as used for all other disk accesses in
PFS. So the cached policy table is actually stored in the block cache. This architecture
makes bootstrapping PFS a bit tricky since, as previously described, PFS prohibits reading
disk blocks except to load the block cache, but PolicyMgr must read policy table when
creating the shared memory regions that hold cached blocks. We resolved this circular de-
pendency by storing policy table at a fixed, predetermined location on disk. On reboot,
PolicyMgr knows which disk blocks store policy table, so it creates a shared memory
region to cache those blocks along with an ACL that grants only itself access to that shared
memory region. PolicyMgr can then request that blocks storing policy table be loaded
from disk into the block cache, as needed, before creating additional shared memory regions
for other blocks. Thus, in effect, ACLs for blocks storing a policy table are implicit in
PFS.

Requests to change block ACLs PolicyMgr implements an API for changing the ACL
13Many filesystem drivers contain code to manage policy meta-data for the files and directories that they

manage. However, the FAT32 filesystem does not directly support DAC and makes no provision for storing
policy meta-data within a FAT32 partition, so such code was not present in the filesystem driver we adapted.

17

associated with a range of block IDs. A process can invoke a change acls method over an
α-Nexus IPC channel, specifying the range of block IDs and how the ACLs should change,
e.g., modify the privileges in an existing ACL entry, add a new ACL entry, or delete an
existing ACL entry. In response to a change acls request, PolicyMgr updates the ACLs
in the cached copy of policy table in memory and flushes the changes to disk. If any
of the modified ACLs concern blocks in the block cache, then PolicyMgr also invokes the
kernel to update the kernel-maintained ACL associated with the shared memory region for
those cached blocks. Thus PolicyMgr ensures all copies of an ACL are consistent.

According to PDAC, only a block’s owner—or some principal that speaks for the block’s
owner—may change an ACL. So PolicyMgr implements a guard to authorize change acls

requests. The guard allows a change acls request from some process P to proceed
for some block ID d only if there is a proof that P speaks for owner(d) with regard to
change acls requests for that block. Here, owner(d) denotes the NAL principal name
for block d’s owner, as found in policy table. PFS allows process P to accompany the
change acls request with the necessary proof and the guard invokes NAL’s automated
proof checker to check that proof.

Since each change owner request is conveyed over anα-Nexus IPC channel, PolicyMgr
leverages α-Nexus alias tables to amortize the cost of proof checking. Before invoking
change acls, P installs owner(d) in its alias table along with a proof that P speaks for
owner(d); P then specifies an index for the resulting alias when sending IPC requests to
PolicyMgr . The PolicyMgr guard compares the NAL principal name that accompanies
each such IPC request against owner(d) for each block ID d in the specified range. If any
of these comparisons fail to match, then the change acls request is denied.

Requests to change block owners PolicyMgr implements an API for changing the owner
for a range of block IDs. In a traditional filesystem, the chown system call changes a
file’s owner, and typically only a filesystem administrator is allowed to invoke chown

on a file. PFS enforces PDAC for the filesystem administrator and does not have the
filesystem administrator speak for all users or processes. So PolicyMgr enforces a dif-
ferent policy, one that does not involve the filesystem administrator: before changing the
owner of a block d to some new NAL principal name A, PFS requires the current owner
and new owner to both consent to the change in ownership. PolicyMgr implements two
methods—chown nominate(d,A) and chown accept(d)—that processes can invoke over
an IPC channel.14 PFS updates policy table with new ownership information only if
chown nominate(d,A) is invoked by a process that speaks for owner(d) and chown accept(d)
is separately invoked by a process that speaks for A. Thus, a change in ownership requires
coordination between the current owner, owner(d), and a proposed new owner, A. This
coordination is done out of band.

PFS leverages the α-Nexus alias table for processing requests to change a block’s owner.
The protocol is as follows. First, a process executing on behalf of the current owner adds

14For simplicity of presentation, we show these methods as accepting a single block ID d. In practice, the
methods accept ranges of blocks IDs.

18

owner(d) to its alias table and sends an IPC chown nominate(d,A) request to PolicyMgr ,
specifying a block ID d and a proposed new owner A. Upon receipt of this request, a guard
checks that the NAL principal name accompanying the IPC request equals owner(d). If
so, PolicyMgr records A in a temporary variable, denoted nomination(d), for later use.
Subsequently, a process executing on behalf of the proposed new owner adds A to its alias
table and sends an IPC chown accept(d) request using that alias to PolicyMgr . Upon
receipt of this request, a guard checks that the NAL principal name that accompanies the
IPC request equals nomination(d). If so, both the current and proposed new owner have
consented to the change, and PolicyMgr records nomination(d) as the block’s new owner
in policy table , flushing the change to disk. At most one instance of nomination(d) is
stored for each block d, and these variables are discarded on reboot.

Complete Mediation for policy meta-data PFS could store as many as three copies of
policy meta-data: (i) encoded in policy table on disk, (ii) encoded in a cached copy of
policy table, and (iii) in the ACLs for shared memory regions that form the block cache.
Copies (i) and (ii) are accessed using the same mechanisms as used for all other blocks,
so PFS’s normal PDAC enforcement mechanisms suffice for implementing Complete Me-
diation: PFS assigns PolicyMgr to be the owner of blocks storing policy table, and
PolicyMgr specifies an ACL containing only itself for those blocks. Copy (iii) is stored
within the kernel, and the kernel’s shared memory guard allows only the owner of the cor-
responding shared memory region to change it. And because PolicyMgr is the owner of
the shared memory regions that form the block cache, only PolicyMgr can directly change
copy (iii) of the policy meta-data. PolicyMgr makes changes to any of the copies only in
response to requests that its own guard has authorized, i.e., after checking the appropriate
policy for a request to change a block’s owner or ACL, as described above.

4.6 TCB for PDAC Enforcement

PolicyMgr and CacheMgr are both involved in managing cached blocks. We considered
incorporating all cache-related code into a single component, for better performance. But
we rejected that design after considering its impact on the TCB for PDAC enforcement.
Code for managing policy meta-data is in this TCB, but most cache management code need
not be. For example, code that implements cache prefetching does not need privileges to
modify ACLs. The current PFS decomposition, which involves two components, allows
a smaller, simpler TCB. We (correctly) predicted that the performance costs of having the
two separate components would be acceptable, given the infrequency of block allocation.

Because PolicyMgr is in the TCB for PDAC enforcement, we included in PolicyMgr
the remaining PFS code necessary for enforcing PDAC. PolicyMgr makes sure dirty cached
blocks are flushed before they are deallocated, for example, and PolicyMgr ensures that
each block can be found at most once in the block cache to avoid cache aliasing issues. The
result is that, aside from the α-Nexus kernel, PolicyMgr (2,267 lines of C code) is the only
PFS component in the TCB for PDAC enforcement.

19

4.7 Disk Driver Components

PFS uses a component DDb to execute disk driver code for each disk bus b. This decompo-
sition is an example of privilege separation, because components are being defined based on
security-relevant privileges they require—in this case, privileges to request I/O for a given
disk bus. We considered decomposing disk drivers into finer-grained components by using
a separate component for each disk rather than for each disk bus. But this decomposition
required the DDRM to distinguish I/O requests on a per-disk basis, and α-Nexus did not
support that.15

DDb holds privileges for initiating DMA transfers between disks on bus b and the block
cache. PDAC requires that only certain transfers be allowed. A straightforward, but ulti-
mately unsatisfactory, approach to restricting access to blocks on disk is to include a guard
in each disk driver DDb . This implements Complete Mediation, because only DDb can re-
quest I/O operations for disk bus b. But this approach also puts DDb in the TCB for PDAC
enforcement, a bad idea given the size, complexity, and (historically) high rate of bugs in
device driver code [Chou et al. 2001].

The approach we implemented in PFS was to extend the DDRM with checks to enforce
PDAC. This implements Complete Mediation, because all device I/O requests are checked
by the DDRM. This approach also helps to minimize the TCB for PDAC enforcement,
since that TCB already includes the kernel, hence the DDRM, and we need only add to
the DDRM a small amount of code. Because the added code is small, other TCBs, which
necessarily include the kernel, are not affected much.

In addition to the regular DDRM checks, for I/O operations that instigate a DMA trans-
fer between block having ID d and memory page m, the DDRM checks whether:

(i) page m is within some shared memory region r, owned by some process P ;

(ii) P speaks for PolicyMgr ;

(iii) page m stores, or is expected to store, block d;

(iv) if transferring to memory, then page m is empty; otherwise, if transferring from
memory, then page m is filled and dirty.

We modified α-Nexus shared memory code so that shared memory allocations for the block
cache satisfy hardware constraints for DMA transfers. And we modified the DDRM to
update the associated page status flag to filled (if it was not already) and the block status
flag to clean.

The DDRM implements (ii) by searching P ’s alias table for an entry encoding a NAL
principal name for PolicyMgr accompanied by a proof that P speaks for PolicyMgr . If
no such alias table entry is found, then the DDRM denies the I/O request. We define
PolicyMgr to be the NAL group HashGroup(hPolicyMgr), where hPolicyMgr is the hash of a

15Attributing I/O requests to specific disks introduces significant dependencies on the specific type of disk
controller hardware being used.

20

program manifest describing the PFS code for PolicyMgr . So a process executing the code
for PolicyMgr will have hPolicyMgr listed in its α-Nexus-issued program manifest creden-
tial. The process is thus a constituent of the group and can prove, using that credential, that
it speaks for PolicyMgr . Using a NAL group in this way provides stability across reboots
by allowing the DDRM to ensure that the shared memory region’s owner is PolicyMgr ,
even though the NAL principal name for the process P that executes PolicyMgr changes
on each α-Nexus reboot.

Checks (iii) and (iv), above, depend on meta-data associated with each page in the block
cache. We considered two implementations.

• The meta-data could be stored in a PFS component, requiring the kernel to access
some process’s memory whenever the kernel needs to access the meta-data.

• When PolicyMgr invokes the kernel to create a shared memory region, it specifies
the block IDs for each page (page status flags are always empty initially), and the
kernel stores and manages the meta-data thereafter.

We chose the later, because a component that manages the meta-data would become part of
the TCB for PDAC, whereas the kernel is already part of this TCB. Moreover, the kernel
code to manage the meta-data is actually simpler, so likely less error-prone than the code
needed for the kernel to access meta-data that is stored and managed by a process. Finally,
the kernel accesses this meta-data more frequently than other components, so it pays to
locate the meta-data within the kernel.

4.8 Filesystem Driver Components

The filesystem driver layer manages file and directory meta-data for the filesystem stored
by each disk partition. A single component implementing all filesystem drivers would have
to hold privileges to access blocks in every disk partition, which is inconsistent with Least
Privilege. So we used privilege separation and decomposed this layer into multiple compo-
nents. In PFS, each disk partition r has a separate component FSDr . FSDr executes the
filesystem driver code given by that partition’s type code, and FSDr is configured with the
range of block IDs that define that partition.

