
Fighting Peer-to-Peer SPAM and Decoys with Object
Reputation

Kevin Walsh
Department of Computer Science

Cornell University
Ithaca, NY 14853

kwalsh@cs.cornell.edu

Emin Gün Sirer
Department of Computer Science

Cornell University
Ithaca, NY 14853

egs@cs.cornell.edu

ABSTRACT
Peer-to-peer filesharing is now commonplace and its traffic
now dominates bandwidth consumption at many Internet
peering points. Recent studies indicate that much of this
filesharing activity involves corrupt and polluted files. This
paper describes Credence, a new object-based reputation
system, and shows how it can counteract content pollution
in peer-to-peer filesharing networks. Credence allows honest
peers to assess the authenticity of online content by securely
tabulating and managing endorsements from other peers.
We employ a novel voter correlation scheme to weigh the
opinions of peers, which gives rise to favorable incentives and
system dynamics. We present simulation results indicating
that our system is scalable, efficient, and robust.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Distributed
networks; C.2.4 [Network Architecture and Design]:
Distributed applications

General Terms
Algorithms, Measurement, Security

Keywords
Reputation Systems, Pollution, File Sharing

1. INTRODUCTION
Peer-to-peer filesharing has become a significant feature

of the Internet, consuming a large fraction of network band-
width. However, many filesharing networks are rife with cor-
rupt and mislabeled content, which waste network resources
and make it difficult for clients to find sought objects. Cor-
rupt content can also be a source of security vulnerabilities,
viruses, worms and other malware. Recent research con-
firms these vulnerabilities [2], and also indicates that much

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’05 Workshops, August 22–26, 2005, Philadelphia, PA, USA.
Copyright 2005 ACM 1-59593-026-4/05/0008 ...$5.00.

of the pollution in existing networks is deliberate [14]. De-
spite this, there are currently no mechanisms for clients to
confidently gauge if an object is polluted.

The underlying problem faced by clients is that they rou-
tinely interact with peers about which nothing is known. If
clients interact only with a small set of peers, or belong to
a community of clients all of which tend to interact with
the same peers, then a client can learn peer reputations by
collecting local observations over time, and querying the ob-
servations made of members of the client’s community. But
in many peer-to-peer systems, interactions span large and
dynamic groups of peers. The presence of file replication
and locality-based peer selection can further decrease the
chances that groups of clients will interact with the same
set of peers. These networks require new measures that do
not rely on per-interaction pairwise observations.

This paper introduces Credence, a robust and decentral-
ized system that enables peers to confidently gauge object

authenticity, the degree to which an object’s data matches
its advertised description. Credence encompasses three ba-
sic techniques to obtain reliable estimates of authenticity.
First, we employ a simple network-wide voting scheme,
where users contribute positive and negative evaluations of
objects. Second, we enable clients to weigh votes accord-
ing to the statistical correlation between the client and its
peers. And third, we allow clients to extend the scope of
their correlations through selective information sharing.

The fundamental insight driving our work is that commu-
nities of peers with similar experiences can arise naturally if,
instead of tracking the direct interactions between peers, we
base reputation only on a client’s experiences with objects.
We find many technical and practical reasons to prefer a
system based on object reputation. First, client evaluations
of objects are final, since they depend only on the intrin-
sic properties of each immutable object. By contrast, peer
behavior is dynamic, and so a client’s evaluation of peers
must change over time. Second, object reputations are an
efficient and natural complement to swarming downloads,
since a client can validate an object’s authenticity in a sin-
gle operation, then immediately initiate parallel connections
to several peers offering the object for download. And fi-
nally, because an object’s authenticity does not depend on
user preferences or tastes, we can expect most honest clients
to have the same view of object authenticity. Thus, in an
object-based reputation system, differing evaluations are an
indicator of malicious behavior. By contrast, in peer-based
reputation systems, which track the outcome of pairwise in-

teractions over time, each client has a unique and changing
view of the network, and a client’s own reputation is sensi-
tive to many factors unrelated of malicious behavior, such
as network connectivity, availability, and overall filesharing
performance.

