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Nexus Authorization Logic (NAL) provides a principled basis for specifying and reasoning about
credentials and authorization policies. It extends prior access control logics based on “says” and
“speaksfor” operators, enabling within a single framework request authorization to depend on
(i) the source or pedigree of the requester, (ii) the outcome of performing an analysis on the
requester, or (iii) the use of trusted software to encapsulate or modify the requester. Prototype
document-viewer applications that enforce integrity and confidentiality of document contents—all
implemented on the Nexus operating system—illustrate the convenience and expressive power of
this approach to authorization.

Categories and Subject Descriptors: D.2.0 [General]: Protection mechanisms; D.4.6 [Security and Protection]:
Access controls

General Terms: Security

Additional Key Words and Phrases: Authorization Logic, Credentials-based Authorization, CDD

1. INTRODUCTION

In credentials based authorization, requests to access a resource or obtain service are ac-
companied by credentials. Each request is either authorized or denied by a guard, which
uses the accompanying credentials (perhaps augmented with other credentials or informa-
tion about the state) to make that decision and enforce some given security policy. Au-
thorization decisions are thus decentralized, with accountability of each element in the
decision made explicit and with authority shared among the guard and the principals who
issue credentials.

An untrustworthy principal might attempt accesses that violate a security policy, whereas
(by definition) a trustworthy one wouldn’t. So a guard ideally should authorize only those
requests made by trustworthy principals. However, determining whether a principal is
trustworthy is rarely feasible, so guards typically substitute something that is easier to
check.

Access control lists, for example, embody an axiomatic basis for making authorization
decisions. Axioms are statements that we accept on faith; with guards that use an access
control list, we accept on faith that all principals appearing on the access control list are
trustworthy, so the guard authorizes requests made by these principals. The same applies
when a system uses some form of reputation to decide whether a principal’s request should
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be authorized. An axiomatic basis is also implied when a guard authorizes loading and
running an executable only if the value of a hash indicates that the corresponding exe-
cutable is unaltered from what comes in some standard distribution or if a digital signature
establishes that the executable was generated by some approved software provider.

Analysis provides a way to predict whether certain behaviors by a program P are pos-
sible, and some guards employ an analytic basis for authorizing requests from principals
executing P . Specifically, an analysis establishes that P can be trusted not to commit
certain abuses and, therefore, granting the request cannot enable P to violate the security
policy. Proof carrying code [Necula 1997] is perhaps the limit case. Here, a program P is
accompanied by a proof that its execution satisfies certain properties; a request to execute
P is authorized if and only if a proof checker trusted by the guard establishes that the proof
is correct and that the property proved is sufficiently restrictive. As another example, some
operating systems [Bershad et al. 1995] will authorize a request to load and execute code
only if that code was type checked; type checking is a form of analysis, and programs that
type check can be trusted not to exhibit certain malicious behaviors.

Finally, a synthetic basis for authorization is involved whenever a program is trans-
formed prior to execution so that it can be trusted in ways the original could not. Examples
of this approach include sandboxing [Goldberg et al. 1996], SFI [Wahbe et al. 1993], in-
lined reference monitors [Erlingsson and Schneider 1999], and other program-rewriting
methods [Hamlen et al. 2006; Sirer et al. 1999].

The discussion above suggests it is unlikely that a single basis for establishing trust-
worthiness would be used throughout a system. Moreover, schemes that combine bases
are not unusual—for example, type correctness is often enforced by using a combination
of program analysis (an analytic basis) and code generation that adds run-time checks (a
synthetic basis). So we conjectured that substantial benefits could come from an authoriza-
tion framework that incorporates and unifies the axiomatic, analytic, and synthetic bases
for trust. We seem to be the first to classify authorization schemes through this lens and
the first to entertain creating such a unifying framework. Our experience in designing and
using that framework is the subject of this paper.

—We developed a language and logic NAL (Nexus Authorization Logic) for specifying
and reasoning about credentials and security policies. NAL extends Abadi’s CDD [Abadi
2007; 2008] access control logic by adding support for axiomatic, analytic, and synthetic
bases for trust and by adding two kinds of principals (groups and sub-principals) that
help bridge the gap from the simplifications and abstractions found in CDD to the prag-
matics of actual software applications. We thus show that this simple logic, with only
two kinds of compound principals, suffices for a wide range of authorization policies in
service of some novel practical applications. Our axiomatization of groups is also an
advance.

—In order to evaluate what is required for this authorization framework, we implemented
an operating system, Nexus [Shieh et al. 2005], that supports encoding credentials and
enforcing security policies specified using NAL. Nexus employs a TPM [Trusted Com-
puting Group] secure co-processor in order to have a single hardware-protected crypto-
graphic key as its root of trust. NAL’s scheme for naming principals and NAL’s operators
for attribution and delegation were informed by the needs of such environments.

—We implemented a suite of document-viewer applications that run on Nexus, and we
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A ::= [[v : S ]] | A.τ compound principals

S ::= s(τ, . . . ) | A says S
| S ∧ S | S ∨ S | true statements

| (∀v : S) | (∃v : S)

Fig. 1. NAL syntax.

false : (∀v : v)

¬S : (S ⇒ false)

A → B : (∀v : (A says v) ⇒ (B says v)) speaks for

A
v:S−−→ B : (∀v : (A says S) ⇒ (B says S)) speaks for on . . .

Fig. 2. NAL abbreviations.

discuss two1 in this paper. TruDocs (Trustworthy Documents) controls the display
of documents that contain excerpts whose use is subject to restrictions; it employs an
analytic basis for authorization. ConfDocs (Confidential Documents) protects confi-
dentiality of documents built from text elements having security labels; it employs both
analytic and synthetic bases for authorization. The flexibility of NAL also enabled us
to implement an authorization architecture for these applications that is novel, because
documents (and not programs or human users) are the principals that make requests,
which guards authorize.

2. NEXUS AUTHORIZATION LOGIC (NAL)

We start with an informal introduction to NAL, focusing on how NAL can be used to model
credentials and specify security policies. A syntax for NAL formulas is given in Figure 1,
and some useful abbreviations appear in Figure 2; S denotes a NAL formula, upper-case
italic identifiers denote principals, v denotes list v1, v2, . . . , vn of bound variables (which
range over values, principals, or formulas), and the language for terms τ is left unspecified.
Predicates and terms are discussed in §2.1, and the various kinds of NAL principals are
discussed in §2.2. The appendix gives the complete list of NAL axioms and inference
rules.

Throughout, we write

RULENAME
F1, F2, ..., Fn

G

to define an inference rule RULENAME that allows a conclusion G to be inferred assuming
that hypotheses F1, F2 , ..., Fn have been.

Like CDD, NAL is a constructive logic. The axioms and inference rules of NAL thus
differ somewhat from what is found in classical logics. For instance, a disjunction F ∨ G

1We also have developed a third application CertiPics (Certified Pictures), discussed in Walsh [Walsh], which
enforces the integrity of displayed digital images by imposing chain-of-custody restrictions on the image-editing
pipeline.
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is proved in a constructive logic by proving F alone or G alone (or both), whereas F ∨ G
can be proved in a classical logic indirectly without justifying either F or G . The classical
logic Law of the Excluded Middle F ∨ ¬F , for example, supports such indirect proofs; it
is not an axiom or theorem of a constructive logic.

Constructive logics are well suited for reasoning about authorization [Garg and Pfenning
2006], because constructive proofs preserve the justification of statements during reasoning
and, therefore, information about accountability is not lost. Classical logics allow proofs
that discard evidence. For example, we can prove G using a classical logic by proving
F ⇒ G and ¬F ⇒ G, since from these theorems we can conclude (F ∨¬F ) ⇒ G, hence
true ⇒ G due to Law of the Excluded Middle. This classical proof, however, does not
say whether it is F or it is ¬F that is the evidence for G, and thus the proof is arguably
unsatisfactory as a rationale that G holds.

Beliefs and says . NAL, like its predecessors [Abadi 2007; 2008; Abadi et al. 1993;
Bauer et al. 2005; Becker and Sewell 2004; DeTreville 2002; Jim 2001; Lesniewski-Laas
et al. 2007; Li et al. 2002], is a logic of belief. Each principal A has a worldview W(A),
which is a set of beliefs that A holds or, equivalently, formulas that A believes to be true.
NAL formula A says F is interpreted to mean: F is in W(A).

NAL extends CDD by allowing formulas to include system- and application-defined
predicates in place of propositions. Since NAL terms include the names of principals,
NAL formulas can convey information about, hence potential reasons to trust, a principal.
For example, in the NAL formula

Analyzer says numChan(P , “TCP”) = 3 (1)

numChan(·, ·) is a system-defined predicate, and (1) holds if and only if the worldview
W(Analyzer) contains a belief that process P has 3 open TCP connections. A NAL
formula like (1) could model a credential or specify (part of) an authorization policy. As
a model for a credential, it asserts that Analyzer believes and is accountable for the truth
of numChan(P , “TCP”) = 3; as a specification for an authorization policy, it requires a
guard to establish that numChan(P , “TCP”) = 3 is in W(Analyzer).

