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Figure: Weather research and forecasting model from the National Center for
Atmospheric Research (NCAR) showing the field of precipitable water for
Hurricane Rita (2005). Note the presence of three maxima near the vertices
of an equilateral triangle contained within the hurricane’s “polygonal” eyewall.
http://www.atmos.albany.edu/facstaff/kristen/wrf/wrf.html
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FIG. 4. (a) Vorticity contour plots and (u, !) wind vectors for expt. 1. The model domain is 200 km "
200 km but only the inner 55 km " 55 km is shown. The contours begin at 50 " 10#4 s#1 and are incremented
by 50 " 10#4 s#1. Values along the label bar are in units of 10#4 s#1. Darker shading is associated with
higher values of vorticity. (b) Pressure perturbation contour plots with contours of streamfunction (bold
contours) superimposed. (Values along the label bar are in mb. Model run time in hours is shown on each
plot.)

Figure: Result of a numerical simulation carried about by Kossin and Shubart
to model the evolution of very thin annular rings of high vorticity
(“Mesovortices, Polygonal Flow Patterns, and Rapid Pressure Falls in
Hurricane-Like Vortices,” Kossin and Shubert, Journal of Atmospheric
Sciences, 2001.) Note the “vortex crystal” of four vortices located close to a
rhombus configuration. Darker shading indicates higher vorticity. The flow
pattern shown lasted for about 18 hours.
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Figure: Saturn’s North Pole and its encircling hexagonal cloud structure. First
photographed by Voyager in the 1980’s and here again recently by the
Cassini spacecraft – a remarkably stable structure!
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Description of the n-Vortex Problem

Introduced by Helmholtz (1858) to model a two-dimensional slice
of columnar vortex filaments. Later refined by Lord Kelvin (1867)
and Kirchoff (1876).

Widely used model providing finite-dimensional approximations to
vorticity evolution in fluid dynamics.

General goal is to track the motion of the point vortices rather than
focus on their internal structure and deformation, a concept
analogous to the use of “point masses” in celestial mechanics.

Generally “easier” than the n-body problem, e.g., the planar
three-vortex system is integrable.

Many techniques used to study the n-body problem work perfectly
well (sometimes even better) in the n-vortex problem.
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The Planar n-Vortex Problem: Equations of Motion

A system of n planar point vortices with vortex strength Γi 6= 0 and
positions xi ∈ R2 evolves according to

Γi ẋi = J
∂H
∂xi

= J
n∑

j 6=i

ΓiΓj

r2
ij

(xj − xi), 1 ≤ i ≤ n

where

H = −
∑
i<j

ΓiΓj ln(rij), rij = ‖xi − xj‖, J =

[
0 1
−1 0

]
.

The configuration space is R2n −∆, where

∆ = {(x1, . . . , xn) : xi = xj for some i 6= j}

is the set of collisions.
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Special Solutions: Relative Equilibria

Definition
A relative equilibrium is a periodic solution of the form

xi(t) = c + e−ωJt (xi(0)− c), 1 ≤ i ≤ n,

that is, a uniform rotation with angular velocity ω 6= 0 around some
point c ∈ R2.

The initial positions xi(0) must satisfy

−ωΓi(xi(0)− c) =
∂H
∂xi

=
n∑

j 6=i

ΓiΓj

r2
ij

(xj(0)− xi(0)), 1 ≤ i ≤ n.

If the total circulation Γ =
∑

i Γi 6= 0, then the center of rotation c must
be the center of vorticity, c = 1

Γ

∑
i Γixi .
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A Topological View

The angular impulse (with respect to the center of vorticity) is the
quantity

I =
n∑

i=1

Γi‖xi − c‖2,

the analog of the moment of inertia in the n-body problem. I is a
conserved quantity in the planar n-vortex problem.

Let x = (x1, x2, . . . , xn) ∈ R2n be a vector of initial positions. Then the
equations defining a relative equilibrium can be written more
compactly as

∇H(x) +
ω

2
∇I(x) = 0,

where ∇ is the usual gradient operator.

