Device Driver Safety Through a Reference Validation Mec$rari

Dan Williams, Patrick Reynolds, Kevin Walsh, Emin Gin $iend Fred B. Schneider
{djwill,reynolds,kwalsh,egs,fdgcs.cornell.edu

May 9, 2008

Abstract but these drivers retain sufficient 1/O privileges that they
must still be trusted.

Device drivers typically execute in supervisor mode andThe advantages of isolating device drivers from each

thus must be fully trusted. This paper describes how dther and from other system components are well

move them out of the trusted computing base, by rukmown [6,24,28]. However, such isolation is rare because
ning them without supervisor privileges and constrainirdgvice drivers require a rich interface to the rest of the
their interactions with hardware devices. An implementaystem and because their performance requirements con-
tion of this approach in the Nexus operating system exstain how they may be partitioned.

cutes drivers in user space, leveraging hardware isolatiorThis paper introduces a practical mechanism for exe-

and subjecting them to reference validation. These Nextifing device drivers in user space and without privilege.

drivers exhibit performance nearly as fast as earlier iBpecifically, device drivers are isolated using hardware
kernel, trusted drivers. For example, the monitored drivgfotection boundaries. And each device driver is given
for an Intel 1000 Ethernet card has throughput compag@cess only to the minimum resources and operations nec-
ble to a trusted driver for the same hardware under Linwssary to support the devices it controls (least privilege)

And a monitored driver for the Intel i810 sound card prahereby shrinking the TCB.A system in which device

vides continuous playback. Drivers for a disk and a USdivers have minimal privileges is easier to audit and less

mouse have also been moved successfully to operatgigceptible to Trojans in third-party device drivers.

Nexus user space with reference validation. Device drivers that run in user space still need to initi-
ate hardware 1/O operations and handle interrupts. These
operations can cause device behavior that compromises

1 Introduction the integrity or availability of a kernel or other programs.
Therefore, in our driver architecture, a global, trusted

A Microsoft study reports that 85% of crashes in Windowgence validation mechanis(RVM) [3] mediates all in-

XP result from device driver failures (see [27]), and a sinferaction between device drivers and devices. The RVM

ilar study based on automated bug-finding tools clairfiyokes a device-specifreference monitoto validate ev-

that Linux driver code has an error rate up to seven timay/ interaction between a device driver and its associated

higher than other kernel code [8]. Yet device drivers af€vice, thereby ensuring the driver conforms tdeaice

part of the trusted computing base (TCB) of every appfafety specificatio(DSS), which defines allowed and, by

cation, because the monolithic architecture of mainstreg#tension, prohibited behaviors.

operating systems forces device drivers to be executedhe DSS is expressed in a domain-specific language

inside the kernel, with high privilege. The situation ignd defines a state machine that accepts permissible tran-

not substantially different for exokernels [10], whichalssitions by a monitored device driver. We provide a com-
run device drivers inside the kernel for performance reiler to translate a DSS into an executable reference mon-
sons. Some microkernels and other research operait@g that implements the state machine. Every operation
systems [2, 7, 19, 22] run device drivers in user spacely the device driver is vetted by the reference monitor,
isolate the operating system from accidental driver faulg&nd operations that would cause an illegal transition are
blocked. The entire architecture is depicted in Figure 1.

*Supported by NICECAP cooperative agreement FA8750-003+0

administered by AFRL, AFOSR grant F49620-03-1-0156, Neti&ci- 1Some drivers, such as the clock, provide functionality eeefbr
ence Foundation Grants 0430161 and CCF-0424422 (TRUSTR ONefining or enforcing security policies. These device devemain part
Grant N00014-01-1-0968, and Microsoft Corporation. of the TCB no matter where they execute.

c enhanced security are not prohibitive.

Device drivers 2 The rest of this paper is structured as follows. Section 2

User space & describes the device 1/0 model, which dictates assump-

*********** {ACEQ tions underlying our design. Section 3 describes RVM
i Do functionality and the DSS language. Section 4 describes

! Reference||| RvM . S . . .

‘ DSSes m_”’i Monitors m our instantiation of these ideas in the Nexus operating sys-
 Compiler || mmmgggnﬁelmg tem. Section 5 reports on the performance, robustness,
Interrupts o g and size of our unprivileged, isolated drivers for sound

cards, mice, network interface cards, and disks. Section 6
Device surveys relevant work on driver isolation and hardware

specification, while Section 7 concludes.
Figure 1: Safe user-space device driver architecture.

2 Device I/O Model

The RVM protects the integrity, confidentiality, and

Device

availability of the system, by preventing: Device drivers send commands to devices, check de-
e lllegal reads and writes: Drivers cannot read or ViCe Status using registers, receive notification of status
modify memory they do not own. changes through interrupts, and initiate bulk data trans-

e Priority escalation: Drivers cannot escalate theif€'S Using direct memory access (DMA). How they do so
scheduling priority. constitutes a platform’¥O model Our work is targeted

e Processor starvation: Drivers cannot hold the CPUtO the x86 architecture and PCI buses; what follows is a

for more than a pre-specified number of time slice%’rief overview of the 1/O model on that platform. Similar

. o . eatures are found on other processors and buses.
e Device-specific attacksDrivers cannot exhaust de- : : :
vice resources or cause physical damage to devices.Mo.dem _b_use_s implement c_iewce enumeratl_or_1 a”d_e.”d'
point identification. Each device on a PCI bus is identified

In addition, given a suitable DSS, an RVM can enfordsy a 16-bit vendor identifier and a 16-bit model number;
site-specific policies to govern how devices are used. Fhe resulting 32-bitlevice identifieidentifies the device.
example, administrators at confidentiality-sensitiveasrgDevice enumeratiois a process for identifying all devices
nizations might wish to disallow the use of attached méttached to a bugndpoint identificatioris the process of
crophones or cameras; or administrators of trusted ngtrerying a device for its type, capabilities, and resource
works might wish to disallow promiscuous (sniffingyequirements.
mode on network cards. Device enumeration and endpoint identification typi-

One alternative to our approach for monitoring and cooally occur at boot time. Interrupt lines and 1/O registers
straining device driver behavior is to use hardware capahle assigned, in accordance with device requests, to all de-
of blocking illegal operations. An IOMMU [1, 4,12, 21],vices discovered. Device identifiers govern which device
for example, limits the ability of devices to perform DMAdrivers to load.
transfers to or from physical addresses the associate®evices haveegisters which are read and written by
drivers cannot read or write directly. This mechanisrdrivers to get status, send commands, and transfer data.
however, does not mediate other aspects of driver beh@te registers comprise 1/0O ports (accessed using instruc-
ior, so it is strictly less powerful than an RVM. For extions likei nb andout b), memory-mapped I/0, and PCI-
ample, an IOMMU cannot prevent interrupt livelock (asonfiguration registers. Each register is identified by a
exemplified in Section 5.2), limit excessively long intetypeand anaddress Contiguous sets of registers consti-
rupt processing, or protect devices from physical harm hyte arange identified by type, base address, and limit
drivers. IOMMUs also cannot enforce limitations on thgéhe number of addresses in the range). For all register
use of cameras, microphones, or network sniffing. types, accesses are parameterized by an address, a size,

In sum, this paper shows how to use standard meamd, for writes, a value of the given size. Write operations
ory protection and device-specific reference monitors éficit no response; read operations produce a value of the
execute device drivers with limited privilege and in usajiven size as a response. Both operations can cause side
space. The requisite infrastructure is small, easy to aueifects on a device.
and shared across all devices. Our prototype implemenbevices that transfer large amounts of data typically
tation demonstrates that this approach can defend aga@amploy DMA rather than requiring a device driver to
malicious drivers and that the performance costs of thiansfer each word of data individually through device

registers. To initiate a DMA transfer, the device drivesontroller suffices to handle the entire hieraréhy.