The worldview of each principal is presumed to contain all true formulas. NAL there-
fore includes a necessitation inference rule:

SAYS-I
F

A says F
(2)

We include in NAL (but do not enumerate them here) constructive logical theories for
reasoning about any system- and application-defined predicates in use; SAYS-I (2) asserts
that those theorems are part of each principal’s worldview.

In addition, beliefs that a principal holds are presumed to be consistent with the beliefs
that principal holds about its beliefs:

SAYS-E
A says (A says F )

A says F
(3)

Deduction and Local Reasoning. A principal’s worldview is assumed to be closed under
modus ponens: if F and F ⇒ G are in W(A) then so is G. This supports having the usual
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implication-elimination rule

IMP-E
F , F ⇒ G

G
(4)

along with a closure under implication rule:

DEDUCE
A says (F ⇒ G)

(A says F ) ⇒ (A says G)
(5)

Notice that the formulas in DEDUCE (5) all refer to the same principal. This local-
reasoning restriction limits the impact a principal with inconsistent beliefs can have. In
particular, from A says false, DEDUCE (5) enables us to derive 2 A says G for any G, but
DEDUCE (5) cannot be used to derive B says G for a different principal B. So the local
reasoning restriction causes inconsistency within W(A) to be contained.

Worldviews of two or more principals nevertheless can contain mutually inconsistent
beliefs. Beliefs about the environment or about the state of an executing system that are
formed by different means or at different times could be inconsistent. The local-reasoning
restriction embodied in DEDUCE (5), however, prevents the beliefs of different principals
from being combined to derive (i) false (from which any formula G could be derived) or
(ii) A says false for any principal A having a consistent worldview [Abadi 2007; 2008].

Delegation. The notation B → A (read “B speaks for A”) abbreviates the NAL formula

(∀v : (B says v) ⇒ (A says v)). (6)

If B → A holds then all beliefs in the worldview of principal B also appear in the world-
view of principal A and, therefore, W(B) ⊆ W(A) holds. In terms of credentials, B → A
characterizes the consequences of A delegating to B the task of issuing credentials. Not
only would B be accountable for such credentials but so would A.

The transitivity of → follows directly from definition (6), and therefore we have the
following as a derived inference rule of NAL:

TRANS →
C → B ,B → A

C → A
(7)

One theorem of NAL is

(A says (B → A)) ⇒ (B → A) (8)

which implies that the following is a derived inference rule of NAL:

HAND-OFF
A says (B → A)

B → A
(9)

An interpretation of HAND-OFF (9) (or equivalently theorem (8)) is that each principal A
is the authority on its own delegations. That is, whether A is accountable for credentials
issued by B depends on what A believes rather than depending on what B believes.

2Here is that proof: false ⇒ G is a theorem for all G. Therefore, by SAYS-I (2) we conclude A says (false ⇒
G) is a theorem for all G. We then use DEDUCE (5) and IMP-E (4) to derive A says G for any G.
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NAL also supports an abbreviation B v:F−−→ A (read “B speaks for A about F”) to assert
that only statements F by B are attributed to A:

(∀v : (B says F ) ⇒ (A says F ))

Such a restriction allows us to specify in NAL that one principal trusts another only on
certain statements. For example, we should not be surprised to find university registrar
UnivReg being trusted by academic department CSdept about whether somebody is a
student at that university. In NAL we write

UnivReg v:v∈Students−−−−−−−−→ CSdept , (10)

meaning

(∀v : UnivReg says v ∈ Students ⇒ CSdept says v ∈ Students).

Restricted delegation helps prevent statements made by a compromised principal A from
causing another principal that trusts A to become compromised. For instance, suppose
UnivReg is compromised and therefore UnivReg says false holds (which is problematic,
because UnivReg says F now can be derived for any statement F ). From unrestricted
delegation UnivReg → CSdept , we could now derive CSdept says false; postulating
restricted delegation (10) instead of that unrestricted delegation limits the bogus statements
that could be derived and attributed to CSdept—the bogus statements must have the form
CSdept says X ∈ Students for X not a member of Students, and CSdept says false is
not among those.

However, adding a second unrestricted delegation

UnivReg
v:v �∈Students−−−−−−−−→ CSdept

to (10) would again allow CSdept says false to be derived when UnivReg is compro-
mised, because both CSdept says X ∈ Students and CSdept says X �∈ Students could
then be derived from corresponding statements made by compromised principal UnivReg;
IMP-E (4) would then allow problematic formula CSdept says false to be derived.

As with ordinary →, we have a corresponding derived inference rule for transitivity of
v:F−−→:

TRANS
v:F−−→

C v:F−−→ B ,B v:F−−→ A

C v:F−−→ A
(11)

and we have the following NAL theorem

(A says (B v:F−−→ A)) ⇒ (B v:F−−→ A),

which leads to a corresponding derived inference rule:

REST-HAND-OFF
A says (B v:F−−→ A)

B v:F−−→ A
(12)

2.1 Predicates and Terms in NAL

For NAL to be a constructive logic, all terms must be computable. Implementation realities
dictate that terms and predicates not only be total but that they be efficiently computable,
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since only then will principals be able to issue credentials and will guards be able to eval-
uate authorization policies. We also assume, as is usual in logic, that terms and predicates
have unique values in a given state. This does not preclude the use of non-determinism
in programs that compute a term or predicate; it does imply the non-determinacy remains
hidden.

In our NAL implementation for Nexus, the kernel provides system routines for programs
to read certain operating system state and to evaluate certain pre-defined predicates on
that state. Also, the output of any deterministic boolean-valued program can be used as
the value of a NAL predicate. This flexibility is important, because it ensures that if an
authorization policy can be programmed then it can be specified using predicates in NAL
credentials.

When implementing an authorization mechanism, the designer of a guard must decide
what sources to trust for information about state and history. Presumably, a guard would
trust predicate evaluations that it performs itself or that the operating system performs on its
behalf. But other components might have to be trusted, too, because it is unlikely that every
principal would be able to evaluate every predicate due to constraints imposed by locality
and/or confidentiality. Arguably, a large part of designing a secure system is concerned
with aligning what must be trusted (and therefore appears in the trusted computing base)
with what can be trusted. NAL facilitates navigating this space by having credentials that
bind a principal to a belief and that can be sent by one principal to another, surfacing what
is being trusted.

NAL is agnostic about predicate naming, assuming only that the name of a predicate is
associated with a unique interpretation. This assumption is necessary in order that a writer
and all readers of a credential assign that credential the same meaning. In practice, dif-
ferent principals might associate different implementations with a given predicate name,
inadvertently causing the meaning of a credential to change as it transits from one princi-
pal to another. One way to avoid this problem is by defining an authoritative interpretation
(including an evaluation scheme) for each predicate; all principals are then required to use
that. Implicit in implementing such a solution would have to be some way to determine
what is the authoritative interpretation for a given predicate. Nexus addresses this by im-
plementing hierarchical naming for predicates, where the name of the predicate encodes
the name of the principal that is the authority for that predicate. This naming scheme is
only a convention, and as we gain more experience using NAL we will revisit it.

2.2 Principals in NAL

Principals model entities to which statements can be attributed. Examples include active
entities like processors, processes, channels, and executing programs, as well as passive
objects like data structures and files.3 We require that distinct NAL principals have distinct
names and that statements attributed to a principal cannot be forged. Naming schemes that
satisfy these requirements include:

—Use a public key as the name of a principal, where that principal is the only entity that
can digitally sign content using the corresponding private key. A principal named by
a public key KA signifies that a belief S is in worldview W(KA) by digitally signing

3For example, in the applications of §4, principals are used to model processors, executing programs, and (pas-
sive) documents.
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an encoding of S. So, a digitally signed representation of the NAL statement S, where
public key KA verifies the signature, conveys NAL formula KA says S.

—Use the hash of a digital representation of a principal as the name of that principal. Thus,
a principal named by hash H(Obj ) includes a belief S in its worldview W(H(Obj )) by
having an encoding of S stored at some well known position 4 in Obj . So Obj conveys
the NAL formula H(Obj ) says S by having S be part of Obj .

Public keys are attractive as principal names because the public key KA itself suffices for
validating that a credential KA says S has not been forged or corrupted. But public-private
key pairs are expensive to create. Moreover, private keys can be kept secret only by certain
types of principals. With a TPM, you can associate a private key with a processor and keep
it secret from all software that runs on the processor; without a TPM, you can associate
a private key with a processor but keep it secret only from non-privileged software. And
there is no way to associate a private key with a non-privileged program executing on a
processor yet have that key be secret from the processor or from privileged software being
run.

Hashes are relatively inexpensive to calculate and do not require keeping secrets. The
absence of secrets means that hashes are well suited for naming passive objects, because
now any principal can generate H(Obj ) says S if indeed S is in worldview W(H(Obj )).
But when hashes are being used as principal names then validating that a credential convey-
ing H(Obj ) says S has not been forged or corrupted requires access to the bits comprising
Obj . Moreover, note that a principal named by a public key can revise its worldview and
create corresponding credentials at any time, whereas a principal named by a hash cannot
do so without changing names.

