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The Planar, Circular, Restricted 3-Body Problem (PCR3BP)

q1 = (1− µ, 0), m1 = µ and q2 = (−µ, 0), m2 = 1− µ (0 < µ ≤ 1/2)

Let a =
√

(x − 1 + µ)2 + y2, b =
√

(x + µ)2 + y2.

Equations of motion:

ẋ = u
ẏ = v
u̇ = Vx + 2v
v̇ = Vy − 2u

where
V (x , y) =

1
2
(x2 + y2) +

µ

a
+

1− µ

b
+

1
2
µ(1− µ)

is the amended potential.

Jacobi integral: E = 1
2(u2 + v2)− V =⇒ V (x , y) ≥ −E
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Figure: Level curves of V for µ = 1/2 (equal mass) in the PCR3BP.
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Figure: Level curves of V for µ = 0.1 in the PCR3BP.
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Theorem
(GR, LM 2007) The only solutions to the planar, circular, restricted
three-body problem (PCR3BP) with a constant value of the amended
potential V are equilibria (libration points).

Corollary
(GR, LM 2007) It is not possible for a solution to the PCR3BP to travel
with constant speed without being fixed at one of the libration points.

Proof of Corollary: Due to the Jacobi integral, constant speed implies
constant potential V . �

Saari’s Conjecture (1970) Every solution of the Newtonian n-body
problem that has a constant moment of inertia (constant size) is a
relative equilibrium (rigid rotation).
Fact: Constant inertia ⇒ constant potential

⇒ constant kinetic energy
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Results on Saari’s Conjecture

Newtonian 3-body problem, equal mass case: Saari’s conjecture
is true (McCord 2004)
Newtonian 3-body problem, general case: Saari’s conjecture is
true (Moeckel 2005)
Newtonian 3-body problem, any dimension: Saari’s conjecture is
true (Moeckel 2005)
Mutual distance potentials, collinear case: Generalized Saari’s
conjecture is true (Diacu, Pérez-Chavela, Santoprete 2004)
5-body problem for certain potentials, and a negative mass:
Generalized Saari’s conjecture is false (GR 2006)
Inverse Square potential: Generalized Saari’s conjecture is
decidedly false
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Two polynomial equations in a, b

Suppose V = c/2. Then

V = c/2
u2 + v2 = k

Vxu + Vyv = 0

V̈ = 0

can be reduced to a system of two polynomial equations in the
distance variables a and b:

V = c/2
||∇V ||8 − 4k ||∇V ||6 + 2kΛ||∇V ||4 + k2Λ2 = 0 (1)

where Λ = V 2
x Vyy − 2VxVyVxy + V 2

y Vxx .
Top equation:

µa3b + (1− µ)ab3 − cab + 2(1− µ)a + 2µb = 0

Bottom equation: 404 terms requiring 30 8.5× 11 pages to render
Goal: Show there are only a finite number of solutions to system (1).
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BKK Theory

Given f ∈ C[z1, . . . zn], f =
∑

ckzk , k = (k1, k2, . . . , kn).

The Newton polytope of f , denoted N(f ), is the convex hull in Rn of
the set of all exponent vectors occurring for f .

Given α = (α1, . . . , αn) with αi ∈ Q, the reduced polynomial fα is the
sum of all terms of f whose exponent vectors k satisfy

α · k = min
l∈N(f )

α · l .

This equation defines a face of the polytope N(f ) with inward pointing
normal α.

Let T = (C∗)n where C∗ = C− {0}.
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Theorem
(Bernstein, 1975) Suppose that system (2) has infinitely many
solutions in T. Then there exists a vector α = (α1, . . . , αn) with αi ∈ Q
and αj = 1 for some j, such that the system of reduced equations (3)
also has a solution in T (all components nonzero).

f1(z1, . . . , zn) = 0
f2(z1, . . . , zn) = 0

... (2)
fm(z1, . . . , zn) = 0,

f1α(z1, . . . , zn) = 0
f2α(z1, . . . , zn) = 0

... (3)
fmα(z1, . . . , zn) = 0.
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Figure: The Newton polytope corresponding to
µa3b + (1− µ)ab3 − cab + 2(1− µ)a + 2µb = 0.
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Figure: The Newton polytope corresponding to
||∇V ||8 − 4k ||∇V ||6 + 2kΛ||∇V ||4 + k2Λ2 = 0 (curvature equation).
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Only Three Vectors to Consider

1 α =< 1,−1/2 >: Inward normal for both polytopes

b((1− µ)ab2 + 2µ) = 0
16µ4b16(−(1− µ)ab2 + µ)4 = 0.

Since b 6= 0, substitute −(1− µ)ab2 = 2µ from the first equation
into the second to obtain

16µ4b16(3µ)4 = 0 only has the trivial solution b = 0.

2 α =< 1, 1 >: Gives a point in the second Newton polytope with
reduced equation 16(µ(1− µ)ab)4 = 0.

3 α =< −1/2, 1 >: Two reduced equations simplify to

1296(1− µ)8a16 = 0. QED
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Remarks and Future Work

1 All of the above calculations can be done by hand!
2 Using the volumes (areas) of the polytopes and that of the

Minkowski sum gives an exact count of 104 for the number of
solutions to our two polynomial equations. Only 4 of these are
real, positive solutions, corresponding to the equilibria of the
PCR3BP.

3 Bernstein’s Theorem does not always succeed. It fails to show the
number of equilibria is finite for the PCR3BP since the system
{Vx = 0, Vy = 0} written as polynomials in a and b has nontrivial
solutions along two faces.

4 Next problem: Does the same result hold for the PCR4BP? This is
more difficult due to the additional primary and lack of restrictions
on the masses. Saari’s conjecture for n = 4?

5 Additional problem: PCRnBP with equal mass primaries on a
regular n-gon. Applications to the charged n-body problem?
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