typically writes a pointer into a device’s control regis- Some devices, particularly high-performance network
ter. Some devices can perform DMA to or from multipleards, support loadable firmware, which executes on the
memory regions if the driver writes a pointer for a list oflevice and thus can change the way the device behaves.
regions. Device drivers using DMA transfers must fir§this firmware must be trustworthy [16]. Firmware is
obtain from the kernel a memory region with a knowngaded through I/O operations or DMA, a sequence of
fixed, physical address. events that can be monitored. In principle, then, an RVM

Devices can bsynchronousr asynchronousDrivers could authenticate firmware using signatures or perform
must poll synchronous devices for completed operatiowgawsis to show the firmware is trustworthy. Our current
or changes in status. In contrast, when a driver submits2aSes do notimplement these checks. Doing so would be
operation to an asynchronous device, the driver can yigfgiaightforward, though designing an analysis algorithm
the CPU until the device later signals its response (or afyght not be.
other status change) by interrupting the processor. When
that interrupt occurs, the operating system invokes code
specified by the driver. In most cases, an interrupt must Unpr|V|Ieged Driver Architecture

be acknowledged by a driver, or the device will continue) _ _)
to send the same interrupt. Interrupts can be prioritiz8¢ Our user-space driver architecture, drivers, like any

relative to each other, but they generally occur with a higith€r user process, are loaded from a filesystem; once
priority, preempting most other tasks. oaded, they execute and can be unloaded and restarted at

Each device signals interrupts using a pre-assignedany time. When a driver is first loaded, it executes a sys-

: . ; ; éem call to find a compatible device. As part of this system
terrupt line On some architectures, including the x86, :) e .)
cgll execution, the RVM identifies an appropriate device

interrupt lines can be shared by multiple devices. Drivet d reference monitor and returns to the driver a structure
must read status registers for each of these devices tozﬂe

termine which specific device caused the interrupt. escribing the de\{|ce ID and I/Q-resource assgnments.
) _ Henceforth, the driver uses a driver system call interface
Devices are assumed to be in an unknown state WQﬁﬂscribed in Section 4.3) to perform 1/O operations and

an operating system.boolts or when a driver IS Ioaqed,rgf:eive interrupts. Subsequent uses of that interfaceecaus
reloaded. When a driver is unloaded, it unregisters its e RVM to invoke the reference monitor

terrupt handler and releases its DMA memory. At that Reference monitors are instantiated immediately after

point, the device must be placed in a state that does Bl int enumeration, based on device IDs. Reference

generate interrupts or use DMA. ~ monitors persist, even if corresponding drivers are un-
Devices are typically forgiving about device driver timjgaded and restarted.

ing, and device drivers are similarly forgiving about de-
vice timing. This flexibility is a necessity, because a . .
modern multitasking operating system might be heas:1 Security properties

ily loaded, implement arbitrary scheduling policies, or i ers are not trusted, but the RVM, reference monitors,
tlmes executg W'_th mterrupts_ dlsableq. In addition, qghd devices are. Moreover, reference monitors are com-
vices and their drivers are typically designed to work W'“ﬂiled from DSSes, so DSSes and the DSS compiler must
several processor generations, which differ in executigp {,sted

speed. Device registers and interrupts, rather than grecisg, o psses will be written by hardware manufactur-

timing, are used to implement synchronization betwe@Rs. o ers will be written by independent experts, includ-
the device and its driver so that devices and drivers Bga <o ity firms or OS distributors. But independent of
have safely and predictably despite uncertain delays. the source, a DSS ought to be small and declarative, hence
Some drivers are divided into components or hierafonducive to auditing.
chies. For example, SCSI, ATA, and USB each have aye assume devices behave safely if given sufficiently
controller driver plus additional drivers for peripheralgestricted inputs. Such an assumption is inescapable, be-
like disks, mice, keyboards, etc. In sudhver hierar- cayse devices have the ability to read and write any mem-
chies only the device driver for the controller performs
actual I/0 operations, handles interrupts, or initiatesDM *We have nevertheless developed an approach to compositerieé

transfers. Drivers for peripherals communicate with tI_]é]r}onitors: the composite reference monitor is derived froencontroller
) reference monitor and an auxiliary reference monitor fatheattached

de.ViceS through the Cont_m”er driver, he.nce the perighefgyice. in practice, the only property that changes wheipperals are
driver need not be monitored. So a single DSS for tlhgached seems to be the interrupt rate limit.

ory, generate arbitrary interrupts, or even starve hardwarcluding message sources and destinations. The RVM
buses directly. does not, for example, prevent a malicious driver from

The two sources of driver misbehavior we consid&firroring packets to an attacker and does not prevent a
are drivers designed by malicious authors (Trojans), afligk driver from writing data to the wrong block. Such
drivers with bugs that can be subverted by users or remBtgtections concern end-to-end properties, hence they are
attackers. Both are dealt with by our RVM. best implemented above the driver level.

The RVM prevents drivers from performing invalid

reads and writes using hardware isolation and by checkB® Device safety specifications (DSS)
driver accesses to DMA control registers.
Each DSS describes tlstatesandtransitionsfor a state

¢ Hardware_ |_solat|on Wc_>rks as with qther USET PIGhachineand is compiled to create a reference monitor.
Cesses, gving each driver process direct access cﬁ'?ll%uts to the reference monitor—operations executed by
toits own memory space. a driver and events from the corresponding device—are

* By checking that every DMA address sent to the dggjivered serially to the reference monitor by the RVM.
vice is allocated to the driver, the RVM prevents @/hen an input does not correspond to an allowable transi-
device driver from using DMA for illegal reads andjon then the reference monitor deems it illegal, the RVM
writes. terminates the driver for the corresponding device, and the

The RVM must also defend against a device driver thdgViCe is reset. _ _ _
attempts to escalate its execution priority or that starves! N€ state of a DSS state machine records interesting as-
other processes and the kernel by causing large numkﬂ?r%ts of.the history of operf'mons and_ events. This state is
of interrupts or by spending too much time in high-prioritg?f'ned in terms oftate varlgblgsand it often correlates
interrupt handlers. A timer driver might set too high gnth the state of the_ I/0 dgwce itself. Some of these state
timer frequency, or a sound card driver might set too sm¥fifiables are explicitly defined by the program; others are
a DMA buffer for playback, causing frequent notificalmplicitly defined by the RVM. _
tions to be generated when the buffer becomes emptyl_mphcnly defined state vanablgs are given values
Some of these unacceptable behaviors can be prevefédne RVM as a result of registration events (see
when the driver is setting up the device—for example€ction 4.1). ~ The implicit variable$PORTI (],
by a reference monitor imposing a lower bound on tffM O], $PCI REF], and$I NTR[] identify I/O reg-
sound card DMA buffer size—but RVMs provide threéSters and interruptlines set during endpomudenufm_mtl
additional protection measures. First, the RVM limits tr&nd $MONI TORED[| andSUNMONI TORED[] describe
frequency at which a driver can receive interrupts, with/© types of memory regions allocated by the driver for
different limits for different types of devices. Seconds thPMA transfers. Access to a monitored memory location
RVM limits the length of time that an interrupt handlef€nerates an input to the reference monitor; this form of
runs. Finally, the RVM ensures that each interrupt handf@€mory is used to store commands or pointers to DMA
acknowledges every interrupt, to prevent devices from [§9i0nS, similar to device registers. Access to an unmon-
suing additional interrupts for the same event. (The detdfered memory location is not visible to the RVM, mak-

of monitoring interrupt handlers in our Nexus implemerd?d unmonitored memory suitable only for holding data
tation are described in Section 4.1.) not relevant to the DSS, such as audio samples from a
Finally, an RVM must identify and prevent invocationgound card. Unmonitored reads and writes are consider-
: ably faster than monitored reads and writes.