NAL is agnostic about what schemes are used to name principals. Our experience with
building applications for Nexus suggests that public keys and hashes both have uses. Nexus
also implements various specialized naming schemes for some of its abstractions (e.g.,
processes) that serve as principals.

Sub-Principals. Systems are usually designed having some components depend on oth-
ers. In hierarchically structured systems, for example, higher-level components depend on
lower levels. Also, dependencies are created when one component loads and starts exe-
cuting (or interpreting) another. Not infrequently, the dependency of a principal Sub on
another principal Dom is so strong that Sub is being impersonated by Dom and, therefore,
Sub says S holds if and only if Dom says (Sub says S) holds.

NAL offers sub-principals as a convenience for naming a principal that, by design, is
impersonated by another. Given a principal A and any term τ , sub-principal A.τ is a NAL
principal5 impersonated by A. This is captured in a NAL rule:

SUBPRIN
A → A.τ

(13)

4We might adopt the convention that every object Obj involves two parts. The first part is a possibly empty list
of the NAL formulas S1, S2, ..., Sn in W(H(Obj )); the second part is some other digital content, such as a
program or data, and it is the principal named H(Obj ).
5Sub-principals can themselves have sub-principals, with left-associativity assumed so that A.τ1.τ2 abbreviates
(A.τ1).τ2.
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Equivalent terms define sub-principals having the same worldviews:

EQUIV SUBPRIN
τ1 = τ2

A.τ1 → A.τ2

(14)

Here, we assume some theory is available for proving hypothesis τ 1 = τ2.
Sub-principals are particularly useful for describing structures where a single principal

is being multiplexed among various roles. For example, the principal corresponding to an
executing program would be a sub-principal of the CPU (or other execution environment)
that it runs in. Consider a system comprising a certification authority CA being executed
by an operating system OS that is running on a CPU. And suppose the hash of CA is HCA,
the hash of OS is HOS , and the CPU’s TPM stores a private key whose signatures can be
verified using public key KCPU . We would then define sub-principal KCPU .HOS for the
OS and define KCPU .HOS .HCA for the CA. So according to SUBPRIN (13), we have:

KCPU → KCPU .HOS (15)

KCPU .HOS → KCPU .HOS .HCA (16)

A credential attributed to execution of the CA would, in fact, be issued by KCPU , imper-
sonating operating system OS , impersonating CA. So the credential for a belief S held by
CA would be modeled by the NAL formula

KCPU says (KCPU .HOS says (KCPU .HOS .HCA says S))

from which we can derive

KCPU .HOS .HCA says
(KCPU .HOS .HCA says

(KCPU .HOS .HCA says S)),

due to (15) and (16) and definition (6) of A → B; using SAYS-E (3) twice then obtains:

KCPU .HOS .HCA says S
Sub-principals are also useful for creating different instances of a given principal, where

each instance is accountable for the credentials issued during disjoint epochs or under the
auspices of a different nonce or different circumstances. This, for example, allows the
subset of credentials issued by some principal A when you trust it—that is, credentials
issued under circumstances that engender trust—to be distinguished from other credentials
issued by A. So instead of using a single principal FileSys , we might employ a sequence
FileSys .1, FileSys .2, ..., FileSys .i, ... of sub-principals, each accountable for issuing cre-
dentials during successive intervals. Then by specifying security policies that are satisfied
only by credentials attributed to a “current instance” FileSys .now (for now an integer
variable), a guard can reject requests accompanied by outdated credentials.

SUBPRIN (13) allows any statement by a principal A to be liberally (mis)interpreted
and attributed to any sub-principal of A. That is, from A says OK we could derive
A.τ says OK for any sub-principal A.τ . Such misinterpretations can be avoided by adopt-
ing a sub-principal naming convention. We might, for example, agree to attribute to sub-
principal A.ε any statements by A that should not be attributed to any other sub-principal
of A.
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Groups. A NAL group is a principal constructed from a set of other principals, called its
constituents, and is specified intensionally by giving a characteristic predicate. We write
[[v : P ]] to define the group formed from characteristic predicate P ; the group is constructed
using for its constituents those principals A for which P [v := A] holds. 6 As an example,

[[v : v → KCPU .HOS .HCA]]

is the group of all principals that speak for principal KCPU .HOS .HCA.
The worldview of a NAL group is formed by taking the deductive closure of the union

of the world views for the group’s constituents. Thus, if the worldview for one constituent
of the group contains E ⇒ F and another contains E, then due to IMP-E (4) the group’s
worldview contains E, E ⇒ F , and F—even if the worldview for no constituent of the
group contains F .

Because the worldview of each constituent is a subset of the group’s worldview, we
conclude for each constituent A of group G, that A → G holds. Thus, if P [v := A] holds
then A → [[v : P ]] holds:

MEMBER
P [v := A]

A → [[v : P ]]
(17)

Note that A → [[v : P ]] does not imply P [v := A], because we might have derived
A → [[v : P ]] from A → B and B → [[v : P ]]. The way to indicate in NAL that P [v := A]
holds is with a credential conveying that A satisfies P .

And when v → A holds for all constituents v of a group, then all beliefs in the group’s
worldview necessarily appear in W(A):

GROUP →
(∀v : P ⇒ (v → A))

[[v : P ]] → A
(18)

This inference rule, in combination MEMBER (17), allows us to justify the following de-
rived inference rule, which asserts groups and → are monotonic relative to implication:

GROUP MONOTONICITY
(∀v : P ⇒ P ′)

[[v : P ]] → [[v : P ′]]
(19)

Finally, note that NAL does not preclude specifying extensionally defined groups, wherein
constituents are simply enumerated. For example, [[v : (v → A) ∨ (v → B) ∨ (v → C)]]
is the extensionally defined group constructed from constituents A, B, and C.

3. GUARDS: THEORY AND PRACTICE

The decision to authorize a request can be expressed as a question about formula derivation
in NAL. An access request by a principal A is modeled using (i) NAL formula A says S to
convey request particulars, (ii) NAL formulas C1, C2, ..., Cn for accompanying credentials
Ĉ1, Ĉ2, ..., Ĉn, and (iii) NAL formula PG for the authorization policy being enforced by
guard G. The request is granted if and only if G determines that PG can be derived from

(A says S) ∧ C1 ∧ C2 ∧ · · · ∧ Cn (20)

6P [v := exp] denotes textual substitution of all free occurrences of v in P′ by exp, where P ′ is obtained from
P by renaming bound variables to avoid capture.
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using NAL’s inference rules; otherwise the request is denied. For example, a file system
FileSys implementing an authorization policy

FileSys .foo says read(foo) (21)

for accessing a file foo would allow a request A says read(foo) to proceed if that request
were accompanied by a credential conveying C that allowed A → FileSys .foo to be
derived, because C ∧ A says read(foo) can then be used to derive (21).

Not only does the guard make an authorization decision but notice that, through the
derivation for PG, the guard documents a rationale for granting the request and makes
clear the role each credential has played. The derivation is thus a form of audit log—and a
particularly descriptive one, at that.

The wide range of possible implementations for this derivation-based approach to au-
thorization gives system designers considerable flexibility to make engineering trade-offs
when implementing guards. Decisions the designer must make include:

—Where is each credential stored? Credentials could be stored at the requesting principal,
at the guard, or elsewhere in the system.

—How is each credential obtained by the guard? Credentials could accompany a request,
be fetched when needed by the guard, or be sent periodically to the guard.

—Where and how is the derivation of the guard’s authorization policy P G performed?
This could be done by the requesting principal [Appel and Felten 1999; Bauer 2003],
it could be done by the guard (perhaps by coordinating a distributed computation based
on subgoals in the proof [Bauer et al. 2005]), or it could be a service provided by some
trusted third party.

—When is each credential generated? If a credential Ĉi corresponding to NAL formula
Ci is issued, then we might expect Ci to hold thereafter. But changes to the system state
could cause a principal to change its beliefs, falsifying C i. Guards and other principals
with access to Ĉi but lacking independent means for validating C i must be implemented
with this reality in mind.

The remainder of this section explores these matters in more detail.

Sources of Derivations. Constructing a NAL derivation for some arbitrary given formula
is an undecidable problem, because NAL terms include integers and rich data structures
whose axiomatizations are undecidable. However, NAL formulas PG for authorization
policies found in practice are often easily derived when accompanying credentials have a
prescribed form. For example, we might specify discretionary access control 7 for requests
from a principal A to access an object obj by writing the following NAL formula for P G:

(A says access(obj )) ∧ (A → owner(obj )) (22)

Derivation of (22) is trivial if we prescribe that requests A says access(obj ) are accompa-
nied by a credential that attests

owner (obj ) says A → owner (obj ). (23)

7Discretionary access control policies are authorization polices where access privileges for an object are set by
the owner of that object.
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Or, the guard for obj might itself store an access control list ACLobj , which is interpreted
as attesting (23) for every principal A appearing in ACLobj .