We have implemented Credence as an extension to
LimeWire [15], a popular filesharing client running on the
Gnutella network, and our initial implementation has seen
over 4000 downloads. In this paper we describe prior work
on reputation systems for peer-to-peer networks, detail the
design of Credence, and discuss its performance in simulated
and live networks.

2. RELATED WORK
A recent study [2] of four large filesharing networks con-

cluded that these systems are vulnerable to content pollu-
tion and attacks using replicated decoys. Ross [14] finds ev-
idence of rampant pollution in the decentralized Kazaa net-
work. Previous work on peer-to-peer reputation, however,
focuses mainly on the freeloader problem, where some peers
do not contribute a fair share of resources. Consequently,
most previous work relies on peer reputation, rather than
object reputation as we advocate.

Eigentrust [13] performs a distributed computation of a
single, network-wide reputation for each peer, based on the
outcomes of past pairwise interactions. Byzantine and col-
luding participants can potentially slow or prevent full con-
vergence of the eigenvalue computation. Zhang et al. [23]
show how to make centralized eigenvector-based approaches
more resistant to collusion, but the techniques are not appli-
cable to the distributed Eigentrust computation. Eigentrust
also relies on a set of fixed, trusted nodes at which to root
the computation of trust.

Gupta, Judge, and Ammar [12] give an alternative method
of managing peer contributions to the network, based on
an economic model of earning credits during pairwise in-
teractions and storing the accumulated reputation in the
network. In the general case, micropayments can be used
to induce cooperation (e.g. [19, 21, 16]). These schemes do
not address the content pollution problem, and are therefore
complementary our approach.

Bouchegger and Boudec [1] advocate a peer reputation
approach, but clearly state the need for a separation be-
tween peer performance in the underlying filesharing net-
work, and trustworthiness in the ratings system independent
of filesharing performance. Pairwise trustworthiness ratings
are computed as a function of the agreement or disagree-
ment in past votes, but the original votes are still subjec-
tive evaluations of pairwise filesharing interactions. Simi-
larly PeerTrust [20], and the reputation scheme included in
the Free Haven Protocol [7] make a distinction between the
reputation of a peer based on performance, and credibility
based on past voting history.

P2PRep [3] similarly uses peer-based ratings and a trust
metric derived from past votes. The trust ratings are based
on a simple threshold-based agreement count that is vulner-
able to manipulation by collusion. XRep [6] and X2Rep [5]
extend P2PRep, adding object reputations and computing
peer weights based on past voting behavior. These protocols
require peers to be online during the evaluation phase in or-
der to compute and transmit their votes, and do not share
trust ratings among peers. Information sharing and offline
operation are critical features for a peer-to-peer reputation

system due to the sparse workloads and session lengths ob-
served in peer-to-peer networks [18].

In contrast, Credence does not address freeloading or peer
selection, but rather content pollution, a fundamental weak-
ness in open peer-to-peer networks that is only recently
gaining attention [2, 14]. Recommender systems (e.g. [17]),
which filter content based on user preferences or tastes,
and reputation systems for online marketplaces (e.g. those
in [22]), which seek to identify trustworthy vendors and cus-
tomers, both address problems similar to content pollution.
The techniques used in these systems are not directly appli-
cable to peer-to-peer networks because they rely on central-
ized components.

Guha et al. [10] examine how both positive and negative
evaluations might be propagated through a web of pairwise
observations made by peers in the network. We share a
similar model of information propagation through transitive,
pairwise relationships between peers.

3. APPROACH
We consider networks where clients share objects, each

consisting of data and a descriptor. The descriptor contains
meta-data to facilitate searching, such as the object name
and encoding, and a unique identifier, such as a hash of the
data. A client issues queries to its peers in the network in
the form of keywords. Peers respond by sending matching
object descriptors back to the client.

At this point, the client must judge the authenticity of
each descriptor before attempting to fetch the associated
data, since some may contain invalid meta-data or point to
corrupt or malicious data. Lacking any reliable evidence,
a client typically uses ad hoc object reputation indicators,
such as the frequency each descriptor is encountered, or re-
vert to random selection. Credence addresses content pol-
lution by providing reliable estimates of object authenticity,
and includes incentives for peers to contribute honestly in
this evaluation process.