of operations known or suspected to harm devices. Exa . . e : .
ples include: overclocking processors, sending a monitOIEElCh state mac_hlne tran.smon is specified Wlt.h a predi-
an out-of-range refresh rate, instructing a disk to seekct%tepi and an aCt'on.éli' L IS a boolean expression over
an invalid location, or writing invalid data to non-volatil events and state variables, is a program fragment that

configuration registers. Other attacks against devices riﬂcf)d'f'tis tstatg vanablde_s to proc(ijuce th(f. n;w_stat¢£tA tran-
volve exhausting finite resources, such as wearing &IHOH tha paltrs; pril |cagta» and an actiom; 1S written
flash memory by writing repeatedly to one block or wasS'ng the syntaxs {4}

ing battery power on mobile dewces. The_RVM prevents sgome predicates and actions are too complex to write in tefms
these attacks simply by preventing operations that wothd simple syntax currently supported by our DSS languaberewser-

cause unsafe device states and by rate-limiting operatigﬁged state variabl_es must be scalars, and predicatestdasmmecur-

that would exhaust device resources sive. The DSS compiler therefore supports embedded bldeksamded
)) ’ asC: {...}, appearing in predicates and in actions. Within an embed-

Notice that no effort is made to protect data contentsd C block, it is possible to nest an embedded block of DS8,@d.,

Any operation or event—though this is most useful fdriver and device events. Device drivers affect the
interrupts—can be assigned a rate limit as part of a DSfate of the system and the reference monitor in three
Rate limits can be manually incorporated into transitiomgays: by performing 1/O, by allocating memory, or by
using counters and timers. As a convenience, the notatexiting. When the driver reads or writes a register or
P; <rate, max, start>{ A; } compiles to a transition a monitored memory location, the RVM sendsad or
with a leaky bucket expressing a rate limit. So, the asfi t e events to the reference monitor. After ad
sociated transition can occur at meste times per sec- operation, the device responds with a value, generating
ond; bursts are allowed beyond this rate, up#tor occur- ar ead.r esponse event. Ther ead operation can be
rences at once; when the driver starts, it kéas-t initial blocked if it would cause a disallowed side effect. The

capacity. read._r esponse event is never blocked, and the value
As an example, an abridged version of our DSS for tifeconveys can be used to change state variables.
Intel i810 audio device appears in the Appendix. A driver can allocate memory to use for DMA, which

causes the RVM to sendegi st er _r egi on events
with a region type ofMONI TORED or UNMONI TORED.
4 |Implementation Finally, if the driver exits or executes an operation not per
P mitted by the DSS, the RVM sends aset event.

We instantiated our user-level device driver architectu_reDevlces affect reference monitor state when sending

in the Nexus trusted operating system [25], which hiyerrupts, W_h'Ch gene_rauent r even_ts. When_the ref-
many similarities to traditional microkernels, includin§€MCe Monitor gets annt r event, it sets an interrupt
hardware-implemented process isolation. Other operat-2t Us flag (the reference monitor state implicitly in-

ing systems that support process isolation (e.g., Linux des one flag per intgrrupt _Iine)_mendi ng, and th
Windows) could also host an RVM. RVM s_chedules the dr|ver_W|th high execunon_ priority.
. . - .The driver then has a configurable amount of time to re-
Our implementation of user-space, unprivileged device . T !
, : . . spond to the interrupt, by checking if the interrupt was
drivers in Nexus includes the RVM, an event interface bg= ™ ™ ; . L
rpm its device, and if so, acknowledging it so that the

tween the RVM and the reference monitor, a system call . .
: . . . evice does not generate further interrupts for the same
interface by which drivers can request services from the

. -) . . device event or completed operation. This acknowledg-
RVM, and a mechanism for limiting driver execution time S . : .
. ment is implemented with 1/0 deviaeead andwrit e
and the frequency of events. We discuss each of these =~ " . .
. . . operatlons, reference monitors recognize the acknowledg-
below and report on our experience porting Linux kerne L : .
device drivers to Nexus user space ment as a transition and reset the interrupt flagdb e.

' The RVM calls theget _i nt r _st at us function on each
operation after an ntr event (i.e., while the driver’s
interrupt handler is executing). As soon as the inter-
ruptst at us flag is reset ta dl e, the RVM lowers the
Reference monitors define functions that the RVM caliver's execution priority to its default level. If the der
to initialize implicit state variables and to deliver inputdoes not reset thet at us before the allowed time has
to be checked. These inputs are sent in response to dri/@psed, then it is treated as a priority escalation attack;
system calls and device events. Each I/O operation 4A8 RVM terminates the driver and resets the device.

event described in Section 2 causes a distinct input. When an interrupt occurs on a shared line, the RVM
notifies all drivers sharing that line. Each driver must then
query its device to see if it was the source of the inter-

State-variable setup. After device enumeration andrupt. This approach correctly handles merged interrupts,

endpoint identification occur, Nexus initializes one refvhere two or more devices generate an interrupt at the

erence monitor for each device. The implicit state vagame time, as well as spurious interrupts.

ables are arrays. The RVM populates them based on

the results of endpoint enumeration by calling the func-

tion r egi st er _r egi on to set up 1/0 ports, memory-4.2 Rate limiting in Nexus

mapped I/O, and PCI configuration registers and the func-)
tionr egi st er _i nt r to set up an interrupt line. A device managed by a well-behaved driver should not

exceed rate limits enforced by the reference monitor.

to use an identifier or an operator not available in C. Ouraymtas DIVErs can (fa”dr iver _get rat _e—l imts tq learn
inspired by Java and C nesting in Jeannie [18]. such rate limits and can manage interrupts using a throt-

4.1 Reference monitor interface in Nexus

tling mechanism provided by the device or by disabling e dri ver get rate.imts() returns rate limits
interrupt-generating acts by the device when an interrupt for all transitions as an array of leaky bucket defini-
would be disallowed. tions. A driver can use this information to delay op-
The RVM could impose rate limits on uncooperative erations and interrupts so that no behavior exceeds
drivers directly or by terminating a driver when its associ- rate limits.
ated device exceeds the limit. We implement the latter ine dri ver _r ead(regi on, addr, |en) and
Nexus. If an RVM can mask interrupts from each device dri ver _write(region, addr, |en,
independently (e.g., as with non-shared interrupts oredge val) read and write port /O, memory-mapped I/O,
or message-signaled interrupts), then the RVM could limit PCI configuration registers, and monitored DMA
the interrupt rate by masking interrupts that would exceed memory.
a rate limit. However, for shared, level-triggered int@itru
lines, this approach delays interrupts for all drivers sha}{
ing the line. Since limits cannot be enforced by masking
these interrupts, the driver associated with a device tiRadther than write new drivers for Nexus, we used drivers
violates rate limits must be terminated. from Linux 2.4.22* Our original goal was source compat-
To ensure that rate limits are applied fairly to inteibility between these Linux drivers and Nexus user space
rupts on shared lines, only acknowledged interrupts afévers. However, the Linux drivers did not provide some
counted. The RVM queries each reference monitor’s stafethe information necessary to enforce a DSS efficiently.
using theget _i nt r st at us function to learn how the Moreover, small changes to driver source code promised
monitored driver handled the interrupt—by deciding tb reduce our overall effort in porting Linux drivers to