An alternative to having a guard G perform a derivation of P G would be to have G
check a derivation supplied with the request. This is a decidable task because, by defi-
nition, inference rule applications are mechanically checkable. To illustrate, we return to
the discretionary access control given above. Instead of accompanying a request with a
credential that attests to (23), a principal A making a request might provide a set of cre-
dentials and a derivation from those credentials of what is needed for establishing conjunct
A → owner (obj ) of (22).

The idea of having derivations accompany requests is not a panacea. In order for a prin-
cipal to produce a derivation of PG, that principal must know what PG is, which requires
divulging the criteria for authorizing requests. And sometimes we may want to keep prin-
cipals unaware that different criteria apply to each. Also, having each different requester
independently derive PG makes changing PG difficult, since all principals that submit re-
quests to guard G would have to be identified, notified, and updated.

Credential and Policy Dynamics. Possession by guard G of a credential Ĉ puts the NAL
formula C conveyed by Ĉ among G’s beliefs. Therefore, NAL models G’s possession of
a credential Ĉ as: G says C. One might hope that

(G says C) ⇒ C (24)

would hold as well, although this is by no means guaranteed. The principal issuing a
credential might subsequently change its beliefs (perhaps because the state has changed)
but after a credential has been sent elsewhere, that credential is no longer available to the
issuer for update or deletion.8 Yet if (24) does not hold for one or more credentials that a
guard G has received, then the guard could have a NAL derivation of authorization policy
PG from those credentials even though PG does not actually hold.

For example, a request A says access(obj ) accompanied by a credential Ĉtme convey-
ing TimeServ says clock = 0900 suffices to derive:

A says access(obj ) ∧ TimeServ says clock < 1000 (25)

But the instance of (24) corresponding to Ĉtme does not hold if clock increases with the
passage of time. The NAL derivation of (25), however, is not invalidated by this change to
the worldview of TimeServ . So authorization policy (25) does not hold despite the guard
having a NAL derivation from the request and accompanying credentials.

Even if a guard G could check the truth of NAL formula C conveyed by each credential
Ĉ that G uses, there is no guarantee that PG would hold after the checks. The process
of checking the truth of a credential takes time, and concurrent actions elsewhere in the
system could falsify the formula conveyed by one credential while the others are being
checked. However, by restricting system execution, guard construction, and/or what NAL
formulas credentials may convey, we can ensure that PG will hold whenever it can be
derived in NAL from a request and accompanying credentials.

System execution generally satisfies certain restrictions—time never decreases and the
past is immutable—not to mention restrictions coupled to the semantics of system and

8This revocation problem is well known in connection with capabilities that are used to access a resource and
with public key certificates that describe name-key bindings.
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application functionality. This means that some truths do not change as execution proceeds,
which can be leveraged for defining credentials that cannot be falsified by future execution.
For example, once clock > 1000 holds, it cannot be later falsified. And a credential for
communicating that some predicate P held on a past system state cannot be falsified if P
holds when that credential is issued.

By imposing additional restrictions on execution by principals that falsify certain pred-
icates, we obtain a second general approach for constructing credentials that satisfy (24).
Suppose that, in order to authorize some request, a guard requires that A says P hold, for
P a state predicate.

—We might restrict principals from invalidating P until some time in the future, and use a
credential conveying a form of lease [Gray and Cheriton 1989]

A says (clock < 1000 ⇒ P )

instead of A says P . Not only is this alternative credential not falsified, but if clock <
1000 holds then a guard can conclude that A says P is satisfied.

—We might stipulate that principals follow some sort of a locking protocol before in-
validating P . For example, we might postulate a lock �P with two modes of access.
Any number of principals can concurrently hold shared access, and a principal can hold
exclusive access only if no other principal holds shared or exclusive access, with the
following restrictions on execution:
(i) a guard acquires shared access to �P before authorizing a decision using a credential

involving P , and the guard relinquishes the lock afterward,
(ii) a principal acquires exclusive access to �P before falsifying P , and
(iii) a lock holder must reestablish P prior to releasing �P .
Then a credential conveying

A says (locked(shared, �P , A) ⇒ P )

is never falsified even though P might be. Moreover, if a guard acquires � P with
shared access while making an authorization decision then that guard can conclude that
A says P is satisfied at that time.

The way that a guard uses the above kinds credentials to derive A says P warrants am-
plification. Both cases involved a NAL formula A says (L ⇒ P ). According to DEDUCE

(5), we can then derive

(A says L) ⇒ (A says P ).

So with a credential A says L, we can use IMP-E (4) to derive A says P . Since A is
unlikely to be an authority on clock or on lock acquisitions, A would delegate to the ap-
propriate authorities by issuing credentials like

A says (TimeServ → A) or A says (LockMngr → A)

from which TimeServ → A and TimeServ → A are derived due to HAND-OFF (8). This
then allows

A says clock < 1000 or A says locked(shared, �P , A)
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to be derived from credentials conveying

TimeServ says clock < 1000 (26)

LockMngr says locked(shared, �P , A) (27)

which authorities might issue.
Observe that credentials (26) and (27) have a special property: a guard G can check

whether each satisfies (24) for the interval needed by G. In the case of credential (26)
from TimeServ , if G can read clock , then G can calculate how much time remains until
clock < 1000 is falsified and the credential expires; (24) remains satisfied if the certificate
conveying (26) is deleted by the guard before that expiration time is reached. For credential
(27) from LockMngr , G acquires a shared lock on �P before augmenting its worldview
based on the credential, and G deletes that credential before releasing the lock.

4. EXAMPLE APPLICATIONS: A DOCUMENT-VIEWER SUITE

To gain confidence in the utility of our authorization framework, we used it and prototyped
a suite of document-viewer applications that run on Nexus. This required formulating
authorization policies in NAL, implementing a NAL proof checker (see appendix B of
Schneider et al. [2009] for details about the proof checker), and building Nexus support for
creating credentials and guards.

In each of the viewer applications, documents are considered principals. And a docu-
ment to be displayed—not the human user viewing the document—is the principal whose
requests are authorized by a guard. This unconventional architecture allowed us to benefit
from employing analytic and/or synthetic bases for authorization. Had the system instead
been designed to process requests from human users wishing to view documents, we would
have been limited to employing an axiomatic basis for authorization, since humans are hard
to analyze and do not take kindly to transformations.

4.1 TruDocs: Analytic and Axiomatic Bases for Authorization

Documents convey beliefs. If D is a name for some document, then we can use NAL to
formalize which beliefs D conveys: Identify D with a principal D and write NAL formula
D says P for each belief P that D conveys.

Excerpts derived from a document also convey beliefs. We represent an excerpt E ap-
pearing in a document D as a 4-tuple E = 〈χ, D, �, D ′〉, where χ is the text of the excerpt,
D′ is a source document to which the excerpt is being attributed, and � is the location
where the excerpt appears in D. Notice, distinct appearances of text χ in D are considered
to be different excerpts.

As with documents, each excerpt E can be identified with a NAL principal E, where
E says P holds for every belief P that E conveys. Define Src(E) to be the source docu-
ment (i.e., D′ above) from which E was purportedly derived, and define Src(E) to be the
principal corresponding to Src(E).

The reader of a document that contains an excerpt E and the author of source document
Src(E) would expect that beliefs conveyed by E are conveyed in Src(E) and, therefore,
E → Src(E) holds. But whether E → Src(E) actually holds will depend on how E was
derived from Src(E). Quoting too few words, quoting out of context, redaction, elision
of words and clauses, all can produce an “excerpt” that conveys different beliefs than are
conveyed in the source. We define a document D to have integrity if and only if for every
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excerpt E appearing in D, the beliefs E conveys are also conveyed by Src(E). This
property can be formalized in NAL as a credential our TruDocs system issues about D

TruDocs says (∀E : E ≺ D ⇒ E → Src(E)) (28)

where relation E ≺ D holds if and only if document D contains excerpt E. 9

The author of a document D ′ cannot be expected to enumerate all possible excerpts E
that convey beliefs found in D ′ or, equivalently, list all instances of E → D ′ that hold.
So authors (or the organizations they work for) associate use policies with documents they
produce. To be eligible for inclusion in another document D, an excerpt E must comply
with the use policy associated with Src(E). TruDocs limits use policies to those that can
be specified as syntactic criteria or as other computable checks whose compliance implies
E → D′.

The Wesleyan Cinema archive [Wesleyan Cinema Archive], for example, stipulates that
an individual excerpt be verbatim, not exceed 75 words, and that any given document
contain at most 20 such excerpts; the New International Version of the Bible [New Interna-
tional Version Bible] stipulates that excerpts contain at most 500 verses, that they be copied
verbatim, and that the excerpts account for at most 25% of the document; and W3C [World
Wide Web Consortium (W3C)] allows inclusion of their logo unmodified in a document
provided an automatic validator accepts the resulting document and the logo image has a
link to the W3C URL.