3.1 Endorsements
The basic mechanism in Credence is a simple weighted

voting protocol in which any client may vote positively or
negatively on any object. A vote (〈objectID, value〉

K
, certK)

is a pair containing a cryptographic signature, under the
client’s key K, of the object identifier and a vote value from
the set {−1, +1}, along with a certificate of authenticity for
key K. The object identifier consists of a hash of the object
descriptor and contents. The key and certificate are used
by peers to ensure vote authenticity and uniqueness. To
help avoid Sybil attacks [8], we require each client to down-
load a large file at installation time before providing the
key certificate. Other mechanisms are also possible, such as
solving captchas or cryptographic puzzles during installa-
tion. Client keys need not be bound to real-world identities,
but instead may rely on the same anonymous pseudonyms
commonly used in filesharing networks.

A client interprets a positive vote as an endorsement of
the object’s authenticity (i.e., that the contents match the
descriptor). Since object descriptors in practice typically
contain only factual and easily verifiable information, we
assume that among honest clients, a large fraction will gen-
erate votes of equal value for a given object. Under this
assumption, a client judges the authenticity of an object by
estimating its reputation among the client’s peers.

3.2 Vote Evaluation
Votes are collected, evaluated, and aggregated by a client

wishing to estimate the reputation of a given object. Simply
tabulating votes would be prone to manipulation. Instead,
each Credence client computes a trust metric for each vote,
and uses weighted averaging to compute an estimate of the
object’s overall reputation.

The weight r of a peer’s vote depends most directly on
the relationship between client and peer, and so the client
weighs votes according to the observed strength and bias
of this relationship. Intuitively, two peers that tend to vote
identically (or inversely) on objects should develop over time
a strong positive (or negative) weight for each other’s votes,
while peers having uncorrelated voting histories should dis-
regard each other’s votes.

Statistical correlation captures precisely this notion of
the historical relationship between a pair of peers. We
compute a coefficient using the method of Phi correla-
tion as follows. Given the set of objects on which two
peers A and B have voted, let a and b be the fraction
where A and B voted positively, respectively, and similarly
let p be the fraction where both voted positively. Then
θ = (p − ab) /

√

a(1 − a)b(1 − b) is the coefficient of correla-

tion, which takes on values in the range [−1, 1]. A positive
value for θ indicates that A and B tend to agree, nega-
tive θ indicates that they tend to disagree, and |θ| < 0.5
indicates weak or no correlation. We normally use weight
rAB = θ whenever |θ| ≥ 0.5 and rAB = 0 otherwise. We
use two heuristics to address defunct cases that arise in
practice. For pairs of peers with little overlap, not enough
data is available to make a robust estimate of θ, so we take
rAB = 0. For peers whose votes are all negative or positive,
θ is undefined even if the peers are mostly or completely
in agreement. In this case, we use a simple vote agreement
metric with maximum |rAB | = 0.75.

3.3 Voting Protocol
We now describe the protocol a client uses to estimate the

reputation of a given object. First, a client issues a vote-

gather query to collect votes on an object; peers respond
with matching votes, if any, they possess. Each response
contains a subset of the votes known to the responding peer,
potentially including the peer’s own vote. The impact of this
query on the network is bounded by having each peer sub-
sample its vote information, rather than sending all known
votes. The sub-sampling is biased in favor of votes having
the highest local weight in order to disseminate the most
useful votes further in the network. Depending on the un-
derlying network structure, the vote gather query may be
implemented as a flood followed by a sequence of fetches, as
a DHT lookup, or as a single round of interaction in combi-
nation with the initial user query.

Once client A has obtained a set of votes for the object,
each vote is cryptographically verified, stored for later use,
and then tabulated using a weighted average. The weight
for a vote from peer B is rAB , the correlation between A
and B, computed from data gathered in earlier rounds of
the protocol. The client interprets the result as a personal-
ized estimate of the reputation, and hence authenticity, of
the object, and can then make a more informed decision to
accept (and fetch) or reject the object. In cases where no
votes can be found in the network, such as for new objects,
the user is forced to resort to ad hoc estimates of popular-

ity, as in existing networks. Such cases are common to the
bootstrap phase of any reputation system.