4 Driver source compatibility

was for a different driver, or by acknowledging it. Nexus and to make the resulting Nexus drivers more ef-
ficient. So we used a hybrid approach, implementing
4.3 System calls in Nexus general-purpose compatibility functions for Linux driger

and also changing Linux driver code to work better with
Nexus implements system calls for drivers to find a dan RVM. The compatibility functions provide user-space
vice, allocate memory, and perform I/O operations: equivalents of global variables and functions in the Linux

e driver_init_pci(pciids[], &device) kernel that Linux drivers would normally access directly.

is the main initialization routine. A device driver)] .)

calls it to find devices and to find their 1/0 registersiNux I/O operations. Linux drivers use functions and
and interrupt lines. The first parameter is a list of PEacros for most I/O operations. Port I/O and MMIO are
IDs the driver can manage. Thievi ce parameter implemented by macros for reading and writing each valid

returns a structure describing the 1/O registers aMprd size. PCI register I/O is implemented using func-
interrupt lines for the driver to communicate wittfions. For our Nexus port, we redefined these macros and

the device. functions to caldr i ver r ead anddri ver write.
e driver all ocat e_menory(si ze Linux drivers read and write DMA memory by derefer-
i s nonitored. & addr &p_addr) al- €ncing pointers or by calling functions likeercpy. We

locates kernel memory for DMA buffers and returng'a@pP monitored DMA memory to invalid pages so that ac-

the virtual and physical addresses to the deviESSSing it causes page faults. The RVM includes a trap

driver. Thei s_moni t or ed parameter indicates ifhandle_r that red_irects these page faultdto ver _r ead
reads and writes should be checked by the refere@idr i ver wri t e system calls. System calls are faster
monitor. If the allocated region is unmonitoredt,han page fa}JIts (see Section 5.1), so programmers may
then the reference monitor will not allow pointergh"’m‘-:le monitored DMA memory operations to explicit

to that region to be written to registers that requirdyStém calls wherever performance is critical.

monitored memory, such as DMA indices and

command buffers. Linux memory allocation. The Linux kernel provides
edriver wait for_intr(intr) blocks the a variety of memory allocation functions to allocate dif-

calling thread in the device driver until an interrupierent block sizes, in interrupt or non-interrupt con-

arrives on the specified interrupt line. Normallytexts, in low or high (beyond 1GB) memory, and with

one thread in a driver runs a loop that executes 541 inux 2.4.22, though not current, is the version on whichtpaf

system call and runs an interrupt handler when th@yys are based. We chose to copy drivers from this versiainak to
call returns. simplify implementation.

or without contiguity requirements. DMA buffers must Linux Lines Lines DSS
be in low memory and mapped contiguously; network Driver | LoC changed added LoC
packet buffers must be allocated in the context of net- i810 | 5,500 26 56 149
work interrupts. We redefine those functions to call USBEll-(l)g(l) Eggg 15(?9 5:;5 :’;%:;
driver _al | ocat e_.nenory, which implements the USB mouse 6’50 6 16 i
subset of memory allocation functionality needed by our USB disk | 19,767 29 121)
drivers. Thedri ver _al | ocat e_nenory call pro- Compat library| - . 5523 -

vides contiguous memory with known addresses appro-

priate for DMA but does not differentiate by block siz&igure 2: Lines of code in each ported Linux driver and

and does not allocate high memory. Memory witholliSS. USB mouse and disk drivers are monitored by the

DMA or concurrency requirements is allocated in us&JHCI DSS.

space from the heap. To provide allocation in an inter-

rupt context without deadlocking, we implemented pre- .

allocated memory pools. threads are unaffected. Interrupts for thl_s driver are de-
Memory used for DMA operations must ipinned it !ayed until it releases the muFéx.Thus, driver mut_exes

must have a fixed physical address and never be pa lement non-reentrant sections pf cod_e. The drlvgr can

to the disk. Pinned memory is more expensive to mai e Interrupted by other programs, including other drivers,

tain and has a stricter quota than normal heap mem k}t ”Pt b):jgoncurrent qucatlonj O; de mtbel_rrup.ts.
All memory, including DMA memory, is automatically Using driver mutexes instead of disabling interrupts

freed when a driver exits. Drivers (and other processé?é?feS problems for drivers that must synchronize with

can free heap memory at any time, but DMA memory ¢ er drivers. We could implement such synchronization
only be freed when a driver exits’ Freeing DMA me oy adding ordinary mutual exclusion to the driver. Driver

ory in an active driver would require expensive checks texes also may pose problems for drivers that re;quire
the reference monitor to ensure the device cannot use $Ha"CIty Of precise t!mlng. For example, the Linux '81(,)
memory in the future. Freeing DMA memory also leadRPund card driver caI|brate§ playback spegd by measuring
to fragmentation, which makes all subsequent checksPfyback progress over a fixed-length period during initi-
pointers to DMA memory more expensive. Fortunately ion. Precise scheduling is difficult to implement for user
practice, all the Linux drivers we ported except the USE?2¢€ and can be viewed as a privilage thf’ﬂ drivers do not
controller driver allocate DMA memory once and free gjeed. So we rewrote that sound card driver to measure

only when they exit; we easily modified the USB driver t e interval over which its calibration routine ran rather
behave this way, ' than using a fixed-length period, because measuring time

in user space requires no special privileges.

Mutual exclusion. Device drivers can be invoked con-
currently from client applications and from interrupts5 Results
The former is easily handled using standard thread syn-
chronization mechanisms. The latter is not, because intéfe implemented user-space device drivers for the 810
rupts do not respect these mechanisms, and requestiggnd card, €1000 network card, USB UHCI controllers,
lock from an interrupt handler is infeasible. USB mice, and USB disks in the Nexus operating system.
Linux drivers synchronize concurrent invocations froti/e here quantify the performance, robustness, and com-
clients using locks, which Nexus also provides. Howevélexity of these drivers, their DSSes, and the Nexus RVM.
Linux drivers typically implement synchronization with We quantify the ease of driver porting and the auditabil-
devices by disabling interrupts. While interrupts are dily of DSSes by counting the number of lines of code in
abled, the driver cannot be interrupted by other drivers ®ch DSS and the number of lines changed to port each
by the kernel. But making this same functionality avail-inux driver to Nexus. These counts are given in Figure 2.
able for untrusted user-space drivers allows starvation e distinguish between lines we modified in the Linux
tacks. driver files and lines we added in new files. The number
Fortunately, typical devices need only non-reentraft changed and added lines was small, and as expected,
code sections, which we implement usiiiver mutexes eqch DSS is dramatically smaller than the corresponding
After a driver thread acquires a driver mutex, the Nex@G&iVer.
scheduler marks all other threads associated with the samerps technique would be both correct and efficient on mutips-
device as not runnable; the kernel and other user-spaasystems, although Nexus does not yet run on multiprocess

We wrote each DSS by referring to the manufaets per second, for all versions of the e1000 driver. All five
turer's documentation about device behavior and to esersions of the e1000 driver performed identically when
isting drivers. The DSS for USB UHCI was derived ernreceiving packets. The three user-space drivers—Unsafe,
tirely from the documentation. The i810 and e1000 DSSHsllispec, and Safe—show somewhat degraded perfor-
are based on documentation that describes features mance when sending packets smaller than 800 bytes. The
drivers actually use; other features are disallowed by thgser-space drivers take longer to handle interrupts, and
DSS. Writing a DSS based on an existing driver is tempgending generates more interrupts than receiving because
ing, but risks disqualifying other drivers that attempt urihe e1000 driver receives (but does not send) many pack-
known (but safe) behavior. Writing a DSS based on alts per interrupt under heavy load.
features described in published documentation is mor