When a disk in PFS is first formatted, the DiskFormatter component becomes owner
of all blocks on the disk. DiskFormatter creates a partition table and, for each partition
r in the partition table, invokes chown nominate to propose a FSDr as the new owner
for the blocks in that partition. FSDr then invokes chown accept and becomes the owner
of these blocks. For stability across reboots, the NAL principal name used for FSDr is
the NAL group HashGroup(hFSDr). As with PolicyMgr , the group definition includes a
hash hFSDr computed over a program manifest, where the program manifest describes the
code being executed by FSDr . But the manifest here also includes the range of blocks IDs
that define partition r, so that filesystem driver components configured to manage different
partitions will have different NAL names, hence will hold different privileges, even if the
components execute the same filesystem driver code.

21

The top layer of the filesystem, VFS, employs an IPC channel to invoke FSDr for
various file and directory operations. When a process P , on behalf of principal A (e.g., a
user), requests that a file be created or enlarged, FSDr invokes chown nominate to propose
that A become owner of blocks that will store contents of that file. Process P then invokes
chown accept to become owner of those blocks. These roles are interchanged when a file
is truncated or deleted. Once the owner of the file becomes the owner of blocks storing the
contents of the file, the α-Nexus shared memory guard and PolicyMgr enforce PDAC for
those blocks. Thus FSDr is not in the TCB for PDAC enforcement.

Users and other principals own the contents of files, but FSDr owns other blocks in
partition r, including blocks that store directories. We could have further decomposed PFS.
One approach would employ a separate component for directory management code. Or,
using domain decomposition, we could have separate instances of directory management
code for different directories into different components. These alternative architectures
could allow users or other principals to own blocks storing directories, thereby permitting
FSDr to hold fewer privileges. The potential benefits of finer grained components, how-
ever, are offset by the disadvantage of creating dependencies on the particular filesystem
format—FAT32—used in our prototype.

4.9 VFS Components

The VFS layer manages state on behalf of filesystem clients. One VFSP component for
each client P comprise the layer. Client P invokes VFSP to perform various file and
directory operations, and VFSP implements a guard to ensure requests only from P are
performed.

Client P always executes on behalf of some principal A, usually a user or a group of
users. In PFS, A trusts P fully by default, and A issues a delegation credential to this
effect. P can therefore add A to its alias table, using A’s delegation credential to prove
that P speaks for A. Client P issues a credential that further delegates privileges to VFSP ;
taken together with the credential from A, this allows construction of a proof that VFSP
speaks for P , hence a further proof that VFSP speaks for A as well. Thus VFSP can also
use A as an alias and make requests to filesystem drivers and to α-Nexus shared memory
regions on behalf of A.

If client P uses an mmap-oriented interface to access files, then P must invoke the
shm map system call directly, rather than having VFSP make the request on its behalf.
This is necessary on α-Nexus, because the kernel creates the virtual memory mappings in
whichever process invoked the system call. In this case, P uses aliasA to satisfy the kernel’s
shared memory guard, since A is presumably on the ACL for the blocks in question.

Using a separate VFSP component for each client P helps reduce the TCB size for
any security goal a client might have. If VFSP becomes compromised, then security goals
relating to client P may be violated (recall that P has placed full trust in VFSP by issuing
a credential to that effect), but some other client P ′ not having placed any trust in VFSP
would be unaffected by the compromise. Were the VFS layer a single component, then a

22

compromised VFS layer could cause security goals to be violated for all clients that use
PFS.

Even though VFSP is responsible for specifying the identity ofA to other components—
by adding alias A to its alias table and selecting that alias when sending IPC requests—
VFSP need not be trusted by the recipients of these requests, because the kernel checks
that P indeed speaks for A during each ipc send system call. So absent a proof that
VFSP speaks for A′, for some other principal A′, VFSP can’t substitute a bogus identity
A′ when making requests, even if VFSP is compromised. By contrast, were the entire VFS
layer a single component, then VFS would need to be trusted by other PFS components to
chose the right identity from among many valid alias table entries when making a request
on behalf of a client.

In our PFS implementation, each client P places full trust in VFSP . Least Privilege
would favor a design in which P does not place full trust in VFSP , but instead VFSP is
granted only those privileges needed to perform its task—only privileges to make requests
to various PFS components and α-Nexus shared memory regions on behalf of P . There
are several ways to implement this design using NAL, but we found it unnecessary given
optimizations described in Section 4.11.2.

4.10 Data Replication in PFS

In our decomposition of PFS into components, certain data is used by multiple compo-
nents. The VFS components share a mount table data structure containing information
about each mounted filesystem. And filesystem driver and disk driver components share
io request queue data structures. A straightforward implementation would use α-Nexus
shared memory to store these shared data structures. But this restricts the granularity of
authorization we could enforce, since α-Nexus shared memory supports only two types of
privileges, read and read/write, and it enforces these at a relatively coarse granularity
(4KB memory pages). Least Privilege would favor a design where PFS components hold
fewer and more fine-grained privileges. For example, while VFS components executing on
behalf of the administrator can create or delete entries in mount table, other VFS compo-
nents only read the entries and increment or decrement various reference counts. Similarly,
only filesystem drivers insert entries into an io request queue, and only disk drivers mark
those entries as completed.

We avoid limitations associated with authorizing access to a common data structure
by replicating information across different data structures. Different privileges are then
associated with the different replicas. PFS employs this approach, using α-Nexus IPC
channels to keep the replicas synchronized. For mount table and io request queue

data structures, straightforward coherence protocols suffice to accommodate the different
privileges held by the components that need access. The performance cost of this approach
to Least Privilege is the overhead for implementing a coherence protocol for the replicas.

23

4.11 PFS Implementation Optimizations

In building PFS, we explored a few techniques that improve performance without sacri-
ficing benefits to system trustworthiness brought by instantiating security principles. The
optimizations we considered generally admit slightly less aggressive instantiations of secu-
rity principles in return for significant gains in performance.

4.11.1 Shortening Communication Paths

Consider the steps involved in handling client P ’s request to access a cached file.

1. P sends a request to VFSP .

2. VFSP calculates the current file offset and sends a request to FSDr .

3. FSDr calculates a cache reference for the cached data then responds to VFSP .

4. VFSP accesses the block by invoking the α-Nexus shared memory API with the shared
memory region ID contained in the cache reference, then VFSP responds to P .

Clearly, P can easily perform the offset calculations done by VFSP in step 2, and the
identity of FSDr is known at the time a file is opened. So we could eliminate VFSP and
use a different sequence of steps:

1’. P calculates the current file offset and sends a request to FSDr .

2’. FSDr calculates a cache reference for the cached data and responds to P .

3’. P accesses the block by invoking the α-Nexus shared memory API with the shared
memory region ID contained in the cache reference.

This modified protocol involves fewer IPC messages during file accesses, at the cost of
duplicating some VFS functionality (i.e., maintaining the current file offset) in the client.
However, the new client code is not likely to change the TCB for client security goals, since
the client already places trust in VFSP , which implements nearly identical code. Moreover,
the duplicate functionality is straightforward to implement in the client, so even a small gain
in performance justifies this optimization.

As a further optimization, we can amortize the overhead of step 2’ if P makes multiple
accesses to the same file. When a file is first opened, P invokes FSDr to obtain a cache
reference for the first block of the file, and P caches the shared memory region ID con-
tained within that cache reference. During subsequent accesses to the same file, P uses the
previously cached shared memory region ID rather than contacting FSDr again.

Notice, these optimizations do not actually give P additional privileges. It may seem
that P gains the ability to make arbitrary changes to the current file offset or to influence
the offset calculations, since these are now located within P . But in fact, P can already
completely determine the output of the offsets calculations done by VFSP—P need only

24

invoke the seek method. P can also already access shared memory regions, as it does for
mmap-oriented file access. Thus P ’s behavior is still governed by PDAC. Even if P were
to perform incorrect offset calculations or access the wrong shared memory region, the only
consequence would be that P receives incorrect data or its request is rejected when it makes
the system call to access the shared memory region.

4.11.2 Leveraging Fate-Sharing

Fate-sharing [Clark 1988]—which occurs when failures are not independent—creates an
opportunity to improve performance without sacrificing security. If components place full
trust in each other, then isolating them contributes nothing to security, and merging them
eliminates overhead. One simple example in PFS is the DDRM, which executes in the
kernel rather than as a process outside of the kernel. Even were they isolated from each
other, the compromise of the kernel or of the DDRM could lead to the compromise of the
other. So isolating these components does not increase trustworthiness.

We also leverage fate-sharing if we merge each client P with corresponding PFS com-
ponent VFSP . To achieve this, we incorporated VFS code into the standard C library used
by α-Nexus programs—that change is transparent to application programmers. Eliminat-
ing the isolation boundary between P and VFSP allows IPC calls to be replaced with more
efficient local function calls. This optimization has two potential consequences: P can now
cause the compromise of VFSP , and VFSP can now cause the compromise of P . The
former is not a concern in PFS, because P holds at least as many privileges as VFSP . We
accept the later, because VFS code in PFS is quite small and simple, so it is unlikely to
cause a compromise of P .

4.11.3 Relocating Guards

By changing how and when authorization checks are performed, we can change their per-
formance overhead. One approach is to amortize some or all of the work done for checks,
with a single check serving for multiple requests. A canonical example with filesystems is
when access control checks are only performed when a file is first opened, rather than for
every access.

PFS amortizes the cost of checks done for I/O requests that initiate DMA transfers.
Rather than have the kernel check whether the process that owns a shared memory region
speaks for PolicyMgr before each DMA transfer, the kernel performs this check only when
shared memory regions for the block cache are allocated. The use of the α-Nexus alias table
abstraction is also a form of amortization, because some of the proof checking done by the
kernel is performed when an alias table entry is created rather than each time it is used.

5 Filesystem Evaluation

We performed experiments to gain insight into the costs and the benefits of instantiating
security principles. The results—detailed below—confirm that instantiating the security

25

principles brought tangible benefits to PFS but, for several benchmarks, did not result in
markedly worse performance compared to more traditional designs. To the extent possible,
we attribute costs revealed by our experiments to specific principles—Mutual Suspicion,
Complete Mediation, Least Privilege, or Minimization of TCBs. However, the costs are not
entirely separable, because the principles are not independent. Instantiating Least Privilege,
for example, tends to reduce the size of TCBs. And both Mutual Suspicion and Complete
Mediation can be leveraged to instantiate the other principles.

5.1 Cost of Mutual Suspicion and Complete Mediation

Mutual Suspicion makes it difficult for components to compromise each other, and Com-
plete Mediation requires that all requests be subject to authorization. Consequently, we at-
tribute to these principles the cost of creating and maintaining well-defined isolation bound-
aries and communications channels between components. We also include costs associated
with having the bulk of PFS execute outside the operating system kernel, since components
that execute in the kernel would not be isolated and thus can’t be mutually suspicious of
each other and aren’t easily constrained by authorization mechanisms.