The voting protocol described above works most accu-
rately if the client can compute accurate peer correlations,
which is possible only when a sufficient number of both pos-
itive and negative local votes have been cast. This provides
a strong incentive for users to participate in voting.

3.4 Client Local State
Conceptually, each client maintains a vote database of

votes it has encountered during recent vote-gather queries.
Votes are stored regardless of if the client accepted the cor-
responding object, or whether the client’s own vote, if any,
agrees with the votes gathered. The database is used to re-
spond to vote-gather queries, and as a dataset for computing
peer correlations. For each object, the database contains a
row with a timestamp, the client’s own vote, if any, and a
list of all other votes encountered for the object. Database
size is bounded by retaining only recent additions, and by
sub-sampling during vote collection. The resulting database
size is proportional to a client’s gossip rate, frequency of vot-
ing, and number of locally shared files, and independent of
the number of files in the network.

Peer correlations are stored in a separate correlation table,
which is periodically updated by scanning the vote database.
For each peer in the vote database, the client determines the
set of objects for which it knows both the peer’s vote and its
own. These votes are then used to derive a peer correlation
value, with weak correlations immediately discarded. Any
strong correlations discovered are cached in the correlation
table for use later, both for weighing votes during estimation
and for selecting which votes to send in response to vote-
gather queries.

3.5 Transitive Correlation
Computing correlations directly from the local vote

database works well for peers that vote on the same ob-
jects, but will not discover relationships between peers with
few common interests. However, clients can leverage the
correlations discovered by peers to expand their view of the
network. Transitive correlation captures the notion that
a strong positive correlation between A and B, and again
between B and C, should be taken as an indication that all
three peers tend to be correlated.

To effect this computation, each client maintains a di-
rected graph in which nodes represent peers, and a directed
edge (A, B) with weight rAB represents a correlation be-
tween a peers A and B. Initially, a client populates its
graph with the correlations it computes directly from its lo-
cal vote database. The rest of the graph is built by randomly
selecting peers in the network and gossiping correlation coef-
ficients. Gossip selection is biased towards peers with known
positive correlations to preferentially expand the most useful
parts of the graph.

A client computes a transitive correlation by multiplying
weights along a path in the graph. One way to view this
computation is that votes from distant peers in the corre-
lation graph are propagated back towards the client using
weighted voting at each step of the process. As a simplifi-
cation and optimization, instead of performing a computa-
tionally expensive graph flow computation, each client pe-
riodically computes only the max-path to every other node
in the graph and caches the results.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45 50

F
ra

ct
io

n
of

 q
ue

rie
s

(%
)

Client age (days)

(upper bound) correct classification
correct classification

(upper bound) correct positive classification
correct positive classification

Figure 1: Classification success rate.

Credence employs two strategies to deal with peers that lie
about correlations during gossip. First, a client can request
an audit of the correlations gathered during each gossip.
Because peers only gossip results computed locally from the
vote database, a client can request some or all of the correla-
tion inputs and verify the reported value. Second, the local
correlation graph itself can be audited, since it will typi-
cally contain significant redundancies. For instance, weights
should be consistent between pairs of peers and in well con-
nected portions of the graph.

4. EVALUATION
We evaluate Credence through simulations that approxi-

mate the behavior of filesharing users [11]. We model the
system as a growing set of objects, and a fixed set of clients
following a synthetic workload. We use a randomized topol-
ogy with a fixed search width to model the underlying peer-
to-peer network. The effects of higher level user behavior,
such as intermittent network connectivity and churn, are the
subject of an ongoing deployment study.

4.1 Clients, Objects, and Workload
We follow the abstract model of the Kazaa filesharing net-

work described in [11]. The network consists of 1000 clients
initiating 5 queries per day on average. Clients draw queries
from a set of 40000 objects, with new objects introduced at
a rate of 5475 objects per year. We model a highly polluted
network, where only half the objects are authentic, and the
rest consist of pollution.