))) :) MOTery measure interrupt handling times, we instrumented
time-consuming, but in theory, it admits any legal drive

W timate the time to devel DSS. ai he interrupt handler for the i810 driver. This test uses the
€ estimate the ime 1o develop a » gIVen a Worgp cycle counter for nanosecond timing, with instru-

ing driver, manufacturer’s documentation, and fam“witmentation added to the kernel’s trap function (where an

with the DSS language but not with the device, as Oneiﬁ?errupt is first visible to software) and to the exit poifit o

five days. the interrupt handler. Average interrupt processing time,
over 120 samples, wads3 4 0.2us for Linux, 8.5 £0.2us

5.1 Driver performance for Kernel, 22.1 £+ 1.5us for Unsafe,37.9 + 2.4us for
Nullspec, andi6.9 + 3.8us for Safe. So, the user-space

To gain insight into the performance of our user-space deterrupt handlers took three to five times as long as the

vice drivers, we tested each at idle and under load. Ootkernel Linux and Nexus drivers. This slowdown is not

test system was a 3.0 GHz Pentium 4 system dual-bootintexpected, because user-space handlers require a sched-

Nexus and Linux 2.4.22. For network tests, the rematéer invocation and two or more context switches.

host was a 2.4 GHz Athlon 6_4 X2 sy_stem running Linux A macrobenchmark for network round-trip time, which
2.6.22, connected over a switched, lightly loaded 1 beﬁ%ludes driver response time, is thé ng command

network.) , which sends an ICMP echo request packet and receives
To obtain a detailed breakdown of the sources of ovefs |cMP echo reply packet in return. The replies are nor-

head, we instrumented several versions of the €1000 Rgkyy generated by the remote kernel, resulting in low la-
work driver and the i810 sound driver: tencies. The elapsed time between sending the request and
e Linux: An in-kernel Linux driver. receiving the reply is the network round-trip time plus the
e Kernel: An in-kernel Nexus driver. time required for the remote host to process the request.
e Unsafe A Nexus user-space driver, but with no ref'vé measured ping times from a Linux box to a Nexus box

erence monitor. This driver has direct access to I8NNINg each of the four test 1000 drivers. The average
and DMA. round-trip time, over 100 packets, wa83 + 35us for

o Nullspec A monitored Nexus user-space driver bUf€Mel: 139 & 41us for Unsafe 158 - 5545 for Nullspec,
with the trivial reference monitor, which is satisfie@nd156 = 54ys for Safe.
by any sequence of events. These measurements reflect some simple optimizations
e Safe A driver with a full reference monitor. in the network driver:

These driver versions specifically quantify the costs ofe We changed monitored DMA memory accesses from
running under Nexus (Kernel), running in user space (Un- dereferences (i.e., page faults) to explicit system
safe), monitoring 1/0 and DMA operations (Nullspec), calls.
and checking operations against a specification (Safe)e We combined sequences of unconditional reads or
Overall, these drivers permit us to apportion the costs of writes into a single system call. The driver writes be-
safe user-space drivers to the various mechanisms neededtween 8 and 2,048 bytes in a logical operation. Nor-
to support them. mally, these are written 4 bytes at a time; we added a
To test bulk data throughput of the e1000 driver, we system call to handle a sequence as one operation.
sent UDP packets at a constant rate of 1 Gbps to and frone We stored in the driver the result of reads from a sta-
a Linux host running Iperf [29]. We varied the size of each tus register. The driver reads the register repeatedly
packet from 100 bytes to 1470, in order to find the limits to check several bits. It does not need (and is not ex-
of packet-processing rate and data rate. Figures 3 and 4 pecting) fresh values each time. Thus, we combined
show the performance, in Mbps and in thousands of pack- several nearby reads into a single system call.

2 1000 - 1000

£ 900f g

= a

= 800 =3 800

3 700t =

S 600 s 600 L

3 500 _ = L ; .

£ 400 Linux —+— © 400 | & v Linux —+—

) 300 + Nexus Kernel---- = = H o Nexus Kernel--—--

'E 200 | Nexus Unsafe---&-- z 200} & ./' Nexus Unsafe---&--

o Nexus Nullspec-& © W’E Nexus Nullspec--£

¢ P Nexus Safe-—m-— @ | & Nexus Safe-—m-—- |

0 200 400 600 800 1000 1200 1400 1600 0 200 400 600 800 1000 1200 1400 1600

Packet size (bytes) Packet size (bytes)

Figure 3: Throughput (Mbps) sent and received by all verssifithe 1000 driver using Iperf.

8 400 L T 4001 L
2 inux —+— inux —+—
g 307 Nexus Kernel-—-— » 3507 Nexus Kernel-—-—
é 300 - NNexuf\lU”nsafe """ Aeees g 300 + ¢ NNexuf\lUIII‘]safe ,,,,, /N
| exus Nullspec—3 o NUAW exus Nullspec—3
g 250 Nexus Safe---#--- g 250 N Nexus Safe---#---
@ 200 < 200
g 150 | £ 1m0t
% 100 - T 100
E 50 + $ 5ot
0 1 1 1 1 1 1 1 J 0 1 1 1 1 1 1 1 J
0 200 400 600 800 1000 1200 1400 1600 0 200 400 600 800 1000 1200 1400 1600
Packet size (bytes) Packet size (bytes)

Figure 4: Throughput (thousands of packets/second) seintemeived by all versions of the 1000 driver using Iperf.

Optimizations Packets/sec Throughput .
Page faults 43,203 511.6 Mbpsg 18l ngseé P .
Syscalls . . 65,074 753.5 Mbpsg : RVM §
Syscalls+batching+caching 123,328 947.7 Mbps 1611 Interrupt s
S 14| | TCP stackoo ‘
Fi_gure 5: Performance effect_s of replacing page fault_g 191 ¥
with system calls, then batching and caching groups d 1 / 2
operations. = z
S5 08 .
S o6l Y — 3
We determined where to apply these techniques by iden- 047 %’
tifying code in the driver that most often calleéad and 0.2 %

wr i t e system calls and caused page faults. We changed o
39 lines of driver code (in less than half a day), with dra-

matic results: we nearly doubled the receive bandwidth

and nearly tripled the packet processing rate. Figurd=gure 6: CPU time apportionment when streaming video
shows these resullts. over the network.

Another important driver performance metric is the

CPU time spent in drivers while performing a high-) _)
level task. To quantify CPU time for our drivers, wdel because Linux implements TCP/IP in the kernel, and

streamed video (with audio) over HTTP and played it ublexus implements it as a user-space library; application
ing npl ayer . The video averaged 1071 Kbps and lastédd library CPU time are not shown.

for 30 seconds. The resulting CPU time spent in the net-We measured how often each driver executes basic op-
work driver, the audio driver, and the kernel is shown ierations and what each basic operation costs. The fre-
Figure 6. CPU utilization is higher in Linux than in Ker-quencies of memory, port /0, MMIO, and interrupts are

Linux Kernel Unsafe Nullspec Safe

Audio (playback) Network (idle) Network (load) USB (idle) SB (mouse) USB (disk
Unmonitored mem 8018 0 4578113* 8535 19159 223346
Monitored mem 78.3 5.6 42459 0 1930 103374
Port 1/0 279 0 0 267 764 956
Interrupts 15.7 1.1 2079 0 124 13
MMIO 0 139 10586 0 0 (T