The role of a use policy that has been associated with a source document D ′ can be
formalized abstractly in NAL as a credential conveying

D′ says (∀E, D : (D′ = Src(E) ∧ usePolD′(E, D)) ⇒ (E → D′)) (29)

where usePolD′(E, D) is a predicate satisfied if excerpt E appearing in D is consistent
with the use policy associated with D ′. Credentials like (29) enable (28) to be derived by
checking each excerpt E against the use policy for Src(E):

TruDocs says (∀E : E ≺ D ⇒ usePolSrc(E)(E, D)) (30)

Thus, a guard that employs (30) as the authorization policy for display requests from a
document D can mechanically derive (28) or, conversely, deny a display request if D does
not have integrity. So this authorization policy embodies an analytic basis for trust, because
authorization depends on checking use policies, a form of analysis.
TruDocs can also handle Copyright’s “fair use” and other non-computable use policies

by employing an axiomatic basis for trust. One or more human authorities H i for which
TruDocs has issued a credential conveying

TruDocssays (Hi → TruDocs) (31)

are solicited to check the use policy. Hi in turn provides credentials conveying

Hi says (E → Src(E)) (32)

for excerpts E, such that E ≺ D holds and the use policy is satisfied. Receipt of such a
credential for each excerpt E in D is all that is needed for TruDocs to derive (28). So
this approach corresponds to deriving (30) where usePol Src(E)(E, D) is satisfied if and
only if TruDocs has credentials (31) and (32).

9Definition (28) treats nested excerpts as if each appears directly in D. Other treatments are possible.
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Implementation Details. TruDocs comprises an editor TDed for use by document au-
thors, a viewer TDview for displaying documents, and some additional support software.
TDed and TDview were obtained by modifying the OpenOffice software suite [OpenOf-
fice].

—TDed allows a document D containing excerpts to be created, enables a use policy to be
defined and associated with that document, and constructs a unique name Nme(D) for
the document. Nme(D) is constructed so that it embodies a validated set of document
particulars, such as title, author, publication venue, publication date, etc.

—TDview implements a guard to authorize display requests from documents; a display
request for D is granted only if (30) can be derived, since (28) can then be derived from
that. Whenever TDview displays a document, it displays at the end of each excerpt
E the document particulars embodied in Nme(Src(E)), thereby giving the reader a
human-intelligible description for the source document from which E was derived.

In order to derive (30) for a document D, the TDview guard enumerates the excerpts in D
and processes each excerpt E as follows.

(1) Determine usePolSrc(E)(E, D).

(2) Derive

TruDocssays usePolSrc(E)(E, D) (33)

from the credentials accompanying the display request and/or by performing local
checking. Specifically, the derivation of (33) is done by TDview in conjunction with
the NAL proof checker and builtin support for text matching:

—TDview checks to see if the display request was accompanied by credentials and/or
a NAL proof that discharges (33), and if so, TDview checks that proof (which
includes validating the credentials), issuing an instance of a credential conveying
(33) if the proof is sound;

—if not, TDview determines if it has builtin support to validate usePol Src(E)(E, D),
attempts that validation, and if successful TDview issues an instance of a credential
conveying (33);

—otherwise, TDview displays an error message that details the use policy that it
could not satisfy, requesting additional credentials and/or a NAL proof be provided.

Note that some trust assumptions are required, due to NAL’s local reasoning restriction.
First, TDview → TruDocs must be assumed so that credentials issued by TDview can
contribute to the derivation of (33), a statement being attributed to TruDocs. Second,
for each credential EAi says S provided by an external authority EA i and used in step 2,
there must be a credential TDviewsays (EAi → TDview) signifying that EAi is trusted
by TDview and, therefore, TDview can derive TDviewsays S from EA i says S. The
name of each such trusted external authority EA i is communicated to TDview at startup.

Limits in on-line storage or concerns about confidentiality are just two reasons TDview
might not have access to certain source documents. So TDview is not always able to
validate usePolSrc(E)(E, D) directly and might instead have to import credentials from
human or external authorities. Moreover, having TDview import credentials can improve
performance by undertaking an expensive analysis once rather than each time a document
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requests display. For example, when creating a document D, TDed has access to all docu-
ments from which excerpts appearing in D are being derived. TDed is therefore an obvi-
ous place to perform some analysis and issue credentials that later aid TDview in deriving
(33). This, however, does require an additional trust assumption: TDed→ TDview.
TDview directly implements the kinds of analysis commonly found in use policies; but

being only a prototype, it is far from complete. This builtin support currently includes
matching an excerpt and source text verbatim or allowing for change of case, replacing
fragments of text by ellipses, inserting editorial comments enclosed within square brackets,
limiting the length of individual excerpts, the aggregate length or number of the excerpts
from a given document, and so on. TDview also can validate compliance with a use policy
that stipulates excerpts derived from D ′ not appear in documents having certain document
particulars—for example, that excerpts from D ′ not appear in documents authored by a
given individual or published in a given venue.

A name Nme(D) that lists document particulars would prove problematic if we want
to use an ordinary file system and store D as a file named Nme(D). So TruDocs asso-
ciates with each document D a principal named HNme(D), as follows. Each document
D is represented in XML and we define HNme(D) = H(XD), where XD is the XML
representation (using the DocBook [DocBook] standard) for D and where H(·) is a SHA1
hash. HNme(D), because it is relatively short, can serve as the name for a file storing XD

in a file system or web server. And, in XD, for each excerpt E, TruDocs not only stores
Nme(Src(E)), which provides the document particulars for Src(E), but TruDocs also
stores name HNme(Src(E)), which provides direct access to the file storing XSrc(E).10

A binding between principals HNme(D) (i.e., H(XD)) and Nme(D) is made by a
TruDocs principal Reg (named by public key KReg); Reg runs on a separate machine
from TDed and TDview. Reg not only creates bindings but it also validates docu-
ment particulars and disseminates the existence of HNme(D)–Nme(D) bindings by is-
suing credentials. In particular, a document D being created with TDed becomes eligible
for viewing only after the user invokes the publish operation; publish causes pair
〈XD,Nme(D)〉 to be forwarded to Reg, which checks that

(i) Nme(D) is unique,

(ii) Nme(D) is consistent with document particulars (e.g., author, title, publication venue,
publication date) conveyed in XD, and

(iii) each document particular in Nme(D) is valid according to relevant external author-
ities (e.g., the authoritative reprints repository maintained by the journal where D is
purported to have been published).

If (i) – (iii) hold, then Nme(D) is considered validated and Reg generates a credential

KReg says (HNme(D) → KReg.Nme(D)) (34)

10If only file name HNme(Src(E)) were stored in XD , then after D has been created, an attacker could
change what is stored in file HNme(Src(E)), thereby invalidating the consistency of the information from
Nme(Src(E)) that gets displayed at the end of E with the document particulars for Src(E).
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which is returned by Reg to TDed, where it is piggybacked11 on XD. Notice that if we
define D to be KReg.Nme(D), we can derive

HNme(D) → D, (35)

a binding between HNme(D) and D: SUBPRIN (13) derives HNme(D) → KReg.Nme(D)
from (34) and then use the above definition of D to substitute for K Reg.Nme(D).

Finally, as noted above, when TDed creates a document D ′, it stores a use-policy cre-
dential as part of XD′ . The credential stored is actually a variant of (29), now that two
different principals are being associated with each document:

HNme(D′) says (∀E, D : (D′ = Src(E) ∧ usePolD′(E, D))

⇒ (E → HNme(D′)))
(36)

But E → HNme(D′) derives E → D′, since (35) can be derived from the instance
of (34) piggybacked on XD′ . This means that from (34) and (36), TDview can always
automatically derive:

H(XD′) says (∀E, D : (D′ = Src(E) ∧ usePolD′(E, D))

⇒ (E → D′))
(37)

And the NAL derivation of (28) from (37) is virtually the same as the derivation of (28)
from (29), again remaining independent of document D and thus not something the guard
of TDview must regenerate to authorize each display request.

4.2 ConfDocs: A Synthetic Basis for Authorization

ConfDocs implements multi-level security [Department of Defense 1985; Weissman
1969] for accessing documents comprising text elements. Each text element χ = 〈D, �, len〉
in document D and starting at location � for len characters is assigned a classification la-
bel LT (χ) by some trusted classification authority; each user H is assigned a clearance
LU (H) by some trusted clearance authority.