In order to match the strong clustering observed in de-
ployed networks [9], we partition the objects into 20 genres

and randomly assign clients to 4 genres each such that genre
popularity, both in terms of object and assigned clients, fol-
lows a Zipf distribution. Object popularity within a genre
follows a Zipf distribution as well. A client makes a query
by selecting first a genre, then drawing without repeats an
object from the genre. The resulting overall popularity dis-
tribution is consistent with [11].

We add noise to model user mistakes and non-deterministic
decisions as follows. Having computed a reputation esti-
mate v, a client will accept the object if v = 1.0, reject if
v = −1.0, and accept with a linearly varying probability
otherwise. Clients generate votes on all objects that are
accepted, but vote correctly with only 90% probability, and
randomly the rest of the time.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 5 10 15 20 25 30 35 40 45 50

P
ee

r
co

rr
el

at
io

ns
 d

is
co

ve
re

d

Client age (days)

probe client average
standard deviation

Figure 2: Correlation table size for probe clients.

4.2 Overall Success in Estimation
We evaluate the convergence and accuracy of our ap-

proach by tracking 20 probe clients inserted into the network
starting on day 50. We first measure the total fraction of
correct classifications across these probe clients. A correct
classification is when a client computes a correct, strong
(|v| > 0.5) estimate for an object.

Figure 1 shows how the success rate varies as clients par-
ticipate in the system. Also shown are upper bounds, the
values that would have been attained had the clients shared
complete global knowledge of all votes in the system. The
bound does not approach 100%, because a fraction of queries
are for never-before-seen content, which cannot be classi-
fied even using global information. By day 15, our scheme
achieves a high rate of success, maintaining roughly 80%
correct classification.

Of the queries not classified correctly, almost all are in-
stances where no estimate is obtained at all, and only a few
are due to misclassification. These are split evenly between
authentic and polluted objects, and less than 9% are for the
2000 most popular objects. This implies that our system
gives very accurate estimates for the popular objects, and
rarely misclassifies even unpopular ones.

4.3 Correlation Table Behavior
To explain the factors driving the overall success rate, we

turn our attention to the clients’ correlation tables. Esti-
mation accuracy and robustness is dependent on the table
size, since a peer’s vote is used only if a correlation for the
peer can be found in the table. Figure 2 shows the average
size of probe clients’ correlation tables, which can be seen
to closely match the overall success rate observed earlier in
Figure 1.

After an initial period, probe nodes discover correlations
quickly, discovering on average 500 strong correlations after
16 days. For comparison, non-probe clients have somewhat
smoother and slower growth, discovering 500 correlations
only at day 40. The difference in behavior highlights the key
role played by transitive correlations. The initial clients do
not have the advantage of existing, established peers from
which to gather correlation data, but a probe client can
leverage the work done by earlier joining clients.

The initial lag time for probe clients is due to a lack of
locally computed correlations. Until the node votes on sev-
eral objects, it cannot compute local correlations and thus

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 20 40 60 80 100

P
ee

r
co

rr
el

at
io

ns
 d

is
co

ve
re

d

Day

N = 300 clients
N = 1000 clients
N = 2000 clients

Figure 3: Correlation table size for all clients.

cannot compute any transitive correlations. Once the node
establishes a few local correlations, it uses them to quickly
compute many more transitive correlations. This lag time
can be reduced in practice using an existing, semi-trusted
“sponsor” client to establish the first few correlations.

4.4 Scaling
In order to assess the scalability of our protocol as the size

of the network varies, we ran simulations with proportion-
ally larger and smaller networks. Figure 3 shows the average
correlation table size of the initial clients for each network.
The total convergence time appears to grow approximately
linearly in the size of the network when measured in terms of
the time needed to derive correlations for half of the clients.
However, note that the overall success rate grows quickly as
soon as clients discover a few strong correlations, and that
in practice a limited number of entries is likely to be suffi-
cient to compute robust estimates, due to the high degree
of clustering of client interests expected in practice.