5.1.1 Impact of Mutual Suspicion and Complete Mediation on Code Size

One way we assign cost to a design principle is to examine its impact on code size—
the amount of filesystem code—since a larger code body is likely harder to develop and
maintain. This cost is born mainly by system developers and, to a lesser extent, system
administrators. Some operating systems do not provide suitable abstractions for isolating
processes from each other by default, necessitating extra code and configuration to instan-
tiate Mutual Suspicion and Complete Mediation for components. However, the α-Nexus
process isolation and IPC abstractions are designed for building trustworthy applications,
so little additional code is necessary to instantiate these principles in PFS. Further, code
that executes outside of the kernel is simpler in some ways than code that executes inside
the kernel. Some system services, for example, are not designed to be invoked by kernel
code. Thus one might expect at most a modest increase in the amount of code required to
implement a filesystem with Mutual Suspicion and Complete Mediation on α-Nexus.

We counted the lines of code (LOC) that implement PFS. See Figure 3(a). Then, as a
point of comparison, we examined two alternative filesystem designs, here called UFS and
KFS, that support the same interface but with a different decomposition into components.

• Figure 3(b) shows code sizes for UFS, which places most filesystem code in a sin-
gle component executing as a process above the α-Nexus kernel. We obtained the
UFS implementation from our PFS implementation by eliminating some guards and
replacing code for handling IPC messages with equivalent code using local function
calls within the single filesystem process.

• Figure 3(c) shows estimates for code sizes that would result from implementing a
traditional kernel-mode filesystem design, KFS. In KFS, all filesystem code executes

26

LOC

PFS Kernel-mode
Shared mem. core 1,673
Shared mem. ext. 227
DDRM core 4,310
DDRM SATA spec. 284
DDRM ext. 64

PFS User-mode
User-mode driver lib. 49,839
SATA disk driver 28,216
FAT32 driver 7,230
VFS layer 1,915
Policy management 2,267
Miscellaneous 4,562

PFS Total 100,587

(a)

LOC

UFS Kernel-mode
Shared mem. core 1,673
Shared mem. ext. 41
DDRM core 4,310
DDRM SATA spec. 284
DDRM ext. 0

UFS User-mode
User-mode driver lib. 49,839
SATA disk driver 28,029
FAT32 driver 6,442
VFS layer 771
Policy management 1,689
Miscellaneous 4,081

UFS Total LOC 97,159

(b)

LOC

KFS Kernel-mode
Shared mem. core 1,673
SATA disk driver 28,029
FAT32 driver 6,442
VFS layer 771
Policy management 1,689
Miscellaneous 4,081

KFS User-mode
n/a 0

KFS Total LOC 42,685

(c)

Figure 3: Lines of code (LOC) for PFS (a) and two alternative designs, UFS (b) and KFS
(c), including some related α-Nexus kernel code. KFS counts are estimates.

within the α-Nexus kernel. We did not implement the KFS design, because α-Nexus
does not support executing disk drivers within the kernel.

For each design, we also counted the lines of code that implement α-Nexus shared mem-
ory and the DDRM. These kernel facilities had to be modified for PFS, as described in
Section 4.7.

UFS instantiates Mutual Suspicion and Complete Mediation between the filesystem and
clients (though not between different parts of UFS). KFS is also isolated from and suspi-
cious of clients, which invoke the filesystem through system calls. But, because KFS exe-
cutes within the kernel, clients must fully trust KFS. And while KFS mediates on requests
from clients, clients do not mediate on messages from KFS. Thus KFS does not instantiate
Mutual Suspicion or Complete Mediation. Comparing counts for UFS and KFS in Fig-
ures 3(b) and 3(c), we found that instantiating these principles required 54,474 additional
lines of code in total—more than a doubling of the code size is needed to achieve Mutual
Suspicion and Complete Mediation in UFS compared to the more traditional KFS design.

By far, the largest source for the increase in UFS (and PFS) code size over KFS is
due to the user-mode driver library, which contributes 49,839 lines of code. There are two
reasons we might discount the cost of this library. First, this library is shared by many
α-Nexus device drivers, including network and USB device drivers. Thus we can amortize
its cost over many system services. Second, it not always necessary to use this library.
The user-mode SATA disk driver used in UFS and PFS requires this library, but only be-

27

cause the driver was originally programmed against Linux’s kernel-mode driver API rather
than against α-Nexus’s user-mode driver API.16 Much of the user-mode driver library code
(roughly 85%) provides a compatibility layer that emulates Linux’s kernel-mode driver
API, and that code would not be necessary had we implemented a native user-mode SATA
disk driver for α-Nexus from scratch. Instead, a native α-Nexus driver would use a much
smaller library containing only a few helper routines for handling interrupts, I/O requests,
thread scheduling, locks and mutexes, which together account for only about 15% of the
user-mode driver library, or 7,500 lines of code.

Beyond the user-mode driver library, instantiating Mutual Suspicion and Complete Me-
diation causes only a modest increase in code size. UFS requires 41 additional lines of
kernel code so that the filesystem process is able to manage shared memory on behalf of
clients. UFS also requires 4,594 LOC to implement the DDRM, which allows the kernel
to mediate requests from filesystem device drivers that execute outside the kernel. Surpris-
ingly, the DDRM was the only run-time guard required to instantiate Mutual Suspicion:
for processes that communicate over IPC channels, the α-Nexus IPC abstraction suffices to
prevent compromise from spreading, and no additional run-time guard is necessary. (Other
run-time guards are needed to instantiate Least Privilege.)

5.1.2 Performance Implications of Mutual Suspicion and Least Privilege: Micro-
benchmarks

Run-time performance is an important metric, since performance is often given by imple-
menters as a reason to make, rather than check, assumptions. We performed a series of
experiments to measure the run-time performance of certain operating system primitives,
and we use the results to predict and explain the cost of instantiating principles in the design
of PFS.

IPC typically imposes higher costs than system calls, but instantiating Mutual Suspicion
means that clients now invoke the filesystem over IPC rather than just system calls. So PFS
performance is dependent on the relative performance of the IPC versus the system call
mechanisms. We implemented the following micro-benchmarks to measure their latency
and throughput.

• Syscall latency: Perform a single null system call.

• IPC latency: Send a one-byte request over an IPC channel17 and receive a one-byte
response.

• Syscall throughput: Transfer 16 MB, in 4 KB blocks, from the kernel to a process
using system calls.18

16For KFS code size estimates, we assume the size of an kernel-mode driver for α-Nexus would be compa-
rable to the kernel-mode SATA disk driver for Linux.

17We use pipes to implement IPC on Linux.
18On Linux, reads to /dev/zero are used for this micro-benchmark. On α-Nexus, an equivalent system call,

unrelated to the filesystem, is used. This micro-benchmark is meant to measure the speed at which kernel data

28

• IPC throughput: Transfer 16 MB, using 4 KB requests and empty responses, over an
IPC channel between two processes.19

All experiments were performed on a 2.66 GHz Intel Core 2 platform with 3 GB of
RAM, running either α-Nexus or Linux [Linux Kernel (version 2.6.29.2) 2009], as appro-
priate. We report the median of 100 trials for each micro-benchmark. Measured variability
was low, with 80% of trials falling within ±3% of the median, except where noted.

On α-Nexus, system calls were measured to have substantially lower latency than IPC:
0.228 µs median syscall latency versus 5.02 µs median IPC latency. And α-Nexus sys-
tem calls have higher throughput than IPC: 6,116 MB/s median syscall throughput versus
612 MB/s median IPC throughput. These results reveal a familiar trade-off between iso-
lation and performance: IPC allows senders and recipients to be isolated from each other
but has a high cost; the system call mechanism has higher performance but leaves processes
vulnerable to compromises from the kernel.

For comparison, we executed the same micro-benchmarks on Linux. A similar pattern
was revealed: we achieved 0.209 µs median syscall latency versus 5.09 µs median IPC
latency and 6,221 MB/s median syscall throughput versus 701 MB/s median IPC through-
put. The overall similarity between α-Nexus and Linux micro-benchmark performance
suggests that differences between α-Nexus and Linux system call and IPC mechanisms are
unlikely to account for large differences in performance for filesystems running on α-Nexus
versus filesystems running on Linux.

5.1.3 Performance Implications of Mutual Suspicion and Least Privilege: Filesystem
Benchmarks

To quantify the performance costs associated with Mutual Suspicion and Complete Me-
diation as instantiated in PFS, we measured the performance of PFS and compared it to
alternate designs, including Linux FAT32, a standard Linux implementation of the FAT32
filesystem that uses a traditional kernel-mode design.

Given the micro-benchmark results above, we can predict how the performance of PFS
would compare to Linux FAT32. Consider, for example, the file open and close opera-
tions. In PFS, each of these operations requires at least one IPC message (5.02 µs median
latency on α-Nexus), whereas in Linux FAT32, each operation requires only a system call
(0.209 µs median latency on Linux). So we should expect the median latency of open or
close operations to each be about 5.02 µs − 0.209 µs = 4.81 µs slower in PFS than in
Linux FAT32.

can be written into a process’s memory. So for each system call, the kernel zero-fills a message buffer specified
by the micro-benchmark client, and the client does not copy or otherwise access the data returned from each
system call.

19This micro-benchmark is meant to measure the speed at which one process’s data can be copied into
another process’s memory over a α-Nexus IPC channel or Linux pipe. So, for each send or receive system call,
the kernel copies a request or response messages from one process’s memory to the other’s, but neither process
copies or otherwise accesses the request or response messages.

29

We implemented benchmarks to quantify the performance of these and other common
filesystem operations, as follows.

• Open/close latency: Open then close a 1 MB file.

• Enumerate latency: Enumerate 4,096 files and 1,365 directories in a 5-level tree.

• Read latency: Read a single byte from an already-open 16 MB file using the streams-
oriented filesystem interface.

• Read throughput: Read all bytes from an already-open 16 MB file using the streams-
oriented filesystem interface.

These benchmarks are implemented by a filesystem client that can run in two config-
urations. For the uncached configuration, the benchmark client requests that all caches
(including the filesystem’s block cache and the disk’s internal data cache) be emptied be-
fore each trial. For the cached configuration, the benchmark client warms the caches before
each trial so that all requests are satisfied by the filesystem’s block cache and no disk I/O
is performed. We use the same machine as for the above micro-benchmarks, and we again
report the median of 100 trials for each experiment. Experiments used a single 160 GB,
7,200 RPM SATA disk with a FAT32-formatted partition. According to manufacturer spec-
ifications, the disk hardware can achieve 78 MB/s sustained read throughput and has an
average seek latency of 4.16 ms.

Results for the cached configuration of the open/close latency benchmark are as fol-
lows.20

Cached Open/Close Latency (µs)

low median high

PFS 17.0 17.4 17.8
Linux FAT32 4.1 5.6 6.2

No disk I/O is performed in the cached configuration, so these results are not sensitive to
disk seek latency or disk throughput. PFS achieves a median cached open/close latency
of 17.4 µs, approximately 3x worse than the 5.6 µs median latency for Linux FAT32. We
can attribute much of this noticeable performance cost to instantiation of Mutual Suspicion,
since the cost of replacing two Linux system calls with two α-Nexus IPC invocations—
about 2∗4.81 µs = 9.62 µs—accounts for most of the 17.4 µs−5.6 µs = 11.8 µs difference
between PFS and Linux FAT32 performance for this benchmark.