Figure 7: Average rate (per second) of read and write oeraitiuring steady-state operation. (* estimated result)

shown for each driver in Figure 7. All figures are the 1t
average rate per second when the driver is idle or under f
load, as indicated. For this test, the network load was a -8

flood pi ng. Counting unmonitored memory operation% 0.6}
(by making them monitored) makes the e1000 too slow
for our tests. Hence, we estimated the rate of unmoni-
tored memory operations for the e1000 by measuring a 02

Value changed

i Reference monitor———

heavily instrumented driver under partial load, scalisg it ol . , Opeton—r | 6, , |,
results up to what they would have been given full load. 0 051152 253 35 4 190 200 210 220
Unmonitored memory operations are anywhere from Reference monitor cost (usec)

two to 100 times more frequent than monitored memory

operations, depending on the driver. We measured the &igure 8: Cost of executing and checking USB disk port
erage cost, over 100,000 tests, of an unmonitored membfy operations.

operation a$.59ns, a monitored memory operation exe-

cuted as a system call 84s, and a monitored memory hangi i d ds i | it q
operation that causes a page faultlasus. Page faults changing operations and operands in a fayer Interpose

are more expensive because they must save more statebgltl\ﬁeen a Iggal drlver_and the RVM' This layer mod@ed
g operation according to an independent probability of

because the page fault handler must disassemble and 6 . o
terpret the faulting instruction. 1in 16,384 Each operation was a read or a write; our

The cost of each basic I/O operation varies relatively l{t‘@odifications involved replacing e_ither the addres_s, the
tle. However, the cost of checking operations against t ggth, Qrtthe values(at rand_(t)mt) W'th”"g()th?r value |r|1 thed
reference monitor can vary dramatically. Figure 8 shokPropriate range. 50, a write 1o an port was replace

the cost of checking USB port I/O operations (for dis ith a write to a port in the same range, a write of a dif-

I/O) against the reference monitor. We found that 80 grent Iengt_h,_or a write of.another value. Reads were
of the time, the cost is undeys. The other 20% of the perturbed similarly. Note, this approach does not produce

time, the cost isl90,s or more. This is because an e){_epeatable experiments, because driver behavior depends

pensive safety check is required only when the value re%ra external factors like the OS scheduler and the arrival

from a certain register changes. When the value has Hg}fhs. of packt()ets_, wh|ch_ar§ ngt l.JInder]E)ur contrlol. 23
changed—=80% of the time—the check is cheap. IS pertur at!on testings similar to fuzz teStmg [23,
28], except that in our approach only I/O operations were

] modified—not source or machine code. These other types
5.2 Driver robustness of modifications test isolation properties, whereas we are

Accepted quantitative metrics for the security of a systémzre;‘ted fonly n testmg properties enforced by the RVM
do not exist. Nevertheless, to establish the security of the re erence monltpr. i i

RVM and reference monitors, we used two approaches'/é @pplied perturbation testing to the 1000 driver.
others have used. First, we simulated unanticipated mf"e" the modifications were benign, the driver showed

cious drivers by randomly perturbing the interactions bB? aPparent failures. Sometimes, the driver itself detecte
an error (e.g., a status register read failed a sanity check)

tween drivers and the RVM, resulting in potentially in< : X
valid operations being submitted to the reference mofind exited cleanly. Often, the reference monitor detected

tor and possibly to the device. Second, we built specifi illegal operation, gnd the RV_M terminated the d_river.
drivers that perpetrate known attacks on the kernel usinglly: our perturbations sometimes caused the driver to

interrupt.and DMA capapil_ities. o] SWe also tried higher and lower probabilities, resulting iarsand
We simulated unanticipated malicious drivers bigwer errors than reported here.

10

Driver a remote machine with attack codl@he response is
Failure type Nullspec Safe written over the target system call implementation.
No failure 7 (23%) | 7 (1%) The attacking driver then invokes the system call to
g\r;x/?;eerxnl‘f;ates driver| ! (—23%) 1(1332 ((19?;)) gain control of the kernel,
Driver out of sync 16 (52%) | 45 (4%) ° DMA read/write t.o other device: The drlv_er uses
Hardware damaged | 1 (3%) 0 (0%) a ping to overwrite video memory, resulting in an
Total perturbation test 31 (100%) | 1200 (100%) image appearing on the screen.

Figure 9: Results of perturbation testing: how the Null¥Ot surprisingly, the livelock and DMA attacks succeed
spec and Safe drivers failed, if at all, in repeated tesd1en run as Unsafe or Nullspec drivers, all the attacks

Nullspec testing was aborted when it damaged the devigdcceed as Kernel drivers, and they are all are caugh'F by
the RVM when run in Safe mode. The livelock attack is

prevented by the RVM terminating any driver that does

get out of sync with the device, after which no furthefot acknowledge the interrupt by reading the interrupt
packets were sent or received. This does not compronf§étrol register. The DMA attacks are prevented by the
the integrity or availability of the kernel or the device, s8YM terminating any driver that attempts to transmit or
the RVM has no obligation here. Figure 9 summarizes tHeceive packets with any invalid addresses in the transmit
different cases encountered in our experiments. The N@f-receive buffer lists. Finally, any direct attempt to read
spec driver completed more tests with no apparent f#i Write the memory of other drivers is blocked by hard-
ure than the Safe driver did, because the reference ma¥iUe isolation in all modes except Kernel.

tor used for the Safe driver aggressively blocked any un-

known behavior—even if it might have been benign.

We hoped the perturbed Nullspec driver would caué Related Work
kernel livelock, starvation, or a crash. In practice, how-
ever, the likelihood of causing such behavior with rando8everal existing operating systems implement device
perturbations is far below the likelihood of driver crasheafrivers in user space, for isolation or modularity, but with
and stalls. The 31st run of the Nullspec test rendered th& monitoring I/O and DMA operations. Hence, these
device unusable: neither the Linux nor the Nexus driveystems do not defend against malicious operations by
could thereafter initialize the carfdThat ended our Null- drivers. The Michigan Terminal System [7], on the IBM
spec perturbation testing. We rechecked our performar3&® architecture, seems to be the earliest operating system
results on a replacement card, but we do not plan furtherimplement device drivers as user programs. Dijkstra’s
perturbation testing. THE multiprogramming system [9] is organized iley-

In addition to perturbation testing, we wrote sever&ls Level 3 contains device drivers; level 0 implements
malicious drivers to execute specific attacks on the kerge$cheduler and the interrupt dispatch routine; level 2 im-
using the e1000’s interrupt and DMA capabilities: plements semaphores, which are used to convey interrupts

to device drivers. The EL X8 computer that executed THE

e Livelock: The driver never acknowledges interruptsiid not support memory protection. Hence, THE drivers

resulting in a flood of interrupt activity and starvatiomre not isolated from each other or from the rest of the
for all other processes. system. The SUE separation kernel [24] organizes com-

e DMA kernel crash: The driver uses the device tgponents, including device drivers, into isolated domains

write to kernel memory, resulting in a system crasthakin to hosts in a distributed system. SUE uses memory

e DMA kernel read: The driver sends a sensitive pagprotection to restrict each driver's access to 1/O ports, bu

(e.g., containing a secret key) to a remote host. it provides no DMA or interrupt protection: DMA is ex-

e Direct kernel read/write: The driver constructs acluded completely, and components are trusted to yield

pointer and reads or writes sensitive data directly. control after each interrupt or task switch.

e DMA kernel code injection: The driver points a

DMA buffer pointer at system call code, then pings 8T_he 1000 can retrieve any physical memory Iocatiqn by DMé an
send it as a network packet, or it can overwrite any physiehory lo-
cation with the contents of incoming packets. It cannotdiyetransfer
"Would the reference monitor have prevented the damage #dt hone memory page to another. To get around this, wepuse packets;
been enabled for that test? We cannot be sure due to the miimerede- most other hosts will echo a packet with arbitrary contewtsich en-
terminism of peripheral devices, but we believe it wouldénaWe ran ables us to copy from one local memory location to another &y of a
124 reference-monitored tests with no damage to the device. remote host.