Classification labels and clearances are selected from a set of security labels on which a
partial order relation � has been defined. And a document D comprising a set Txt(D) of
text elements is authorized for display to a user H if and only if

D says (∀χ ∈ Txt(D) : LT (χ) � LU (H)) (38)

holds. This makes D—or, rather, the publisher of D—the ultimate authority on which
users can read D, by leaving the choice of classification authority and clearance authority
with D. In particular, the choice of classification authority determines LT (χ) and the
choice of clearance authority determines LU (H), so these choices albeit indirectly effect
whether H satisfies (38).
ConfDocs is agnostic about the set of security labels and partial order relation �. The

system simply requires the means (internally builtin or by appeal to an external authority)
to determine whether L� L′ holds for any pair of security labels L and L ′. ConfDocs has
builtin support for security labels structured as pairs [Denning 1976; Sandhu 1993], where
the first element of the pair designates a sensitivity level U (unclassified), C (confidential),

11Credential (34) cannot be stored in XD , because that would change name H(XD) for that principal, rending
credential (34) useless.
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S (secret), or TS (top-secret), and the second element of a pair designates a set of compart-
ments constructed from descriptors, such as crypto, nuclear, etc. There is a total order� on the levels: U�C, C�S, and S�TS; the usual partial order⊆ on sets of compartments;
and

〈lvl , cmpt〉 � 〈lvl ′, cmpt ′〉
holds if and only if lvl � lvl ′ ∨ lvl = lvl ′ and cmpt ⊆ cmpt ′ hold.

If a document D does not satisfy authorization policy (38) for a given user H , then it is
often possible by modifying D to derive a document that does.

—Deleting text from D narrows the scope of the universal quantification in (38) by remov-
ing a text element χ from Txt(D), thereby eliminating an obligation LT (χ) � LU (H)
that cannot be derived.

—Modifying D—say, by changing certain prose in a text element χ to obtain χ ′—could
change the contents of Txt(D) in a way that transforms an obligation LT (χ) � LU (H)
that cannot be derived into one LT (χ′) � LU (H) that can be.

Each is implementing a synthetic basis for authorization, and our ConfDocs prototype
supports both.

Implementation Details. Each ConfDocs document D is represented using XML ac-
cording to the DocBook standard. The representation for a document D includes set
Txt(D) of text elements, as well as credentials that convey

D says (LT (χ) = Lχ) or CAT says (LT (χ) = Lχ)

to give a classification label Lχ for each text element χ ∈ Txt(D). The latter would be
accompanied by a restricted delegation

D says CAT
v1,v2 : LT (v1)=v2−−−−−−−−−−−→ D (39)

for classification authority CAT , attesting that the publisher of D trusts CAT to assign
classification labels to text elements in D.

The representation of D optionally may include sanitization credentials

San says (LT (Edit(χ, s)) = LEdit(χ,s)) (40)

that give a classification label for the text element produced by executing a builtin edit
function to modify χ according to script s . Here, San is either D or some classification
authority CAT for which restricted delegation (39) appears in the representation of D.
And script s may include commands like Overprint(χ), which overprints boxes � on
the characters of χ, as well as standard text editor commands like Replace(x , y), which
replaces all instances of character string x with string y, and so on.

Credentials like (40) define a sanitization policy for D. Such a policy characterizes ways
to transform a document containing information that is too highly classified given the clear-
ance of some intended readers into a document those readers can access. The hard part is
resolving the tension between hiding too much and indirectly leaking classified informa-
tion. Sanitization of paper documents, for example, often involves crossing-out fragments
of text (and ConfDocs supports this functionality with its Overprint(χ) command) but
a document sanitized in this manner might still leak information to a reader by revealing
the length of a crossed-out name or the existence of an explanatory note. Yet, deleting
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large segments of text when sanitizing a document could raise unwarranted questions in a
reader’s mind.

A user H attempting to view a document D invokes the ConfDocs program CDview,
furnishing a credential signed by some clearance authority CAU that attests to LU (H):

CAU says LU (H) = LH (41)

All clearance authorities are not equivalent. The publisher of D controls whether a clear-
ance authority CAU is trusted to assign clearances and, thus, can participate in determining
which users have access to D. Specifically, the publisher includes a credential

D says CAU
v1,v2 : LU (v1)=v2−−−−−−−−−−−→ D (42)

in the ConfDocs representation of D for each clearance authority CAU that is trusted.
CDview authorizes a request by a document D for display to a user H provided (38)

holds, where classification label LT (χ) for each text element χ ∈ Txt(D) and clearance
LU (H) come from authorities that the publisher of D is willing to trust. This is achieved
by enforcing

(∃v : D says LU (H) = v ∧ D says (∀χ ∈ Txt(D) : LT (χ) � v)) (43)

which is easily seen to imply (38).
The first conjunct of (43) can be derived by the guard in CDview from user-provided

credential (41) if D contains a suitable restricted delegation (42). This means that the
publisher of D can include restricted delegation credentials in D to authorize any specific
user to view D. For settings where that power resides elsewhere, we would change the
first conjunct of (43). For example, if by statute a user H must be assigned a clearance by
some authority CSNSA for purposes of viewing D, then the first conjunct of (43) would be
replaced by CSNSA says LU (H) = v; and in invoking CDview, user H would have to
provide credentials from which this new first conjunct of authorization policy (43) can be
derived.

The second conjunct of (43) is discharged by CDview as follows. For each element χ
in Txt(D), CDview checks whether LT (χ) � L holds. If it does not hold, then CDview
attempts corrective action, thereby engaging in a synthetic basis for authorizing a display
request for a modified document, D ′:

(1) CDview checks to see whether any of the sanitization credentials for D allow con-
struction of a modified text element χ ′ such that LT (χ′) � H holds. If it does, then
CDview obtains D′ by replacing χ with χ′.

(2) CDview otherwise obtains D ′ by deleting χ.

And CDview then proceeds anew to discharge the second conjunct of (43) for document
D′. In the worst case, this procedure terminates with (43) satisfied for a document D ′

where Txt(D′) = ∅, and CDview will display an empty document.

Nexus Sealed Bundles. To ensure that invoking CDview is the only way to view doc-
uments, they are stored and transmitted in encrypted form. Nexus, in conjunction with a
TPM secure co-processor, implements a storage abstraction that is ideal for this task. A
Nexus sealed bundle B stores its payload payload (B) in encrypted form and also specifies
a NAL group group(B) of principals authorized to decrypt payload (B).
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By invoking the Nexus Decrypt(B) kernel operation, a principal A is seen by the Nexus
kernel (which, by design, knows the identity of the process it is executing) to be providing
the credential

A says Decrypt(B),

although this credential is never actually materialized and thus cannot be stolen for use by
some other principal. Nexus responds by decrypting and returning payload (B) to A if and
only if authorization policy

group(B) says Decrypt(B)

holds. To allow an access thus requires the kernel to validate a proof of A → group(B),
thereby establishing that A is a constituent of group(B). This proof validation is dis-
charged by the kernel checking whether A satisfies predicate PB [v := A], where PB was
originally used in defining group(B) and saved in the bundle; A → group(B) then follows
due to MEMBER (17). Our implementation also allows A to provide a proof of A → C;
the kernel would check that proof and then check that PB [v := C] is satisfied. Notice,
the set of principals satisfying PB is not necessarily static if PB depends on state, so the
constituents of group(B) may be dynamic.

Each ConfDocs document D is stored using a Nexus bundle BD, where group(BD) is
a fixed set of principals corresponding to valid instances of CDview: programs whose hash
HCDview equals the hash of some pre-determined correct object code for CDview, where
that object code was loaded and is being executed by a Nexus process running on a valid
Nexus kernel, which itself is being executed on a trusted processor with associated TPM.
Such a principal is specified using NAL sub-principals as KCPU .HNexus .process23.HCDview

because CDview is actually being impersonated by some Nexus process (here, process 23),
which in turn is being impersonated by the Nexus, which itself is impersonated by the a
hardware processor. (Only to simplify the exposition above, have we been naming princi-
pals by program names rather than giving the fully qualified list of sub-principals (hardware
key, kernel, process) that actually defines the principal’s name.) And the group group(B D)
of principals for each document D is defined in NAL as:

[[v : (∃i : v → KCPU .HNexus .processi.HCDview)]]

5. DISCUSSION

NAL was born of necessity. Our original plan for Nexus was to adopt prior work in cre-
dentials based authorization. The Lampson et al. [1992] account (which introduced says
and → operators) seemed to offer a compelling framework for the kinds of authoriza-
tion Nexus was going to support, had been formalized by Abadi et al. [1993] as a logic,
and was used in the Taos operating system [Wobber et al. 1994]. There was the matter
of generating proofs and checking them—Taos had only implemented a decidable sub-
set of the logic. But Appel and Felten’s [1999] proof carrying authentication addressed
that, suggesting that all requests be accompanied by proofs and that guards only perform
proof checking. Moreover, proof carrying authentication employed a higher-order logic
supporting application-specific predicates; and it was implemented in Twelf [Pfenning and
Schürmann 1999], so a proof checker was available.

A clear focus of this prior work was authentication for the varied and nuanced principals
found in distributed systems. Operators to construct new principals (e.g, roles, quoting,



22 · FRED B. SCHNEIDER, KEVIN WALSH and EMIN GÜN SIRER

etc.) were central to that enterprise. In Nexus, system state and properties of principals
were going to be important inputs to authorization, too. So we embarked on a series of
design exercises to see how well those needs would be served by the prior work.