The nearly 12 µs additional latency caused by instantiating Mutual Suspicion can be
significant for low-latency filesystem operations. But for filesystem operations with high
latency but few IPC calls—e.g., those that are constrained by disk performance—the added
latency for supporting Mutual Suspicion is negligible. The uncached configuration of the
enumerate latency benchmark is one such case.

20Here and elsewhere we report the median result for each system tested. We also show the 10th and 90th

percentile results—labeled low and high, respectively—to indicate the range in which the middle 80% of results
fall.

30

Uncached Enumerate Latency (s)

low median high

PFS 3.35 3.41 3.42
Linux FAT32 3.19 3.27 3.27

Here, median latency for PFS and Linux FAT32 differ by 0.14 s, or about 4%, with 3.41 s
for PFS and 3.27 s for Linux FAT32. Performance here is likely dominated by the cost of
accessing the disk, so any overhead due to IPC calls in PFS is small by comparison.

Results for uncached read latency and read throughput benchmarks reveal a similar
pattern.

Uncached Read Latency (ms) Uncached Read Throughput (MB/s)

low median high low median high

PFS 3.67 6.67 8.88 45.6 46.1 46.5
Linux FAT32 2.56 6.29 9.75 44.6 45.1 45.6

On both benchmarks, the median results for PFS and Linux FAT32 differ by less than 6%.
This similarity in performance between the two systems is to be expected since, like the
uncached enumerate latency benchmark, uncached read performance for both PFS and for
Linux FAT32 is constrained largely by disk performance.21

PFS and Linux FAT32 both exhibit high variability on the uncached read latency benchmark—
the slowest 10% of reads for Linux FAT32 take longer than 9.75 ms while the fastest 10%
take less than 2.56 ms. We attribute this high variability to variability in disk seek latency,
which should be distributed uniformly (assuming random seeks) between about 0 ms and
2 ∗ 4.16 ms = 8.32 ms, given the 4.16 ms average seek latency claimed by the disk manu-
facturer. The slightly higher variability in Linux performance for this benchmark could be
due to scheduling and lock contention between the filesystem and background processes,
drivers, and interrupts. α-Nexus is a research prototype and, as such, executes few back-
ground activities that cause contention.

Cached read performance is not constrained by disk performance, so even a small per-
operation run-time overheads add up quickly. One might expect Mutual Suspicion and
Complete Mediation to add a significant cost for these operations in PFS. Yet this does not
appear to be the case, as can be seen in the results for the cached configuration of the read
latency and read throughput benchmarks.22

Cached Read Latency (µs) Cached Read Throughput (MB/s)

low median high low median high

PFS 0.925 0.966 1.05 3550 3560 3570
Linux FAT32 1.40 2.70 2.78 3420 3430 3500

21Neither PFS nor Linux FAT32 appears able to achieve the 78 MB/s sustained read throughput that is
claimed by the disk manufacturer. We did not investigate this discrepancy further.

22The experiment discussed here is for a benchmark client that uses the streams-oriented filesystem inter-
face. We also performed experiments using the mmap-oriented filesystem interface. Compared to the streams-
oriented client, the mmap client observed higher up-front costs to create memory mappings and lower per-
access costs to access data, both on α-Nexus and on Linux. These results are unsurprising and are omitted.

31

PFS outperforms Linux FAT32 for cached reads—PFS achieves a median cached read la-
tency of 0.996 µs versus 2.70 µs for Linux FAT32. However, latency for Linux FAT32 shows
high variability, with 10% of trials measuring 1.40 µs or less, a value much closer to the
median cached read latency in PFS (0.996 µs). By contrast, median cached read through-
put for PFS and Linux FAT32 differ by less than 4%—3,560 MB/s median throughput for
PFS versus 3,430 MB/s for Linux FAT32—with low variability. These results can be ex-
plained by considering how file reads are implemented in the two filesystems. Specifically,
file reads in both PFS and in Linux FAT32 involve only system calls and not IPC. A Linux
client invokes the VFS layer, which resides in the Linux kernel, using the read system call.
An α-Nexus client P reads a file in PFS by invoking VFSP using a local function call, since
VFSP resides within client P ’s address space, and VFSP in turn accesses the PFS block
cache using the shm read system call. We suspect that for both benchmarks, filesystems
are constrained only by the ability of the α-Nexus and Linux system call mechanisms to
perform low latency and high throughput data transfers between the kernel and the bench-
mark client.23 By taking advantage of α-Nexus shared memory and avoiding IPC in the
critical path, PFS achieves similar read performance as Linux FAT32—both for cached and
uncached reads—despite instantiating Mutual Suspicion.

We conclude from the results of these filesystem benchmarks that, while the cost of
instantiating Mutual Suspicion and Complete Mediation can be high, costs are not borne
equally by all filesystem operations and can be avoided entirely for some common opera-
tions.

5.2 Cost of Least Privilege

Instantiating Least Privilege in PFS was a matter of limiting the privileges at components
and decomposing the system into fine-grained components that can then be granted corre-
spondingly fewer privileges. The fine-grained components must instantiate Mutual Suspi-
cion and Complete Mediation, for which there might be a cost, as described in Section 5.1.
Also, guards that instantiate Least Privilege might distinguish more and finer-grained priv-
ileges, leading to added code or added run-time overhead.

5.2.1 Impact of Least Privilege on Code Size

We quantify the additional code needed to instantiate Least Privilege in PFS by comparing
the code base of PFS with that of UFS, which executes outside the kernel but as a single
component with broad privileges. Implementing PFS involved 100,587 total lines of code,

23Data is read from the filesystem using 4 KB transfers. An upper bound on cached read throughput for
this message size can be obtained by considering the system call throughput micro-benchmark, discussed
in Section 5.1.2. In that micro-benchmark, α-Nexus and Linux both achieve a median throughput of about
6,000 MB/s for 4 KB transfers. That result is higher than achieved for the cached configuration of the read
throughput benchmark, but it does not include the cost of copying data from the filesystem block cache into
a process’s address space. Instead, it only measures the performance for the kernel to zero-fill 4 KB message
buffers in response to system calls.

32

from Figure 3(a), versus 97,159 total lines of code for UFS, from Figure 3(b). The 3,428 ad-
ditional lines of code for PFS is spread over many components. The DDRM was extended
for PFS with additional code to implement Least Privilege for disk device drivers. Specif-
ically, drivers for PFS retain privileges sufficient to initiate DMA certain transfers but are
no longer granted privileges to initiate arbitrary DMA transfers. The Policy Manager com-
ponent was modified to enforce a finer-grained, pervasive DAC policy, rather than simply
granting all filesystem components privileges to access all filesystem meta-data stored on
disk. And most PFS components were modified to include a small amount of code for creat-
ing IPC channels, for sending and receiving requests sent over IPC channels, and for guards
to authenticate those requests. This diffuse impact for instantiating Least Privilege is quite
different from instantiation of Mutual Suspicion and Complete Mediation, where nearly all
additional code was due to just two components, as described previously in Section 5.1.1.

In retrospect, the amount of code—no more than 3,428 lines—needed in PFS to im-
plement guards for Least Privilege is surprisingly small. By contrast, the DDRM alone is
larger (4,594 LOC, from Figure 3(b)) than all of the other PFS guards combined. There are
two reasons the DDRM is so much larger than other PFS guards. First, the DDRM enforces
policies for a wide range of device driver requests—interrupts, I/O requests, etc.—and the
policies the DDRM enforces are stateful, whereas the guards that check requests between
PFS components tend to be simple and stateless. Second, the remaining PFS guards are able
to leverage higher-level services not available within the kernel, such as the NAL guard li-
brary and authentication primitives that are part of the α-Nexus IPC mechanism.

5.2.2 Performance Implications of Least Privilege

There are two sources of run-time overhead for instantiating Least Privilege: one stemming
from adding more and finer-grained guards, and one stemming from decomposing the sys-
tem into fine-grained components. There is reason to expect the performance impact of
guards to be relatively small. As discussed in Section 5.1.3, the DDRM has only modest
performance implications because many disk operations have such high latency, despite the
DDRM being fairly complex and stateful. PFS extensions to the DDRM for Least Priv-
ilege were minor, so we would not expect that conclusion to change. And because the
remaining PFS guards are simple and stateless, we expected these guards to have a smaller
performance impact than the DDRM. In the later case, components that previously had fast
and unrestricted local access to data must now request access to that data using relatively
expensive IPC channels or system calls.

Contrary to these expectations, our experiments indicate that the cost of enforcing some
Least Privilege policies can be significant. Specifically, enforcing PDAC can be expensive
because it requires access to policy meta-data stored on disk. This can be seen in the results
of the open/close latency benchmark for the uncached benchmark configuration.

33

Uncached Open/Close Latency (ms)

low median high

PFS 45.1 48.5 51.2
Linux FAT32 4.9 8.1 10.5

On this benchmark, PFS achieves a median latency of 48.5 ms, which is approximately 6x
worse than the 8.1 ms median latency achieved by Linux FAT32. This discrepancy is larger
than can be explained by the different costs of IPC versus system calls. We conjecture
that the difference is due to the difference in how PFS and Linux FAT32 enforce DAC.
Linux FAT32 enforces DAC only for the contents of files and directories. And because
of limitations of the FAT32 filesystem, Linux FAT32 does not retrieve policy meta-data
from the disk. Instead, Linux FAT32 uses a single pre-configured owner and ACL for all
files and directories. By contrast, the PDAC policy enforced by PFS distinguishes each
file, directory, or other data structure stored on disk as a separate object with a different
ACL and owner. Thus, for every block accessed by PFS’s FAT32 filesystem driver, FSDr ,
PFS’s PolicyMgr requires several additional accesses to retrieve that block’s owner and
ACL from the policy table stored on disk. There is little cache locality in these accesses
for a single benchmark trial, so the cost of these disk accesses adds up.

We performed a simple analysis and an experiment to test our conjecture that PDAC en-
forcement accounts for the observed differences in performance of PFS and Linux FAT32
for the uncached configuration of the open/close latency benchmark. First, we counted
how many disk access requests were initiated by PFS and by Linux FAT32. For PFS we
counted 12 accesses for each uncached trial, 10 of which were initiated by PolicyMgr and
2 of which were initiated by FSDr . For Linux FAT32 we counted only 2 accesses for each
uncached trial. If disk accesses are random, and if the disk’s seek latency dominates per-
formance costs in the uncached open/close latency benchmark, then, based on the 4.16 ms
average seek latency claimed by the disk manufacturer, we should expect PFS to require
about 12 ∗ 4.16 ms = 49.92 ms and Linux FAT32 to require about 2 ∗ 4.16 ms = 8.32 ms.
These numbers are close to the median observation (48.5 ms and 8.1 ms for PFS and Linux
FAT32, respectively, for the uncached open/close latency benchmark). This suggests that
the difference in performance measured indeed can be attributed to the different granulari-
ties at which the two implementations enforce DAC. It also suggests that PFS performance
could benefit by reducing the number of disk accesses it requires to retrieve policy meta-
data.