11

L3 [22] moves non-essential device drivers to usedites or interrupt handling times.
space, allowing each driver access to a limited set of I/OVirtual machine monitors (VMMs) sometimes use
ports and delivering interrupts as inter-process messagit/ers running in a guest operating system to control de-
The authors acknowledge that drivers requiring DMA agices, instead of virtualizing all devices with drivers in
cess are trusted, and drivers can cause system starvatie'vVMM. Thesepass-through driverare inherently safe
by disabling interrupts or by failing to acknowledge inteffor some devices, such as USB peripherals, but not for
rupts. other devices, such as disks or network cards. Xen [5,13]
Leslie et al. [20] implemented user-space devigeits some device drivers idriver domains which are
drivers, including an €1000 driver, in Linux 2.6. Thesprotected against most crashes but not against malicious
drivers are most similar in design, isolation, and perfdpehavior; hence, driver domains are trusted.
mance to our Unsafe user-space drivers—they have de-
vice registers and DMA buffers directly mapped into the
drivers’ virtual memory, so they do not incur monitoring/ Conclusion
overhead or context switches when performing 1/0.

MINIX 3 [17] executes drivers in user space, with limin traditional monolithic and microkernel operating sys-
ited access to system calls and I/O ports. Drivers thtams, every flaw in a device driver is a potential secu-
crash are reincarnated transparently to provide contimity hole given the absence of mechanisms to contain the
ing service. However, these mechanisms protect agaifmis)behavior of device drivers. We have applied the prin-
programming errors only, not against malicious drivers.ciple of least privilege to Nexus device drivers by creat-

Nooks [28] and Shadow Drivers [27] provide isolalng an infrastructure to run these drivers in user space and
tion and fail-over operation for drivers within the LinuxY filtering their I/O operations through a reference val-
kernel, to prevent accidental overwriting of kernel strué¢dation mechanism (RVM). The RVM is independent of
tures. Nooks protects against common bugs, like ac@rivers and devices; device-specific information is gath-
dental writes to memory structures belonging to anotHeiied into a device safety specification (DSS) that we com-
kernel component. Program rewriting techniques, suie into a reference monitor. The RVM consults the ref-
as Software-based Fault Isolation (SFI) and its succ€&ence monitor before allowing each I/O operation; any
sors [11], implement similar isolation properties. Neithdlisallowed operation results in the offending driver being
Nooks nor SFI protects restricts what I/O operations dffminated.
sent to devices. An obvious question is whether or not the attacks our

Microdrivers [14, 15] are a hybrid implementation oRYM prevents are realistic. We do not know of malicious
Linux device drivers, with up to 65% of the driver running!rivers “in the wild” that use a device to escalate their
in user space and only the most performance-sensitW@’"eQeS* although we have built several of them. The
code remaining in the kernel. Microdrivers handle nei€ason such drivers are not yet a real threat is probably that
work interrupts in the kernel, so they are not secure. Th@foduction systems run most drivers in the kernel and in

performance is comparable to the performance of Nexf}§ TCB, where violating security properties can be done
Unsafe drivers. directly. Systems with drivers in user space are increas-

gly common and will inspire attacks through devices.

Some operating systems take steps to prevent m%
b 9 %y P b ur RVM and DSS can prevent these attacks.

cious drivers from misusing I/O ports or DMA trans-
fers. Mungi [21] (on Alpha and Itanium platforms) and
Scomp [12] (on custom hardware) use an IOMMU fokcknowledgments. We are grateful to Mike Swift for
DMA protection. Singularity [19, 26] enforces type-safesedback on a draft of this work.

interactions between components, including the interac-

tions between drivers and devices. Originally, this type

safety meant unmediated access to a restricted set of pRR@ferences

and memory. As IOMMU hardware becomes common,

Singularity will rely on IOMMUSs to validate DMA oper- [1] D. Abramson, J. Jackson, S. Muthrasanallur, G. NeigerRey-
ations. Singularity does not limit interrupt rates. Bieffho nier, R. Sankaran, |. Schoinas, R. Uhlig, B. Vembu, and Jgéfte

: Intel virtualization technology for directed 1/Qintel Technology
and Hawblitzel use an automated theorem prover to ver- journal 10(3), Aug. 2006.

Ify S.tatlca”y t.h.at S.mgmar.lty d.eVICe drivers comply with [2] B. B. Alessandro Forin, David Golub. An I/O system for Mac
devices specifications written in SPEC# [6]. These speci- |, Proceedings of the USENIX Mach Sympositstonterey, CA,

fications limit I/O and DMA misbehavior but notinterrupt ~ Nov. 1991.

12

(3]

(4]

5]

(6]

(7]

[10]

[11]

[12]

[13]

(14]

[15]

[16]

[17]

(18]

[19]

J. P. Anderson. Computer security technology plannioglys—
Vol. Il. Technical Report ESD-TR-73-51 \Vol. I, Electron®ys-
tems Division, AFSC, L. G. Hanscom Field, Bedford, MA, Sept.
1972.

S. Apiki. /O virtualization and AMD’s IOMMU.
http://devel oper. and. conf docunent at i on/
articl es/ pages/ 892006101. aspx, Aug. 2006.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A, H [22]

R. Neugebauer, |. Pratt, and A. Warfield. Xen and the art of vir
tualization. InProceedings of SOSMolton Landing, NY, Oct.
2003.

K. Bierhoff and C. Hawblitzel. Checking the hardwardts@re
interface in Spec#. IRroceedings of PLQSStevenson, WA, Oct.
2007.

D. W. Boettner and M. T. Alexander. The Michigan Termitsals-
tem. Proceedings of the IEEE63(6):912-918, June 1975.

A. Chou, J.-F. Yang, B. Chelf, S. Hallem, and D. Engler. &m-
pirical study of operating system errors. Pmoceedings of SOSP
Banff, Canada, Oct. 2001.

E. W. Dijkstra. The structure of the ‘THE’-multiprograming sys-
tem. Communications of the ACM1(5):341-346, 1968.

D. R. Engler, M. F. Kaashoek, and J. W. O'Toole. Exoké&re
operating system architecture for application-level vese man-
agement. IrProceedings of SOSEopper Mountain, CO, Dec.
1995.

, [28]
U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula

XFI: Software guards for system address space®Rraceedings
of OSDI Seattle, WA, Nov. 2006.

[29]

L. J. Fraim. Scomp: A solution to the multilevel secyniroblem.
Computey 16(7):26—34, 1983.

K. Fraser, S. Hand, R. Neugebauer, |. Pratt, A. Warfieldd

M. Williamson. Safe hardware access with the Xen virtual ma-
chine monitor. InProceedings of The 1st Workshop on Operating
System and Architectural Support for the On-Demand IT bifra
tructure, Boston, MA, Oct. 2004.

V. Ganapathy, A. Balakrishnan, M. M. Swift, and S. Jhaicid-
drivers: A new architecture for device drivers. Pnoceedings of
HotOS San Diego, CA, May 2007.

V. Ganapathy, M. J. Renzelmann, A. Balakrishnan, M. Mif§
and S. Jha. The design and implementation of microdrivems. |
Proceedings of ASPLOSeattle, WA, Mar. 2008.

J. Hendricks and L. van Doorn. Secure bootstrap is notigh:

Shoring up the trusted computing base. Pioc. of the Eleventh
SIGOPS European Workshop, ACM SIGQR8&uven, Belgium,
Sept. 2004.