4.5 Dynamic Behavior
Our system contains subtle feedback loops that give rise

to resilience against attack and help explain the system’s
overall dynamics. For instance, an authentic object tends
to follow an exponential increase in reputation, since cor-
rect positive votes induce a positive feedback cycle: Each
such vote increases the object’s reputation among correlated
clients. This in turn leads to more likely acceptance and re-
trieval, and thus to additional positive votes. An attacker
voting negatively on this same object, however, induces a
damped response, since a lowering of perceived value will
not result in more negative results, but instead will simply
lower slightly the rate of acceptance.

For an object on which honest clients tend to vote nega-
tively, but an attacker votes positively, the system will react
strongly against the attacker. Each positive vote in this case
raises the expectations of the honest clients, who are then
more likely to download the file. This leading eventually to
an increase in correct negative votes, which counteracts the
initial, incorrect vote. Additionally, the attacker will see a
decrease in its correlation values with honest clients. The
net effect is a disincentive for an attacker to be dishonest
too often.

4.6 Attacks
We have investigated the impact of several attacks on our

system, both analytically and through simulation. Due to
the dynamic effects discussed above, we can immediately see
that several attacks that are quite effective in existing sys-
tems have little effect and, in many cases, actually provide
a tangible benefit to the system. For example, a peer that
consistently lies about the authenticity of objects is just as
useful as a peer that consistently generates honest votes,
since in the former case the votes will simply be multiplied
by a negative weight. Voting randomly will lead to the votes
being essentially discarded, as peer correlation values will
tend to zero in this case.

A rational attacker has an incentive to vote honestly in
order to keep from approaching either of these extremes,
and so must carefully balance the amount of information
leaked to the network. The best known attack on Credence
is a whitewashing attack, where an attacker votes correctly
on a large set of files before endorsing a small set of new
decoy files. But here, the damage caused by the attacker
and decoys before detection is partly offset by the larger
number of correct votes required before the attack begins.
Moreover, multiple independent whitewashing attacks can
easily negate each other.

An attacker may try to increase the dissemination of in-
correct votes, whether they come from the attacker or honest
but mistaken users. This attack also turns out to be bene-
ficial to honest clients, since it allows them to more quickly
identify those peers with which they are less correlated. Sim-
ilar attacks that slow down the rate of diffusion of positive
votes do not alter the overall trends presented above.

4.7 LimeWire Deployment
We have deployed Credence on the Gnutella network. To

date, there have been more than 4000 Credence downloads.
A snapshot of users active during the third month revealed
184 active Credence users who have cast 8221 votes on 7691
files. These users form a connected component of size 113
through the common files they have voted on. The remain-
ing active users vote only rarely, at an average of 8 times
compared with 68 overall, and have little overlap with any
peers. While there is much more analysis to be performed
on user interaction in reputation systems, the early evidence
from Credence users is that the system is able to distinguish
between peers voting randomly or inconsistently and those
voting correctly and honestly, and it can correctly identify
pollution with few false negatives and positives.

5. SUMMARY AND FUTURE WORK
Existing peer-to-peer filesharing networks are severely

polluted with decoys, malware, and other damaged content.
Credence is a new object-based, decentralized reputation
system to combat pollution in such networks. It requires no
trusted entities in the network, resists attacks and effectively
identifies trustworthy content and pollution. The Credence
approach is practical; an implementation for Gnutella is
freely available [4] and has an active user community. The
underlying problem in filesharing networks will be common
to any large network system in which clients interact with
previously unknown peers. We are currently studying the
emergent behavior of users in such systems, as well as the
applicability of the Credence approach to domains besides
filesharing.

6. REFERENCES
[1] S. Buchegger and J.-Y. L. Boudec. A Robust

Reputation System for P2P and Mobile Ad-hoc
Networks. In Workshop on the Economics of

Peer-to-Peer Systems, Boston, MA, June 2004.

[2] N. Christin, A. S. Weigend, and J. Chuang. Content
Availability, Pollution and Poisoining in File Sharing
Peer-to-Peer Networks. In ACM Conference on

Electronic Commerce, Vancouver, Canada, June 2005.