As further confirmation, we performed an experiment using a modified version of PFS
that instantiates Least Privilege less extensively. We replaced PolicyMgr with a different
implementation, ConstPolicyMgr . ConstPolicyMgr performs no disk accesses. Instead,
it assumes a single pre-configured owner and ACL for every block, thereby enforcing a
DAC policy similar to what is enforced by Linux FAT32. The modified version of PFS
achieved 8.6 ms median latency for the uncached configuration of the open/close latency
benchmark, a performance result that is much closer to Linux FAT32 (8.1 ms median la-
tency for the uncached open/close latency benchmark) than to PFS (48.5 ms median latency
on the that benchmark). This measurement again supports our conjecture about the differ-

34

ence in uncached open/close latency benchmark performance observed between PFS and
Linux FAT32.

The above experiment shows the impact of enforcing PDAC for clients that access
filesystem data. But Least Privilege also changes how PFS components access meta-data
as well. In particular, Least Privilege required that filesystem meta-data is not stored within
filesystem components, but within shared memory regions where access to the data can
be mediated. Filesystem operations that require access to large amounts of meta-data can
suffer because local accesses made by Linux FAT32 are replaced by system calls or shared
memory accesses initiated by PFS on α-Nexus.

The impact of decomposing the filesystem in this manner can be seen in the results for
the cached configuration of the enumerate latency benchmark.

Cached Enumerate Latency (ms)

low median high

PFS 125 125 126
PFSmmap 59 59 59
Linux FAT32 36 43 43

Each trial of this benchmark causes filesystem components to perform many access to meta-
data—over one thousand directories are enumerated, and each directory operation requires
several access to meta-data stored in the block cache. All data is cached, so the disk’s high
latency does not serves to mask the cost of enforcing PDAC in this case. Instead, PFS
exhibits approximately 3.5x worse performance compared to Linux FAT32 for the cached
configuration of the enumerate latency benchmark, with PFS achieving a median latency of
125 ms versus a median latency of 43 ms for Linux FAT32.

One way to lower the performance cost of enforcing PDAC for meta-data is to amortize
costs over many accesses. When implementing PFS components that access meta-data in
the block cache, we had to chose either the streams-oriented interface or the mmap-oriented
interface. For the PFS FAT32 filesystem driver used in the above experiments, we chose to
use the streams-oriented interface, because we didn’t expect this component to access any
single piece of meta-data frequently enough to justify the cost of creating virtual memory
mappings.

We implemented and tested a second version of PFS, called PFSmmap, in which the
FAT32 filesystem driver uses the mmap-oriented interface to the block cache. In this design,
the cost of creating a virtual memory mapping for each piece of meta-data is amortized
over all accesses to that meta-data. Since PFSmmap amortizes the cost of creating virtual
mappings, the overhead for PFSmmap to access meta-data in the block cache should be
similar to direct access. This design avoids the cost of using system calls to the block cache,
and it avoids the cost of enforcing PDAC on every access. It is not surprising then that the
cached enumerate latency for PFSmmap is lower than for PFS: 59 ms median latency for
PFSmmap versus 125 ms for PFS. And the median latency for PFSmmap (59 ms) is much
closer to the median latency for Linux FAT32 (43 ms) than for PFS (125 ms). These results
suggest that the cost of Least Privilege, in the form of an increased cost for the FAT32

35

filesystem driver to access meta-data stored outside of the component versus direct access
to meta-data stored locally, is the largest contribution to the 3.5x performance differences
between PFS and Linux FAT32 in the cached enumerate latency benchmark. The remaining
discrepancy for this benchmark is likely due to Mutual Suspicion—specifically, the cost of
invoking the filesystem over IPC channels rather than through system calls.

The differences in performance of PFS and PFSmmap highlight the trade-off discussed
in Section 5.1.2: the choice of communications mechanisms—here, syscalls versus mem-
ory mapping—can affect the cost of decomposing into fine-grained components, and the
costs can sometimes be avoided entirely. In hindsight, using the mmap-oriented interface
within the FAT32 filesystem driver component to access meta-data, as done for PFSmmap,
might have been a better implementation choice for PFS. However, we can’t reach a firm
conclusion without a realistic model for client file and directory access patterns.

5.3 Cost of Minimization of Trusted Computing Bases

To quantify the cost of Minimization of Trusted Computing Bases, we revisit one particular
PFS design decision: merging the VFS layer into filesystem clients in an effort to gain
performance, but at the cost of a potentially larger TCB for some client security goals.
As described in Section 4.11.2, each VFS component of PFS, VFSP , executes within the
address space of the corresponding client P instead of as an isolated process, and P invokes
VFSP using local function calls rather than IPC. We justified this optimization by arguing
that the performance cost incurred by using IPC outweighs the benefits of reducing the
TCB base for security goals relating to P . We implemented a version of PFS without this
optimization, leading to a larger TCB. We then used the four filesystem benchmarks—
open/close latency, enumerate latency, read latency, and read throughput—to compare the
performance of the default, larger TCB version (optimized for performance) and smaller
TCB version (not optimized for performance).

For the uncached configuration of the filesystem benchmarks, we observed only minor
differences in performance between the larger and smaller TCB versions of PFS. This was
expected, since here, both versions of PFS are constrained largely by disk performance, and
the performance costs incurred for disk access far outweigh the overhead of IPC above local
function calls.

For the cached configuration of some filesystem benchmarks, minimizing the TCB in
this manner caused a noticeable performance degradation. For the cached configuration
of the open/close benchmark, we observed an increase of 10.2 µs in the median latency
achieved by the smaller TCB version as compared to the larger TCB version, nearly dou-
bling the median latency. We can attribute this increase to the overhead of IPC, because the
increase is only slightly larger than twice the 5.02 µs median α-Nexus IPC latency, from
Section 5.1.2, and since the smaller TCB version requires two additional IPC invocations—
one IPC invocation from P to VFSP for open, and a second for close—that were not
present in the larger TCB version.

A similar analysis holds for the cached configuration of the enumerate latency bench-
mark, where we also observed a performance degradation for the smaller TCB version

36

compared to the larger TCB version of PFS.
For the cached configurations of the read latency and read throughput benchmarks, we

expected the smaller TCB version of PFS to perform poorly, since each access to file con-
tents now involves an IPC invocation from P to VFSP versus a local function call in the
larger TCB version. Moreover, in the smaller TCB version, file data is transferred through
both an IPC channel and system calls, versus only system calls for the larger TCB version of
PFS. Results for the cached configurations of the read latency and read throughput bench-
marks using the larger TCB version were 5.20 µs and 530 MB/s, respectively, in the median
case. This is substantially worse than the performance of the larger TCB version of PFS for
the same benchmarks (0.966 µs median latency and 3,560 MB/s median throughput, from
Section 5.1.3).

The performance impact of minimizing the TCB here can be explained by considering
the results from the micro-benchmarks discussed in Section 5.1.2. For the cached configu-
ration of the read latency benchmark, the median latency (5.20 µs) is only 4% worse than
the 5.02 µs median α-Nexus IPC latency (from Section 5.1.2). Similarly, for the cached
configuration of the read throughput benchmark, the median throughput (530 MB/s) is
about 15% worse than the 612 MB/s median α-Nexus IPC throughput (from Section 5.1.2)
for 4 KB messages.

The magnitude of the performance degradation we observed when minimizing the TCB
in this way suggests that our design choice—trading a larger TCB for improved performance—
is justifiable for common use-cases. This is particularly true if filesystem clients have TCBs
much larger than the 1,915 lines of code (from Figure 3(a)) that constitute the VFS layer
for PFS.

5.4 Benefits of Instantiating Principles

A realistic way to evaluate the benefits of any particular approach to security might be to
conduct “red team” penetration testing. But this would not distinguish vulnerabilities in the
implementation of PFS from those due to the underlying principles we instantiated or didn’t
instantiate in PFS. Yet that is the information we seek in this research. In fact, our PFS
implementation—and the α-Nexus kernel on which it runs—is a research prototype written
in C; it probably would not withstand even a modest red-team attack. This, however, does
not shed light on the consequences of instantiating various security principles.

So we instead report here on measurements of the size of TCBs, believing these are a
more useful way to evaluate whether well-built software would resist attack. Instantiation
of security principles in PFS led to increased total code size. If the larger size of PFS made
that system more vulnerable to compromise, then comparing performance with smaller-size
systems would have been pointless. To address this concern, we calculated the contributions
to the size of the TCB for PFS, UFS, and KFS relative to two design goals.

• We calculated the contribution to the TCB for enforcement of PDAC. Since enforce-
ment of PDAC was our primary design goal, we interpret the results as a good pre-
dictor for filesystem trustworthiness.

37

• To measure the extent to which the operating system kernel—hence all other software
running on the machine—trusts the filesystem, we calculated the contribution to the
TCB for the integrity of kernel and process isolation boundaries.

In all cases, we include contributions both from filesystem code and from kernel code that
implements PFS extensions to shared memory and the DDRM. Note that reducing the TCB
for PDAC enforcement provides a benefit to all users who directly or indirectly trust PFS
to correctly enforce PDAC, but reducing the TCB for kernel and process isolation benefits
any user who trusts any software running on the machine. Moreover, the TCB for PDAC
is a strict superset of the TCB for isolation, since enforcing PDAC also requires enforcing
isolation.

PFS, UFS, KFS run on α-Nexus, which might not be representative of other operating
systems. So, for comparison, we also performed the same calculations for Linux FAT32,
the Linux analog to KFS on α-Nexus, and Linux FUSE, a user-mode implementation of
the EXT2 filesystem based on FUSE [Szeredi 2012a] that serves as a Linux analog to UFS
on α-Nexus. For Linux implementations, we calculated the contribution to the TCB for
Linux’s DAC policy (rather than for PDAC). We include only code relating to the filesystem
and exclude the bulk of the kernel code base. We also excluded Linux disk driver code—
Linux supports many such drivers, but they always execute within the Linux kernel. We
thereby highlight the impact of different filesystem designs on the relative sizes of TCBs.

The following table summarizes our findings.

α-Nexus Linux

PFS (LOC) UFS (LOC) KFS (LOC) FUSE (LOC) FAT32 (LOC)
decomposed monolithic monolithic monolithic monolithic
user-mode user-mode kernel-mode user-mode kernel-mode

TCB contributions
for PDAC/DAC 8,825 97,159 42,685 78,695 46,801
for isolation 6,558 6,311 42,685 46,609 46,801

These findings show that PFS contributes the fewest number of lines of code to the TCB for
PDAC and nearly the fewest number of lines of code to the TCB for isolation, even though
PFS has the largest code base of the three α-Nexus designs (from Figure 3). Only 6,558
LOC for PFS—about 7% of the PFS code base—is in the TCB for integrity of the kernel and
other processes executing above the kernel, and only 8,825 lines of PFS code are part of the
TCB for enforcing PDAC. KFS has the lowest number of lines of code (42,685 LOC, from
Figure 3(c)) among the α-Nexus designs, but by locating all of this code within the kernel,
KFS achieves only a moderately sized TCB for both security goals. UFS represents only
a partial instantiation of the security principles. So although UFS achieves a smaller TCB
than KFS for kernel and process isolation (6,311 LOC and 42,685 LOC, respectively), UFS
also requires a large amount of code—97,159 lines—in the TCB for PDAC enforcement
versus 42,685 LOC required by KFS.