Our attempt to design a simple digital rights management (DRM) system was particu-
larly instructive. We sought flexibility in what should count as an access to the managed
content (e.g., accessing any part versus accessing a majority versus accessing all of the
content). A system designer would presumably mark such an access by changing the sys-
tem’s state. So we concluded that a logic for credentials and authorization policies ought
to include state predicates. However, adding arbitrary state predicates to an authentication
logic turns out to be subtle, because it can lead to inconsistencies (allowing false to be
derived, hence any authorization policy to be satisfied).

In particular, principals evaluate state predicates, but (as discussed in §2.1) it is unrealis-
tic to expect that any principal could evaluate any state predicate or that different principals
evaluating the same state predicate at different times would compute the same value. We
thus needed a way for one principal to include in its worldview a state predicate F evalu-
ated by some other principal.

—One approach [Abadi et al. 1993; Appel and Felten 1999; Howell 2000] is to use SAYS-I

(2) along with a new inference rule

A says F, controls(A, F )
F

where controls(A, F ) holds when A is a trusted authority on the truth of F .

—The other approach [Abadi 2007; 2008; Lesniewski-Laas et al. 2007] is to postulate
a local-reasoning restriction and require that a principal use delegation to import and
reason about beliefs from others.

We adopted this second approach because an inconsistency in a principal or among a set
cannot then be propagated to a principal that does not speak-for or receive credentials
from these. The first approach offers no such guarantees about propagation of inconsisten-
cies, and it also requires characterizing sets of beliefs F ′ covered by controls(A, F ): If
controls(A, F ) holds and F ⇒ F ′ is valid then is A necessarily also trusted on F ′? Is A
necessarily trusted on ¬F ?

CDD [Abadi 2007; 2008], which had been subject to careful analysis and embraced a
local reasoning restriction, then became an obvious candidate for the foundation of NAL.
Moreover, CDD has a very simple language, in part, because details about principals and
beliefs are left unspecified. So CDD offered us the freedom to define principals that would
match what Nexus provided and to use state predicates in beliefs (importing theories for
giving these state predicates suitable interpretations).

NAL’s sub-principals are derived from Alpaca [Lesniewski-Laas et al. 2007] named
roles. Prior proposals (e.g., SDSI/SPKI [Rivest and Lampson 1996] and Taos [Wobber
et al. 1994]) restricted the term τ used in defining a sub-principal A.τ to being a fixed
string, which meant that only static roles could be supported.

Groups in NAL are a special case of the dynamic unweighted threshold structures de-
fined by Delegation Logic [Li et al. 2003]. And Delegation Logic was the first to suggest
that group membership be specified intensionally, although no proof rules were given (nor
were they needed there). Our approach to authorization requires proof rules for satisfying
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authorization policies from credentials, and with inference rules MEMBER (17) and GROUP

→ (18), NAL appears to be the first logic for reasoning about such groups. The deductive
closure semantics we selected for NAL groups was first proposed in [Abadi et al. 1993],
along with an axiomatization for extensionally defined instances of such groups.

Other semantics for groups have been proposed, too. With the or-groups of Syverson
and Stubblebine [1999], which are also supported in proof carrying authentication [Appel
and Felten 1999], a belief is considered to be in the worldview of a group if and only if
that belief is in the worldview of some12 group member; or-groups are not sound with
respect to IMP-E (4) and therefore require different proof rules from NAL principals. In
groups with conjunctive semantics (sometimes called conjunctive principals [Abadi et al.
1993; DeTreville 2002; Ellison et al. 1999; Li et al. 2003] or and-groups [Syverson and
Stubblebine 1999]), a belief appears in the worldview of a group if and only if that belief
appears in the deductive closure of the intersection of the worldviews for all members.
Credentials about intentionally specified conjunctional groups could easily be supported in
NAL as an abbreviation:

〈〈v : P 〉〉 says F : (∀v : P ⇒ (v says S))

Finally, various proposals (e.g., [Ellison et al. 1999] and [Li et al. 2003]) have been made
for groups that exhibit k threshold semantics, whereby a belief is in the worldview of the
group if and only if that belief is in the worldviews of at least k group members. This
construct is quite expressive, difficult to axiomatize, and (fortunately) has not been needed
for the applications we explored.

We were not the first to see a need for state in an authentication logic. As soon as support
for revocation or expiration of credentials is contemplated, the need for state-dependent
credentials and policies becomes apparent. In Becker and Nanz [2007], credentials and
policies can have side effects involving the addition or removal of assertions from the local
rule base; Cassandra [Becker and Sewell 2004] represents state in terms of the activation
and deactivation of roles; and linear logics [Garg et al. 2006; Bowers et al. 2007] encode
state information in terms of how many times an axiom can be used. These encodings
duplicate in the logic state that already exists in a system. In doing so, expressiveness is
often lost in the translation, preventing certain policies from being formalized. Moreover,
in this prior work, either some sort of globally available state is being assumed, which
becomes difficult to implement in a distributed system, or the state is local to a guard,
which limits what authorization policies could be implemented.

5.1 Other Related Work

Any authorization scheme involves trade-offs. What is the class of authorization policies
that can be enforced? How much computation, communication, and storage is necessary
to decide whether a request should be allowed to proceed? PolicyMaker [Blaze et al. 1999;
Blaze et al. 1996; Blaze et al. 1998] makes one set of choices, and it was the first autho-
rization scheme to focus on considerations of trust as an input to authorization decisions. 13

Policies, credentials, and trust relationships are expressed in PolicyMaker as imperative

12Some authors refer to such as groups as implementing disjunctive semantics, but this term is used by other
authors to describe groups that have the semantics defined by NAL, which also requires a deductive closure.
13However, considerations about trust are the basis for the definitions of groups and roles in prior work on access
control.
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programs in a safe language; a generic policy compliance checker interprets these pro-
grams in order to check whether a policy is satisfied for some given credentials under given
trust assumptions. REFEREE [Chu et al. 1997] extends this approach to include policies
that govern actions by programs representing policies, credentials, and trust relationships;
KeyNote [Blaze et al. 1998] adds restrictions to make compliance checking efficient; and
Delegation Logic [Li et al. 2003] replaces PolicyMaker’s imperative programs with D1LP,
a monotonic version of Datalog which has declarative semantics and can be compiled into
ordinary logic programs (including, for example, Prolog).

Binder [DeTreville 2002] was actually the first authentication scheme to employ a lan-
guage based on Datalog; it embodies a tasteful compromise between the efficient decision
procedures that come with PolicyMaker’s imperative programs and the declarative ele-
gance of the Abadi et al. [1993] access control calculus. Subsequent work based on Data-
log includes SD3 [Jim 2001], the RT family of logics [Li et al. 2002], Cassandra [Becker
and Sewell 2004], Soutei [Pimlott and Kselyov 2006], and then SecPAL [Becker et al.
2007]. DKAL [Gurevich and Neeman 2008] introduces a new dimension to credentials-
based authorization by proposing extensions to SecPAL that prevent sensitive information
carried in credentials and authorization policies from leaking, even when users having dif-
ferent clearances share the same underlying authorization policies, database of credentials,
and implementation.

SecPAL, which targeted grid computing environments and has also been used for autho-
rization in a weakly-consistent peer-to-peer setting [Wobber et al. 2009], is quite expressive
despite constraints inherent in Datalog. It supports delegation credentials that are contin-
gent on the evaluation of predicates over a guard’s local state. And, unlike other autho-
rization schemes based on logic programming, SecPAL allows negations ¬(A says F ) to
appear within policies (but not credentials); syntactic constraints on credentials and poli-
cies nevertheless guarantee policy checking is sound, complete, and always terminates,
under the assumption (which might be violated by a denial of service attack) that all cre-
dentials are available whenever a policy is evaluated. A tractable decision procedure for
authorization was obtained by translating from SecPAL into a Datalog variant (viz Datalog
with Constraints).

Alpaca [Lesniewski-Laas et al. 2007], like NAL, builds on proof carrying authentica-
tion [Appel and Felten 1999]. However, the domain of applications for Alpaca—unifying
and generalizing public key infrastructures (PKIs) to support authentication—is quite dif-
ferent from NAL’s goal of supporting authorization. And that explains differences in focus
and function. Alpaca authorities, for example, provide a structure for localizing reasoning
associated with a given logical theory; this turns out to be convenient in Alpaca for dealing
with the mathematical operations and coercions used in authentication protocols. NAL and
other logics for authentication, which are dependent on signatures and hashes for attribut-
ing statements to principals, do not provide support for reasoning about these operations
within the logic. Nor does NAL or other prior work take the local reasoning restriction this
next step to authorities, although doing so should be straightforward. As another important
point of difference, Alpaca—unlike NAL—has only limited support for stateful protocols.
Nonces can be used in Alpaca to achieve one-use or limited-use credentials; there is no
way, however, to use Alpaca for protocols that depend in general on history, as would be
required (and is supported in NAL) for DRM or even as needed for implementing many
authentication protocols.
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Relatively few systems—most, research prototypes—support credentials-based autho-
rization, and none do so in anything approaching the generality needed for using analytic
or synthetic bases in authorization. Taos and SecPAL were already mentioned; the W3C
Web Services WS-Security [Organization for the Advancement of Structured Information
Standards (OASIS) 2004] standard (in particular, WS-Policy [World Wide Web Consor-
tium (W3C) 2007]) is also rooted in this general approach, which could bode well for the
future. Bauer [2003] used proof carrying authorization for implementing access control
to web pages. The Grey Project [Bauer et al. 2008; Bauer et al. 2005] integrates a linear
logic and proof-carrying authentication on a smart phone platform, and it has been used for
authorizing access to offices and shared labs. And Howell and Kotz [2000] implemented a
credentials-based approach for use within and between applications running in Java virtual
machines; that logic is an extension of SPKI [Ellison et al. 1999].