[3] F. Cornelli, E. Damiani, S. D. C. di Vimercati,
S. Paraboschi, and P. Samarati. Choosing Reputable
Servents in a P2P Network. In International World

Wide Web Conference, Honolulu, HI, May 2002.

[4] Credence.
http://www.cs.cornell.edu/People/egs/credence/.

[5] N. Curtis, R. Safavi-Naini, and W. Susilo. X2Rep:
Enhanced Trust Semantics for the XRep Protocol. In
Applied Cryptography and Network Security, Yellow
Mountain, China, June 2004.

[6] E. Damiani, S. D. C. di Vimercati, S. Paraboschi,
P. Samarati, and F. Violante. A Reputation-Based
Approach for Choosing Reliable Resources in
Peer-to-Peer Networks. In ACM Conference on

Computers and Communications Security,
Washington, DC, October 2002.

[7] R. Dingledine, M. Freedman, and D. Molnar. The Free
Haven Project: Distributed Anonymous Storage
Service. In Workshop on Design Issues in Anonymity

and Unobservability, Berkeley, CA, July 2000.

[8] J. R. Douceur. The Sybil Attack. In International

Workshop on Peer-to-Peer Systems, Cambridge, MA,
March 2002.

[9] F. L. Fessant, S. Handurukande, A.-M. Kermarrec,
and L. Massoulié. Clustering in Peer-to-Peer File
Sharing Workloads. In International Workshop on

Peer-to-Peer Systems, La Jolla, CA, February 2004.

[10] R. Guha, R. Kumar, P. Raghavan, and A. Tomkins.
Propagation of Trust and Distrust. In International

World Wide Web Conference, New York, NY, May
2004.

[11] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble,
H. M. Levy, and J. Zahorjan. Measurement, Modeling,
and Analysis of a Peer-to-Peer File-Sharing Workload.
In ACM Symposium on Operating Systems Principles,
Bolton Landing, NY, October 2003.

[12] M. Gupta, P. Judge, and M. Ammar. A Reputation
System for Peer-to-Peer Networks. In ACM Intl.

Workshop on Network and Operating System Support

for Digital Audio and Video, Monterey, CA, June
2003.

[13] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina.
The EigenTrust Algorithm for Reputation
Management in P2P Networks. In International World

Wide Web Conference, Budapest, Hungary, May 2003.

[14] J. Liang, R. Kumar, Y. Xi, and K. W. Ross. Pollution
in P2P File Sharing Systems. In IEEE INFOCOM,
Miami, FL, March 2005.

[15] LimeWire. http://www.limewire.com/.

[16] MojoNation. http://www.mojonation.net/.

[17] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and
J. Riedl. GroupLens: An Open Architecture for
Collaborative Filtering of Netnews. In ACM

Conference on Computer Supported Cooperative Work,
Chapel Hill, NC, October 1994.

[18] S. Saroiu, K. P. Gummadi, and S. D. Gribble. A
Measurement Study of Peer-to-Peer File Sharing
Systems. In Multimedia Computing and Networking,
San Jose, CA, January 2002.

[19] V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer.
KARMA: A Secure Economic Framework for P2P
Resource Sharing. In Workshop on the Economics of

Peer-to-Peer Systems, Berkeley, CA, June 2003.

[20] L. Xiong and L. Liu. PeerTrust: Supporting
Reputation-Based Trust in Peer-to-Peer Communities.
IEEE Transactions on Knowledge and Data

Engineering, Special Issue on Peer-to-Peer Based Data

Management, 16(7), July 2004.

[21] B. Yang and H. Garcia-Molina. PPay: Micropayments
for Peer-to-Peer Systems. In ACM Conference on

Computers and Communications Security,
Washington, DC, October 2003.

[22] G. Zacharia, A. Moukas, and P. Maes. Collaborative
Reputation Mechanisms in Electronic Marketplaces.
In Hawaii International Conference on System

Sciences, Maui, HI, January 1999.

[23] H. Zhang, A. Goel, R. Govindan, K. Mason, and B. V.
Roy. Making Eigenvector-Based Reputation Systems
Robust To Collusion. In Workshop on Algorithms and

Models for the Web-Graph, Rome, Italy, October 2004.