This analysis of TCB contributions for the three α-Nexus designs indicates that perva-
sively instantiating security principles can reduce TCB size in comparison to a traditional

38

kernel-mode design or a design that only partially instantiates these security principles.
Surprisingly, reducing one TCB can come at the expense of another TCB, as seen for UFS.
Although we do not have a Linux filesystem analog to PFS, the TCB contributions shown
above for the two Linux implementations are consistent with these conclusions. Linux
FUSE—an analog of UFS—has a smaller TCB for kernel and process isolation than Linux
FAT32—an analog of KFS—though only slightly (46,609 LOC and 46,801 LOC, respec-
tively). And for DAC enforcement, Linux FUSE requires a larger amount of code—78,695
lines—in the TCB versus 46,801 LOC for Linux FAT32.24

One might be concerned about our choice of FAT32 as the basis for PFS. Would a
more modern filesystem format like EXT3 confound our results concerning TCB contribu-
tions, because FAT32 is substantially simpler than EXT3? The same concern arises when
comparing Linux FUSE (which implements EXT2, the predecessor to EXT3) and Linux
FAT32. To allay such concerns, we measured the Linux EXT3 filesystem code base which,
like Linux FAT32, follows a traditional kernel-mode design. We found that it contributes
53,654 LOC to each TCB. This is indeed more than the 46,801 LOC contributed by Linux
FAT32. But this only means our use of FAT32 likely causes our analysis of TCB contri-
butions to understate the case for design driven by the security principles. If we replaced
PFS’s FAT32 implementation with EXT3, the code base of PFS would likely be even larger
than it currently is, and the TCBs for UFS and KFS would also be larger. But PFS would
achieve the same small TCBs, since none of the code in PFS TCBs depends on the choice
of filesystem format.

6 Related Work

6.1 File Systems

We are not the first to consider the design and implementation of a trustworthy filesystem.
Halcrow [2004] provides a comprehensive overview of secure filesystems for Linux. Wright
et al. [2003a] and Riedel et al. [2002] examine the performance and trustworthiness of
secure filesystems, in both distributed and non-distributed settings, for a variety of operating
systems. Here we discuss only a few secure filesystems that are particularly germane to our
work. We organize the discussion according to the trust (or, conversely, suspicion) between
filesystem components, local and remote disks or storage services, clients, and users.

Suspicion of local disks Many secure filesystems are intended to protect against theft
of locally installed disks. Here, the filesystem employs encryption to prevent a disk from
leaking filesystem data to an attacker who gains possession (hence, control) of the disk.
One approach to implementing such a cryptographic filesystem places the filesystem code
entirely within the operating system kernel (e.g., [Zadok et al. 1998; Wright et al. 2003b;
Saout 2004; Halcrow 2005; Microsoft TechNet 2010]). So, all processes place full trust in

24If we had counted device driver code for Linux, as we did for α-Nexus, all of the Linux TCBs would
appear larger by a constant amount. This does not change our conclusions.

39

all filesystem code, including disk device drivers and code for implementing encryption and
decryption. The entire filesystem is in the TCB for every system security goal.

A more common approach moves encryption and decryption code out of the kernel by
executing some or all of the filesystem as a process above the kernel (e.g., [O’Shanahan
2000; Blaze 2003; Gough 2012; Szeredi 2012b]). These filesystems can, in principle, in-
stantiate Mutual Suspicion and Least Privilege by granting filesystem processes only privi-
leges needed to service client requests and to perform encryption and decryption. The result
would be that filesystem code—at least, the portion executing as a user-space process—can
violate only those security goals that depend on that filesystem. Consequently some filesys-
tem code need not be in all TCBs. The user-space filesystem process would not be able to
violate the isolation of client processes, for instance, even if the filesystem were to become
compromised. In practice, however, user-space filesystems often execute with full admin-
istrative privileges and are trusted by the kernel (hence, by all processes). Therefore they
are in the TCB for every system security goal. Rather than increased trustworthiness, the
motivation for moving filesystem code out of the kernel instead appears to be programming
convenience, administrative convenience, and the desire to avoid accidental compromise of
the kernel due to bugs in filesystem code.

Untrusted remote storage Cryptography can also be useful when disks or other storage
services are accessed remotely (e.g., [Batten et al. 2001; Stein et al. 2001; Goh et al. 2003;
Kallahalla et al. 2003; Li et al. 2004; Storer et al. 2009; Yao et al. 2010; Szeredi 2012b]).
These filesystems encrypt data so that full trust need not be placed in a remote storage
service. Consequently, the remote storage service holds few privileges beyond the ability
to delete data or otherwise deny service. Filesystems that access data on a remote storage
service do not rely on local disk device drivers, and in some cases (e.g., [Batten et al. 2001;
Yao et al. 2010]) the filesystem is an application or library, rather than a system service. This
makes Least Privilege easier to instantiate—an ordinary user can create and configure the
filesystem without the cooperation of system administrators, and the resulting filesystems
hold no more privileges than the user that created it. Eliminating disk device drivers could
also lead to smaller TCBs.

Suspicion between filesystems and remote storage services A remote storage service
provides an opportunity for both the local filesystem and the remote storage service to be
suspicious of each other. Saksha [Kher and Kim 2007] instantiates Mutual Suspicion in
an effort to ensure proper resource accounting and billing. Using signed transaction logs
and other cryptographic techniques, Saksha ensures that neither the local filesystem nor the
remote storage service holds privileges that can be used to violate the system’s security
goals.

Suspicion between users Using cryptography as an isolation mechanism impedes the
ability to share data. For instance, CFS [Blaze 2003] uses symmetric per-user encryption
keys within the filesystem. Such keys must not be revealed to processes executing on behalf

40

of other users, since any user that gains possession of another user’s key can subsequently
access any of that other user’s data. This limits sharing files among users, unless the users
place full trust in each other. Sharing files is also difficult if the filesystem places full trust in
filesystem clients. pStore [Batten et al. 2001], for example, can’t easily share files between
users, because a substantial part of pStore executes as a library within each client’s ad-
dress space. The same problem arises in TrustedDB [Bajaj and Sion 2011], which executes
the client and filesystem together as a single component on a micro-kernel or hypervisor,
without any isolation between client and filesystem.

Untrusted clients In most filesystems, each client is a process that executes on behalf of
some user, and a user is assumed to place full trust in such a client. Alcatraz [Liang et al.
2003] addresses the threat posed by filesystem clients that are not trustworthy, intercepting
and suppressing any write request to the filesystem that was issued by an untrusted client.
Solitude [Jain et al. 2008] queues write requests from a target client so that an administrator
can first examine the requests and then, if desired, grant privileges to the process retroac-
tively. These filesystems eliminate privileges that would normally be held by filesystem
clients. Neither filesystem relies on encryption. VPFS [Weinhold 2006; Weinhold and
Härtig 2008], by contrast, is a cryptographic filesystem that protects data stored by a single,
trusted client from interference by all other clients. VPFS justifies this approach on Least
Privilege grounds: no VPFS client holds privileges that can be used to access data stored
by a different filesystem client.

Authorization and Authentication Secure filesystems vary substantially in their support
for authorization and authentication. Much work is this area is driven by the challenges
of distributed authorization spanning multiple administrative domains. Closest to our work
is a filesystem by Garg and Pfenning [2010], called PCFS. That filesystem uses proof-
carrying authorization [Appel and Felten 1999] to support a wide variety of authorization
policies. Clients provide proofs and credentials to the filesystem guard, which enforces
authorization policies specified in a formal logic. PCFS includes mechanisms for automated
proof construction, credential and proof caching, and revocation. PFS guards rely on the
α-Nexus alias table abstraction to achieve some of the same benefits as PCFS, though PFS
lacks a general proof search procedure that can be used by filesystem clients. Miltchev et
al. [2008] survey a large number of other secure distributed filesystems, both production
systems and experimental prototypes, paying particular attention to the authentication and
authorization mechanisms these filesystem support.

6.2 Security Principles

Our formulation of Mutual Suspicion derives from a formulation by Schroeder [1972]. That
dissertation also explores the design of a filesystem in light of Mutual Suspicion. Least Priv-
ilege was originally formulated by Saltzer and Schroeder [1975] as one of eight security
principles, several of which are now widely cited as fundamental principles for building se-

41

cure systems. The term Complete Mediation is often attributed to this same work by Saltzer
and Schroeder [1975], though it can also be found in prior work by Price and Schell [1974].
The notion that all requests must be checked for authorization was described previously
by Anderson [1972]. The term trusted computing base was coined by Nibaldi [1979].
Nibaldi’s formulation of the security principle, which was subsequently incorporated into
the Orange Book [Department of Defense 1985] and which we follow closely, builds on
Saltzer and Schroeder’s [1975] Principle of Economy of Mechanism, which in turn formal-
izes Schroeder’s [1972] earlier notions of simplicity in protection mechanism design and
implementation.

We based the design of PFS on an interpretation of these security principles in the con-
text of a system comprising many isolated components, each treated as a principal that
acts independently of other components, but where some components can become com-
promised. This is not the only possible interpretation, and there is even debate about their
usefulness in practice.

All of the security principles we use date to the 1970s, yet software appears to be no
more secure today than it was then. This criticism of the principles is discussed, and largely
dismissed, by Smith and Marchesini [2007], who also discuss other concerns:

• The security principles are vague, easily misinterpreted, and likely impossible to fully
achieve in practice.

• The security principles were developed in a very different context—commercial multi-
user operating systems, in the case of Saltzer and Schroeder, and military and defense
settings in which secrecy is (or was) paramount, in the case of Nibaldi. Thus one
might worry that the principles address the wrong problems, present the wrong solu-
tions, and address the wrong threats for today’s pervasive, Internet-enabled, personal
computing platforms.

• The security principles fail to address political, economic, and commercial realities.
As a result, there are significant incentives for system designers to ignore these secu-
rity principles, and few incentives to follow them.

These points have been raised by other authors as well. For instance, Viega and Mc-
Graw [2001] concede that it is easier and likely more profitable to ignore Least Privilege
than it is to instantiate Least Privilege with any degree of completeness.

Mutual Suspicion Though it was formulated first, Mutual Suspicion is the least fre-
quently cited of the three security principles we discuss here, and it is also seemingly the
least controversial. The original formulation of Mutual Suspicion by Schroeder [1972] was
descriptive rather than prescriptive. Our interpretation of the principle is closer to Nelson et
al. [1990], who argue that each component of a system should be responsible for protecting
itself by limiting reliance on information from external sources. Subsequent to that work,
Woo and Lam [1992] apply Mutual Suspicion in a similar way to users in an authentication
system.

42

Minimization of Trusted Computing Bases TCBs are often discussed in terms of a
single set of system-wide security goals and a corresponding single TCB for the system.
Rushby [1984], for example, examines how to minimize the TCB for embedded systems
that support only a single application. A general system, even one with a single user or ap-
plication, will have many security goals and, therefore, it could have many different TCBs.
Trade-offs arise when, in the course of reducing the size of one TCB (e.g., by moving func-
tionality out of one component and into another), we inadvertently enlarge the size of some
other TCB.