J. N. Herder, H. Bos, and A. S. Tanenbaum. A lightweigktmod
for building reliable operating systems despite unreéatbévice
drivers. Technical Report IR-CS-018, Vrije Universitéiimster-
dam, The Netherlands, Jan. 2006.

M. Hirzel and R. Grimm. Jeannie: Granting Java Nativietface
developers their wishes. IRroceedings of OOPSLAMontréal,
Canada, Oct. 2007.

G. C. Hunt, J. R. Larus, M. Abadi, M. Aiken, P. Barham, MatF
ndrich, C. Hawblitzel, O. Hodson, S. Levi, N. Murphy, B. Sise
gaard, D. Tarditi, T. Wobber, and B. Zill. An overview of thnS
gularity project. Technical Report MSR-TR-2005-135, Misoft
Research, Redmond, WA, Oct. 2005.

13

[20] B. Leslie, P. Chubb, N. Fitzroy-Dale, S. Gotz,

[21]

[23]

[24]

[25]

[26]

[27]

C. Gray,
L. Macpherson, D. Potts, Y. Shen, K. Elphinstone, and G. éteis
User-level device drivers: Achieved performandeurnal of Com-
puter Science & Technolog20(5):654—664, Sept. 2005.

B. Leslie and G. Heise. Towards untrusted device dsiv&echni-
cal Report UNSW-CSE-TR-0303, University of New South Wales
Sydney, Australia, Mar. 2003.

J. Liedtke, U. Bartling, U. Beyer, D. Heinrichs, R. Raoth and
G. Szalay. Two years of experience withuekernel based OS.
SIGOPS Oper. Syst. Re25(2):51-62, 1991.

W. T. Ng and P. M. Chen. The systematic improvement oftfau
tolerance in the Rio file cache. Proceedings of the IEEE Sym-
posium on Fault-Tolerant Computing (FTC®)adison, WI, June
1999.

J. Rushby. The design and verification of secure systémBro-
ceedings of SOSRsilomar, CA, Dec. 1981.

A. Shieh, D. Williams, E. G. Sirer, and F. B. Schneiderexis:
A new operating system for trustworthy computing (extended
stract). Brighton, UK, Oct. 2005.

M. Spear, T. Roeder, O. Hodson, G. C. Hunt, and S. LeviviSg
the starting problem: Device drivers as self-describitifigats. In
Proceedings of EuroSykeuven, Belgium, Apr. 2006.

M. Swift, M. Annamalai, B. N. Bershad, and H. M. Levy. Re-
covering device driversACM Transactions on Computer Systems
24(4):333-360, Nov. 2006.

M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the-
liability of commaodity operating systemsACM Transactions on
Computer System&3(1):77-110, Feb. 2005.

A. Tirumala, F. Qin, J. Dugan, J. Ferguson, and K. Giblperf:
The TCP/UDP bandwidth measurement todit t p: / / dast .
nl anr. net/ Proj ects/ | perf, May 2005.

Appendix: DSS Example

The following is an abridged version of our DSS for the In&10 audio device. It defines the device ID, followed
by the state variables and a reset routineNAMESsection then introduces labels for the various events &gsdc
with 1/O register operations and interrupts. FinallyTRANSITIONSection defines the allowed transitions for the
state machine. By default, upon receipt of an input, alldittons are checked, and actions are applied (in unspecified
order) for each satisfied predicate. Insideoattered block, transitions are checked sequentially only untiledgrate

is matched; at most one action is applied inside the blockei@étransitions in this DSS have empty actions—they
accept an input without changing the state of the state machi

hardware: “PCl:8086:24d5";

monitored region $RINGDMA; /I Define a monitored region to contain DMA descriptors.

const$RING_LEN =8 * 32;

var $DMA_ENABLED = 0; I/ Define a state variable: true when device DMA is active.

reset C:{ /I Restore device to state with no DMA or interrupts.
outb(0, $PORTIO[1].base + $CONTRODFFSET); /I Turn off playback DMA.
while(inb($PORTIO[1].base + $CONTRQOFFSET) !=0) ; /I Wait for acknowledgment.

$DMA_ENABLED = 0;
}

//**************** NAM ES kkkkkkkkkkkkkkkkkkk

/I Each line maps write, read, and readsponse operations on a register (address, size) to adbgame.

/I Syntax:<offset, lengtb- --> write_name, reachame, readesponsename;

names for$PORTIO[1], SMMIO[1]:

/I Writes to base+0x10 with size=4 are known as wplaybackdmabase.

<0x10, 4> --> write_playbackdmabase($VAL), safe, safe;

<0x16, 1> --> write_status($VAL), safe, reatesponsestatus($VAL);

<0x1b, > --> write_control($VAL), safe, safe; /I Reading the control register is always allowed.
names for$RING_DMA mod 8: /I Define names for writes to DMA descriptors.
<0x00, 4> --> write_descriptorbase($ADDR, $VAL), safe, safe; // offsets 0, 8, 16, ...

<0x04, 4> --> write_descriptorlen($ADDR, $VAL), safe, safe; // offsets 4, 12, 20, ...

names for$INTR[O]:

*--> i810.intr; /I The only interrupt is named i81iditr.

//*************** TRANSITIONS kkkkkkkkkkkkkk
/I Syntax:P; { A; }
/I Modifying the DMA base register is only allowed if DMA ismonning and the address points to monitored memory.
write_playbackdmabase(val) && $DMA ENABLED == 0 && exist{$MONITORED]i]) suchthat
range(val, $SRING.LEN) in $MONITORED]i] { $RING_.DMA = range(val, $RING.LEN); }

// Starting DMA is allowed only when the DMA base registenpgoto 32 pointers to pinned, unmonitored memory.

write_control(val) && (val & 0x01) == 1 && $RING_.DMA != null && (forall (k) = 0..31 existf$UNMONITORED[]])
suchthat ranggfetch($RING_DMA.base + 8*k, 4) fetch($RING_DMA.base + 8*k+4, 2)jn SUNMONITOREDI]]))
{ $DMA_ENABLED =1; }

write_control(val) && (val & 0x01) == 0{ $DMA_ENABLED =0; }

/I Changing DMA descriptors is legal if DMA is inactive, otlife modified entry points to pinned, unmonitored memory.
write_descriptorbase(addr, val) && ($SDMAENABLED == 0) {}
write_descriptorbase(addr, val) && ($DMAENABLED != 0) &&

(existfSUNMONITOREDYj]) suchthat ranggval, fetch(addr + 4, 2)n $SUNMONITOREDIj]);
write_descriptorlen(addr, val) && ($DMA_ENABLED == 0) {}
write_descriptorlen(addr, val) && ($DMA ENABLED !=0) &&

(exist{SUNMONITOREDIK]) suchthat rang€gfetch(addr - 4, 4) bits(val, 0..15))in $UNMONITOREDIk]);

// The i810 interrupt acknowledgment protocol: first, thévdr checks if the interrupt came from i810 by reading stdiits 2..4;

14

I/l then, if so, acknowledges it by writing status bits 2..4.

ordered { // In an “ordered” block, transitions are checked only urttile first match.
readresponssstatus(val) &&bits(val, 2..4) == 0{ $INTR[O].status =dle; } /11810 is not asserting an interrupt.
readresponsestatus(val) } I/l Otherwise interrupt is still pending.

}

write_status(val) &&bits(val, 2..4) != 0{ $INTR[O].status =idle; } /I Acknowledging interrupts is legal.

i810.intr <16, 1, > {} /Il Interrupt is rate-limited to 16 per second, no bursts.

15