5.2 Least Privilege versus Minimal Identity

Credentials used for authorizing a request reveal attributes of the requester. This can im-
pinge on privacy, where privacy is defined as the right of an individual to control the
dissemination and use of information about that individual. To protect privacy, we should
strive to employ authorization policies that minimize the information needed about indi-
viduals.

Credentials-based authorization offers the flexibility to define policies and credentials
involving only limited information about individuals. So credentials-based authorization
has the potential to protect privacy by supporting system designs that instantiate the fol-
lowing principle, where an identity is a set of attributes.

Principle of Minimal Identity. Employ identities that embody the smallest set of at-
tributes needed for the task at hand.

By way of comparison, in identifier-based authorization, access decisions depend only
on a label associated with the principal making the request—there is no flexibility to dis-
close only certain attributes of the requester (although one can employ labels whose con-
nection to an individual is impossible discern). Privacy with identifier-based authorization
is, consequently, coarser-grained. Identifier-based authorization also admits privacy com-
promises from linking attacks, whereby labels used in different requests are correlated;
credentials-based authorization can be less prone to linking attacks, because correlated
credentials do not imply correlated requesters (although credentials that contain identifiers
or contain sets of unique attributes can be traced back to specific requesters).

The contents of a credential can be seen as a kind of privilege, since it provides a basis
for authorizing requests. Logical implication defines a partial ordering on these privileges:
if C ⇒ C ′ holds, then a credential conveying A says C is considered stronger than one
that conveys A says C ′. We might then view credentials-based authorization through the
lens of the well known Saltzer-Schroeder [1975] mandate:

Principle of Least Privilege. Assign each principal the minimum privileges it needs to
accomplish its task.

And, in so doing, we discover this mandate offers the same guidance as the Principle of
Minimal Identity! So with credentials-based authorization, security and privacy are both
well served by expecting weaker credentials from principals.
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This account also clarifies that merits of preferring analytic and synthetic bases for au-
thorization to an axiomatic basis. The analytic and synthetic bases allow credentials to
embody exactly what is needed for authorization, and are thus consistent with the Prin-
ciples of Minimal Identity and Least Privilege. The axiomatic basis, however, is a form
of identifier-based authorization and, therefore, it is going to be coarse-grained, subject
to linking attacks, and unlikely to satisfy either the Principle of Minimal Identity or the
Principle of Least Privilege. There are thus some strong, principled arguments in favor of
the authorization architecture proposed in this paper.

APPENDIX: NAL Inference Rules

NAL’s axiomatization is equivalent to CDD [Abadi 2007; 2008], augmented with rules for
existential quantification, sub-principals, and groups. The SAYS-I rule of NAL is called
UNITM in CDD; and Abadi shows that CDD’s BINDM axiom is equivalent to NAL’s SAYS-
E (also known as C4) in the presence of SAYS-I and DEDUCE (both of which are present in
NAL). Variable substitution and capture avoidance restrictions apply.

NAL rules derived from CDD:

TRUE
true

IMP-E
F , F ⇒ G

G
IMP-I(U)

U
F...
G

F ⇒ G

DEDUCE
A says (F ⇒ G)

(A says F ) ⇒ (A says G)

SAYS-I
F

A says F
SAYS-E

A says A says F
A says F

AND-I
F , G
F ∧ G

AND-LEFT-E
F ∧ G

F
AND-RIGHT-E

F ∧ G
G

OR-LEFT-I
F

F ∨ G
OR-RIGHT-I

G
F ∨ G

CASES
F ⇒ H , G ⇒ H

(F ∨ G) ⇒ H

FORALL-I
F

(∀v : F )
FORALL-E

(∀v : F )
F [v := τ ]
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NAL extensions to CDD:

EXISTS-I
F [v := τ ]
(∃v : F )

EXISTS-E
F ⇒ G , (∃v : F )

G
v not free in G

SUBPRIN
A → A.τ

(13)

EQUIV SUBPRIN
τ1 = τ2

A.τ1 → A.τ2

(14)

MEMBER
P [v := A]

A → [[v : P ]]
(17)

GROUP →
(∀v : P ⇒ (v → A))

[[v : P ]] → A
(18)

NAL derived inference rules:

TRANS →
C → B , B → A

C → A
(7)

HAND-OFF
A says (B → A)

B → A
(9)

TRANS
v:F−−→

C v:F−−→ B , B v:F−−→ A

C v:F−−→ A
(11)

REST-HAND-OFF
A says (B v:F−−→ A)

B v:F−−→ A
(12)

GROUP MONOTONICITY
(∀v : P ⇒ P ′)

[[v : P ]] → [[v : P ′]]
(19)
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ERLINGSSON, Ú. AND SCHNEIDER, F. B. 1999. SASI Enforcement of Security Policies: A Retrospective. In
New Security Paradigms Workshop. ACM Press, New York, NY, USA, 87–95.

GARG, D., BAUER, L., BOWERS, K., PFENNING, F., AND REITER, M. 2006. A Linear Logic of Authorization
and Knowledge. In European Symposium on Research in Computer Security. Springer-Verlag, 297–312.

GARG, D. AND PFENNING, F. 2006. Non-Interference in Constructive Authorization Logic. In IEEE Computer
Security Foundations. IEEE Computer Society Press, Washington, DC, USA, 283–296.

GOLDBERG, I., WAGNER, D., THOMAS, R., AND BREWER, E. A. 1996. A Secure Environment for Untrusted
Helper Applications: Confining the Wily Hacker. In Usenix Security Symposium.



Nexus Authorization Logic (NAL) · 29

GRAY, C. AND CHERITON, D. 1989. Leases: an efficient fault-tolerant mechanism for distributed file cache
consistency. In SOSP ’89: Proceedings of the Twelfth ACM Symposium on Operating Systems Principles.
ACM, New York, NY, USA, 202–210.

GUREVICH, Y. AND NEEMAN, I. 2008. Dkal: Distributed-knowledge authorization language. In CSF ’08:
Proceedings of the 2008 21st IEEE Computer Security Foundations Symposium. IEEE Computer Society,
Washington, DC, USA, 149–162.

HAMLEN, K. W., MORRISETT, G., AND SCHNEIDER, F. B. 2006. Certified In-lined Reference Monitoring on
.NET. In ACM Workshop on Programming Languages and Analysis for Security. ACM, New York, NY, USA,
7–16.

HOWELL, J. 2000. Naming and Sharing Resources Across Administrative Boundaries. Ph.D. thesis, Dartmouth
College, Hanover, New Hampshire, USA.

HOWELL, J. AND KOTZ, D. 2000. End-to-end authorization. In Operating System Design & Implementation.
USENIX Association, Berkeley, CA, USA, 151–164.

JIM, T. 2001. SD3: A Trust Management System with Certified Evaluation. In IEEE Security and Privacy. IEEE
Computer Society Press, Washington, DC, USA, 106–115.

LAMPSON, B., ABADI, M., BURROWS, M., AND WOBBER, E. 1992. Authentication in Distributed Systems:
Theory and Practice. ACM Transactions on Computer Systems 10, 265–310.

LESNIEWSKI-LAAS, C., FORD, B., STRAUSS, J., MORRIS, R., AND KAASHOEK, M. F. 2007. Alpaca: Exten-
sible Authorization for Distributed Services. In ACM Computer and Communications Security. ACM, New
York, NY, USA, 432–444.

LI, N., GROSOF, B. N., AND FEIGENBAUM, J. 2003. Delegation Logic: A Logic-Based Approach to Distributed
Authorization. ACM Transactions on Information and System Security 6, 128–171.

LI, N., MITCHELL, J. C., AND WINSBOROUGH, W. H. 2002. Design of a Role-Based Trust-Management
Framework. In IEEE Security and Privacy. IEEE Computer Society Press, Washington, DC, USA, 114–130.

NECULA, G. C. 1997. Proof-Carrying Code. In ACM Principles of Programming Languages. 106–119.

NEW INTERNATIONAL VERSION BIBLE. Terms of Use. http://www.ibs.org/bibles/
termsofuse.php.

OPENOFFICE. http://www.openoffice.org/.

ORGANIZATION FOR THE ADVANCEMENT OF STRUCTURED INFORMATION STANDARDS (OASIS). 2004.
Web Services Security: SOAP Message Security 1.0 (WS-Security 2004). http://docs.oasis-open.
org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf.
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