Bernstein [2007] advocates for Minimization of TCBs as the key to building secure
systems, and validates the benefits of this security principle by designing and implementing
Qmail, a mail transfer agent. Qmail, which is now widely deployed, was designed with
trustworthiness as an explicit goal, and it appears to have largely achieved that goal. It
has an internal architecture similar to PFS: functionality is decomposed across numerous
fine-grained components, components are mutually suspicious of each other and hold as
few privileges as possible, and guards are located on the communications channels between
components.

Arbaugh et al. [1997] argue that insufficient attention is paid to the lower layers of a
system—hardware, firmware, BIOS, and bootstrapping code—when defining a TCB. Ar-
baugh et al. insist that the precise semantics of these lower layers should be fully understood
and their implementations vetted, before they are included in a TCB. More recently, Smith
and Marchesini [2007] reiterate this point, but also argue that these lower layers, partic-
ularly hardware components, are increasingly too complex and too poorly understood to
make a suitable foundation for building a secure system.

If a TCB is interpreted as being dynamic, rather than static, then the necessity of includ-
ing all lower layers in a TCB can be avoided. Flicker [McCune et al. 2008], for instance,
removes the operating system kernel from the TCB for certain application-level security
goals, even though most of the application runs on top of the kernel. This is accomplished
using new hardware mechanisms that support a dynamic root of trust [Neiger et al. 2006;
Advanced Micro Devices, Inc. 2009]: the kernel is temporarily suspended, and a small
application-specified set of code is loaded into a secure, attested environment. The small
piece of code thus runs directly on the lower-layer hardware and need not place full trust in
the kernel.

Least Privilege Least Privilege can be instantiated for users and the privileges they hold.
Motiee et al. [2010] provide empirical evidence that Least Privilege is rarely followed for
Windows users. The authors of that study fault the authorization and authentication mech-
anisms supported by Windows for making Least Privilege impractical.

Interpreted broadly, Least Privilege applies not just to users, but to other principals as
well. Much prior work concerns the application of Least Privilege to processes. Applying
Least Privilege to a process typically means relying on setuid and similar system calls
to change a process’s privileges. Tsafrir et al. [2008] examine the poorly understood and
poorly defined semantics of such system calls and the difficulties this raises for Least Privi-

43

lege. Krohn et al. [2005] investigate other ways in which common operating systems stand
in the way of Least Privilege for processes.

Bernstein [2007] argues that Least Privilege—at least, its most common interpretation—
is “fundamentally wrong.” Here, instantiating Least Privileges is interpreted to involve two
steps. First, identify the components of the system and enumerate all privileges those com-
ponents hold. Second, successively remove privileges from components as long as the sys-
tem still functions properly. The resulting assignment of privileges to components might
then be said to instantiate Least Privilege, because each component holds only privileges
that are necessary for the system to function properly. In a compelling example of a system
designer being misled by Least Privilege, Bernstein discusses the case of a DNS resolver
that, rather than being decomposed into several mutually suspicious components that each
hold only a few privileges, was simply “Least Privilege-ized” as a single component, to
little effect.

One might instead take Least Privilege as a mandate to decompose a system into fine-
grained components such that security-critical privileges are held by few of the resulting
components. Here, the difficulty is in choosing the appropriate decomposition and ar-
ranging for the now-isolated components to communicate with each other. There have
been several attempts to simplify and automate these tasks. Programmers can rely on a li-
brary [Kilpatrick 2003] to make programming across isolation boundaries more convenient.
Monolithic applications can also be decomposed into components automatically, based on
program annotations [Zdancewic et al. 2001; Provos et al. 2003; Brumley and Song 2004].
Here, Least Privilege is taken to mean that the system should place full trust only in cer-
tain components, called privileged components, and that other, unprivileged components
should hold few or no security-critical privileges. Thus, the automated approaches above
decompose an application into two components—one privileged and one unprivileged—
each executing as a processes on top of the kernel and communicating over an IPC channel.
Swift [Chong et al. 2007] provides automatic decomposition for a more general case of
Least Privilege, splitting an application across two or more mutually suspicious machines.
Buyens et al. [2009] discuss a variety of automated and manual program-restructuring
techniques for instantiating Least Privilege. These techniques include splitting large com-
ponents within an application into finer-grained components and splitting coarse-grained
privileges into finer-grained privileges.

Finally, Smith and Marchesini [2007] argue that the model of subjects, objects, and
privileges, upon which both Mutual Suspicion and Least Privilege rest, may no longer be
adequate: is a Web page an inactive object that is acted upon, or is it an active subject that
makes requests and may hold privileges?

References

Advanced Micro Devices, Inc. AMD I/O virtualization technology (IOMMU)
specification. http://support.amd.com/us/Processor_TechDocs/
34434-IOMMU-Rev_1.26_2-11-09.pdf, February 2009.

44

http://support.amd.com/us/Processor_TechDocs/34434-IOMMU-Rev_1.26_2-11-09.pdf
http://support.amd.com/us/Processor_TechDocs/34434-IOMMU-Rev_1.26_2-11-09.pdf

James P. Anderson. Computer security technology planning study. Technical Report ESD-
TR-73-51, Vol. 2, ESD/AFSC, Hanscom AFB, Bedford, MA, October 1972. NTIS
AD758206.

Andrew W. Appel and Edward W. Felten. Proof-carrying authentication. In Proceedings of
the 6th ACM Conference on Computer and Communications Security, pages 52–62, New
York, NY, November 1999. ACM Press.

William A. Arbaugh, David J. Farber, and Jonathan M. Smith. A secure and reliable boot-
strap architecture. In Proceedings of the 1997 IEEE Symposium on Security and Privacy,
pages 65–71, Los Alamitos, CA, May 1997. IEEE Computer Society.

Sumeet Bajaj and Radu Sion. TrustedDB: A trusted hardware based database with privacy
and data confidentiality. In Proceedings of the 2011 ACM International Conference on
Management of Data, pages 205–216, New York, NY, June 2011. ACM Press.

Christopher Batten, Kenneth Barr, Arvind Saraf, and Stanley Trepetin. pStore: A secure
peer-to-peer backup system. Technical Report LCS 632, Massachusetts Institute of Tech-
nology, Cambridge, MA, 2001.

Daniel J. Bernstein. Some thoughts on security after ten years of qmail 1.0. In Proceedings
of the 2007 ACM Workshop on Computer Security Architecture, pages 1–10, New York,
NY, November 2007. ACM Press.

Brian N. Bershad, Stefan Savage, Przemysław Pardyak, Emin Gün Sirer, Mark E. Fiuczyn-
ski, David Becker, Craig Chambers, and Susan Eggers. Extensibility, safety, and perfor-
mance in the SPIN operating system. In Proceedings of the 15th ACM Symposium on
Operating Systems Principles, pages 267–283, New York, NY, December 1995. ACM
Press.

Matt Blaze. A cryptographic file system for Unix. In Proceedings of the 1st ACM Confer-
ence on Computer and Communications Security, pages 9–16, New York, NY, November
2003. ACM Press.

David Brumley and Dawn Song. Privtrans: Automatically partitioning programs for privi-
lege separation. In Proceedings of the 13th USENIX Security Symposium, pages 57–72,
Berkeley, CA, August 2004. USENIX Association.

Koen Buyens, Bart de Win, and Wouter Joosen. Identifying and resolving least privilege
violations in software architectures. In Proceedings of the 4th International Conference
on Availability, Reliability and Security, pages 232–239, Los Alamitos, CA, March 2009.
IEEE Computer Society. doi: 10.1109/ARES.2009.48.

Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi, K. Vikram, Lantian Zheng, and Xin
Zheng. Secure Web applications via automatic partitioning. In Proceedings of the 21st

ACM Symposium on Operating Systems Principles, pages 31–44, New York, NY, October
2007. ACM Press.

45

Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson Engler. An empir-
ical study of operating system errors. In Proceedings of the 18th ACM Symposium on
Operating Systems Principles, pages 73–88, New York, NY, October 2001. ACM Press.

David D. Clark. The design philosophy of the DARPA Internet protocols. In Proceedings
of the 1988 ACM Conference on Communications Architectures & Protocols, pages 106–
114, New York, NY, August 1988. ACM Press. ISBN 0-89791-279-9. doi: http://doi.
acm.org/10.1145/52324.52336.

Department of Defense. Department of Defense trusted computer system evaluation cri-
teria (TCSEC). DoD 5200.28-STD, http://csrc.nist.gov/publications/
history/dod85.pdf, December 1985.

Ian Foster. Designing and Building Parallel Programs: Concepts and Tools for Parallel
Software Engineering. Addison Wesley, Boston, MA, 1995.

Deepak Garg and Frank Pfenning. A proof-carrying file system. In Proceedings of the
2010 IEEE Symposium on Security and Privacy, pages 349–364, Los Alamitos, CA,
May 2010. IEEE Computer Society.

Jeff Garzik. libATA developer’s guide. http://www.kernel.org/doc/
htmldocs/libata.html, 2012.

Eu-Jin Goh, Hovav Shacham, Nagendra Modadugu, and Dan Boneh. SiRiUS: Securing
remote untrusted storage. In Proceedings of the 10th Annual Network and Distributed
System Security Symposium, pages 131–145, Reston, VA, February 2003. Internet Soci-
ety.

Valient Gough. EncFS encrypted filesystem. http://www.arg0.net/encfs/, 2012.

Michael Austin Halcrow. Demands, solutions, and improvements for Linux filesystem
security. In Proceedings of the 2004 Linux Symposium, volume 1, pages 269–286, July
2004.

Michael Austin Halcrow. eCryptfs: An enterprise-class encrypted filesystem for Linux. In
Proceedings of the 2005 Linux Symposium, volume 1, pages 201–218, July 2005.

Shvetank Jain, Fareha Shafique, Vladan Djeric, and Ashvin Goel. Application-level isola-
tion and recovery with Solitude. In Proceedings of the 3rd ACM EuroSys European Con-
ference on Computer Systems, pages 95–107, New York, NY, April 2008. ACM Press.

Mahesh Kallahalla, Erik Riedel, Ram Swaminathan, Qian Wang, and Kevin Fu. Plutus:
Scalable secure file sharing on untrusted storage. In Proceedings of the 2nd USENIX
Conference on File and Storage Technologies, pages 29–42, Berkeley, CA, March 2003.
USENIX Association.

46

http://csrc.nist.gov/publications/history/dod85.pdf
http://csrc.nist.gov/publications/history/dod85.pdf
http://www.kernel.org/doc/htmldocs/libata.html
http://www.kernel.org/doc/htmldocs/libata.html
http://www.arg0.net/encfs/

Vishal Kher and Yongdae Kim. Building trust in storage outsourcing: Secure accounting
of utility storage. In Proceedings of the 26th IEEE Symposium on Reliable Distributed
Systems, pages 55–64, Los Alamitos, CA, October 2007. IEEE Computer Society.

Douglas Kilpatrick. Privman: A library for partitioning applications. In Proceedings of the
2003 USENIX Annual Technical Conference, pages 273–284, Berkeley, CA, June 2003.
USENIX Association.

Maxwell N. Krohn, Petros Efstathopoulos, Cliff Frey, M. Frans Kaashoek, Eddie Kohler,
David Mazières, Robert Morris, Michelle Osborne, Steve Vandebogart, and David
Ziegler. Make least privilege a right (not a privilege). In Proceedings of the 10th Workshop
on Hot Topics in Operating Systems, Berkeley, CA, June 2005. USENIX Association.

Jinyuan Li, Maxwell N. Krohn, David Mazières, and Dennis Shasha. Secure untrusted data
repository (SUNDR). In Proceedings of the 6th Symposium on Operating System Design
& Implementation, volume 6, pages 91–106, Berkeley, CA, December 2004. USENIX
Association.

Zhenkai Liang, V. N. Venkatakrishnan, and R. Sekar. Isolated program execution: An
application transparent approach for executing untrusted programs. In Proceedings of the
19th Annual Computer Security Applications Conference, pages 182–191, Los Alamitos,
CA, December 2003. IEEE Computer Society.

Linux Kernel (version 2.6.29.2). http://www.kernel.org/, April 2009.

Jonathan M. McCune, Bryan Parno, Adrian Perrig, Michael K. Reiter, and Hiroshi Isozaki.
Flicker: An execution infrastructure for TCB minimization. In Proceedings of the 3rd

ACM EuroSys European Conference on Computer Systems, pages 315–328, New York,
NY, April 2008. ACM Press.

Microsoft TechNet. BitLocker drive encryption overview. http://technet.
microsoft.com/en-us/library/cc732774.aspx, 2010.

Stefan Miltchev, Jonathan M. Smith, Vassilis Prevelakis, Angelos Keromytis, and Sotiris
Ioannidis. Decentralized access control in distributed file systems. ACM Computing
Surveys, 40(3):10:1–10:30, August 2008. ISSN 0360-0300. doi: http://doi.acm.org/10.
1145/1380584.1380588.

Sara Motiee, Kirstie Hawkey, and Konstantin Beznosov. Do Windows users follow the
principle of least privilege? Investigating user account control practices. In Proceedings
of the 6th Symposium on Usable Privacy and Security, New York, NY, July 2010. ACM
Press.

Gil Neiger, Amy Santoni, Felix Leung, Dion Rodgers, and Rich Uhlig. Intel virtualization
technology: Hardware support for efficient processor virtualization. Intel Technology
Journal, 10(3):167–178, August 2006.

47

http://www.kernel.org/
http://technet.microsoft.com/en-us/library/cc732774.aspx
http://technet.microsoft.com/en-us/library/cc732774.aspx

Ruth Nelson, David Becker, Jennifer Brunell, and John Heimann. Mutual suspicion for
network security. In Proceedings of the 13th NIST-NCSC National Computer Security
Conference, Baltimore, MD, October 1990. National Institute of Standards and Technol-
ogy.

G. H. Nibaldi. Specification of a trusted computing base (TCB). Technical Report M79-
228, MITRE Corp., Bedford, MA, November 1979. NTIS ADA108831.

Declan Patrick O’Shanahan. CryptoFS: Fast cryptographic secure NFS. Master’s thesis,
University of Dublin, Dublin, Ireland, 2000.

William R. Price and Roger R. Schell. A secure approach to data base management system
design. Technical Report MCI-74-2, ESD/AFSC, Hanscom AFB, Bedford, MA, January
1974. NTIS ADA532492.

Niels Provos, Markus Friedl, and Peter Honeyman. Preventing privilege escalation. In Pro-
ceedings of the 12th USENIX Security Symposium, volume 12, pages 231–242, Berkeley,
CA, August 2003. USENIX Association.

Erik Riedel, Mahesh Kallahalla, and Ram Swaminathan. A framework for evaluating stor-
age system security. In Proceedings of the 2002 USENIX Conference on File and Storage
Technologies, pages 15–30, Berkeley, CA, January 2002. USENIX Association.

Rob Riglar. FAT16 / FAT32 file IO library. http://hp.www.robs-projects.com/
filelib.html, 2010. Version 2.5.0.

John Rushby. A trusted computing base for embedded systems. In Proceedings of the 7th

DoD/NBS Computer Security Conference, pages 294–311, September 1984.

Jerome H. Saltzer and Michael D. Schroeder. The protection of information in computer
systems. Proceedings of the IEEE, 63(9):1278–1308, September 1975.

Christophe Saout. dm-crypt—a device-mapper crypto target. http://www.saout.de/
misc/dm-crypt/, March 2004.

Fred B. Schneider, Kevin Walsh, and Emin Gün Sirer. Nexus authorization logic (NAL):
Design rationale and applications. ACM Transactions on Information and System Secu-
rity, 14(1):8:1–8:28, May 2011.

Michael Schroeder. Cooperation of Mutually Suspicious Subsystems in a Computer Utility.
PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, 1972.

Emin Gün Sirer, Willem de Bruijn, Patrick Reynolds, Alan Shieh, Kevin Walsh, Dan
Williams, and Fred B. Schneider. Logical attestation: An authorization architecture for
trustworthy computing. In Proceedings of the 23rd ACM Symposium on Operating Sys-
tems Principles, pages 249–264, New York, NY, October 2011. ACM Press.

48

http://hp.www.robs-projects.com/filelib.html
http://hp.www.robs-projects.com/filelib.html
http://www.saout.de/misc/dm-crypt/
http://www.saout.de/misc/dm-crypt/

Sean Smith and John Marchesini. The Craft of System Security. Addison Wesley, Boston,
MA, 2007.

Christopher A. Stein, John H. Howard, and Margo I. Seltzer. Unifying file system protec-
tion. In Proceedings of the 2001 USENIX Annual Technical Conference, pages 79–90,
Berkeley, CA, June 2001. USENIX Association.

Mark W. Storer, Kevin M. Greenan, Ethan L. Miller, and Kaladhar Voruganti.
POTSHARDS—A secure, long-term storage system. ACM Transactions on Storage,
5(2):5:1–5:35, June 2009.

Zhendong Su and Gary Wassermann. The essence of command injection attacks in Web
applications. In Proceedings of the 33rd ACM Symposium on Principles of Programming
Languages, pages 372–382, New York, NY, January 2006. ACM Press.

Miklos Szeredi. FUSE: Filesystem in user-space. http://fuse.sourceforge.
net/, 2012a.

Miklos Szeredi. SSH filesystem. http://fuse.sourceforge.net/sshfs.html,
2012b.

Trusted Computing Group. Trusted platform module (TPM) specification, version 1.2.
https://www.trustedcomputinggroup.org/specs/TPM/, March 2011.

Dan Tsafrir, Dilma Da Silva, and David Wagner. The murky issue of changing process
identity: Revising “setuid demystified”. ;login: The USENIX Magazine, 33(3):56–66,
June 2008.

John Viega and Gary McGraw. Building Secure Software: How to Avoid Security Problems
the Right Way. Addison Wesley, Boston, MA, 2001.

Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. Efficient
software-based fault isolation. In Proceedings of the 14th ACM Symposium on Oper-
ating Systems Principles, pages 203–216, New York, NY, December 1993. ACM Press.

Carsten Weinhold. Design and Implementation of a Trustworthy File System for L4. PhD
thesis, Technische Universität Dresden, Dresden, Germany, 2006.

Carsten Weinhold and Hermann Härtig. VPFS: Building a virtual private file system with
a small trusted computing base. In Proceedings of the 3rd ACM EuroSys European Con-
ference on Computer Systems, pages 81–93, New York, NY, April 2008. ACM Press.

Dan Williams, Patrick Reynolds, Kevin Walsh, Emin Gün Sirer, and Fred B. Schneider.
Device driver safety through a reference validation mechanism. In Proceedings of the 8th

Symposium on Operating System Design & Implementation, pages 241–254, Berkeley,
CA, December 2008. USENIX Association.

49

http://fuse.sourceforge.net/
http://fuse.sourceforge.net/
http://fuse.sourceforge.net/sshfs.html
https://www.trustedcomputinggroup.org/specs/TPM/

Thomas Y. C. Woo and Simon S. Lam. Authentication for distributed systems. IEEE
Computer, 25(1):39–52, January 1992. ISSN 0018-9162. doi: 10.1109/2.108052.

Charles P. Wright, Jay Dave, and Erez Zadok. Cryptographic file systems performance:
What you don’t know can hurt you. In Proceedings of the 2nd IEEE Security in Storage
Workshop, pages 47–61, Los Alamitos, CA, October 2003a. IEEE Computer Society.

Charles P. Wright, Michael C. Martino, and Erez Zadok. NCryptfs: A secure and conve-
nient cryptographic file system. In Proceedings of the 2003 USENIX Annual Technical
Conference, General Track, pages 197–210, Berkeley, CA, June 2003b. USENIX Asso-
ciation.

Jinhui Yao, Shiping Chen, Surya Nepal, David Levy, and John Zic. TrustStore: Making
Amazon S3 trustworthy with services composition. In Proceedings of the 10th IEEE/ACM
International Conference on Cluster, Cloud, and Grid Computing, pages 600–605, Los
Alamitos, CA, May 2010. IEEE Computer Society.

Erez Zadok, Ion Badulescu, and Alex Shender. Cryptfs: A stackable vnode level encryption
file system. Technical Report CUCS-021-89, Computer Science Department, Columbia
University, New York, NY, 1998.

Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C. Myers. Untrusted
hosts and confidentiality: Secure program partitioning. In Proceedings of the 18th ACM
Symposium on Operating Systems Principles, pages 1–14, New York, NY, October 2001.
ACM Press.

50

	1 Introduction
	2 Security Principles
	3 α-Nexus Operating System
	3.1 Credentials-based Authorization in α-Nexus
	3.1.1 α-Nexus Alias Tables

	3.2 α-Nexus Shared Memory and IPC Channels
	3.3 α-Nexus Device I/O Privileges

	4 Design and Implementation of PFS
	4.1 File Access Requests
	4.2 Caching
	4.3 Heuristics for Decomposing PFS
	4.4 Cache Management Component
	4.5 Policy Management Component
	4.6 TCB for PDAC Enforcement
	4.7 Disk Driver Components
	4.8 Filesystem Driver Components
	4.9 VFS Components
	4.10 Data Replication in PFS
	4.11 PFS Implementation Optimizations
	4.11.1 Shortening Communication Paths
	4.11.2 Leveraging Fate-Sharing
	4.11.3 Relocating Guards

	5 Filesystem Evaluation
	5.1 Cost of Mutual Suspicion and Complete Mediation
	5.1.1 Impact of Mutual Suspicion and Complete Mediation on Code Size
	5.1.2 Performance Implications of Mutual Suspicion and Least Privilege: Micro-benchmarks
	5.1.3 Performance Implications of Mutual Suspicion and Least Privilege: Filesystem Benchmarks

	5.2 Cost of Least Privilege
	5.2.1 Impact of Least Privilege on Code Size
	5.2.2 Performance Implications of Least Privilege

	5.3 Cost of Minimization of Trusted Computing Bases
	5.4 Benefits of Instantiating Principles

	6 Related Work
	6.1 File Systems
	6.2 Security Principles