Key Fact: A relative equilibrium is a critical point of H restricted to a
level surface of I, with ω/2 serving as the Lagrange multiplier.
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Symmetries

Suppose that x ∈ R2n is a relative equilibrium. The following are also
relative equilibria:

1 kx = (kx1, . . . , kxn) for any k > 0 (scaling; c 7→ kc, ω 7→ ω/k2)

2 x − s = (x1 − s, . . . , xn − s) for any s ∈ R2 (translation; c 7→ c − s)

3 Ax = (Ax1, . . . ,Axn) where A ∈ SO(2) (rotation; c 7→ Ac)

Thus, relative equilibria are not isolated. It is standard practice to fix a
scaling and center of vorticity c, and then identify solutions that are
equivalent under a rotation.

Note: Reflections of x are also relative equilibria (e.g., multiplying the
first coordinate of c and each xi by −1), but these are regarded as
distinct solutions.
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3-Vortex Collinear Configurations (Gröbli 1877)
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Equilateral Triangle (Lord Kelvin 1867, Gröbli 1877)
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Regular n-gon (equal vorticities required for n ≥ 4)
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1 + n-gon (arbitrary central vortex)
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Goals

Assume that Γi > 0 ∀i and suppose that x ∈ R2n −∆ is a relative
equilibrium. Then x is a critical point of the smooth function H subject
to the constraint I = I0 (an ellipsoid).

The Morse index is the dimension of the maximal subspace for which
the Hessian of H + (ω/2)I at x is negative definite.

1 What is the connection between the Morse index of x and the
stability of the corresponding relative equilibrium periodic solution?

2 What, if anything, do the Morse inequalities reveal? Is there a way
to get some "easy" stability results using the Morse inequalities
without having to laboriously compute the eigenvalues of a
particular relative equilibrium?

Our study builds on the work of Moeckel, Palmore, Smale, Shub, Buck,
Conley, Pacella, Hampton, Santoprete, ...
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Results

Suppose that Γi > 0 ∀i and that x is a relative equilibrium. Let ind(x)
be the Morse index of x .

Theorem (GR)
The Morse index of x is equal to the number of real (nonzero) pairs
±λj of eigenvalues of the corresponding relative equilibrium.

Corollary (GR; 2013)
A relative equilibrium is linearly stable if and only if it is a
nondegenerate minimum of H subject to the constraint I = I0.

Theorem (Palmore, 1982)

ind(x) ≤ n − 2

The upper-bound is attained at collinear configurations.
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Figure: The complete set of relative equilibria (34 solutions) in the four-vortex
problem with circulations Γ1 = Γ2 = 1 (red) and Γ3 = Γ4 = m = 2/5 (green).
The 12 collinear solutions have index 2, the 16 concave configurations (kite,
asymmetric) have index 1 and the 6 convex configurations (trapezoid,
rhombus) have index 0. This result holds for all m ∈ (0,1).
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The Details

Recall that I =
∑n

i=1 Γi‖xi − c‖2. We restrict to the normalized
configuration space

N = {x ∈ R2n : c = 0, I(x) = 1},

which eliminates the translational invariance and fixes the scaling. N is
diffeomorphic to S2n−3.

If x is a critical point of H|N , then so is Ax for any A ∈ SO(2). To
eliminate the rotational symmetry, we work on the quotient manifold

M = (N −∆)/SO(2)

of dimension 2n − 4. A relative equilibrium is nondegenerate if it is a
nondegenerate critical point of H restricted toM.
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Example: n = 3

For three vortices, N/SO(2) is diffeomorphic to S2 and is called the
shape sphere, since it represents the space of all triangles up to
translation, scaling, and rotation. M = (N −∆)/SO(2) is thus the
shape sphere minus three points.

Figure: The shape sphere. H has five critical points: two equilateral triangles
at the North and South Poles (minima) and three collinear configurations on
the equator (saddles).

Roberts (Holy Cross) Morse Theory in the n-Vortex Problem Snowbird 2017 18 / 27



Dealing with Collisions

Problem: H blows up on ∆ (collision set), but the space N −∆ is not
compact. Would like to work away from ∆.

If Γ1 = Γ2 = Γ3 = Γ4 = 1 and Γ5 = −1/2, there exists a continua of
relative equilibria which does limit on ∆.

Theorem (GR)
For a fixed choice of circulations Γi > 0, there exists a neighborhood of
∆ in N which does not contain any relative equilibria.

1 The corresponding fact in the n-body problem is known as Shub’s
Lemma, but Shub’s proof does not generalize to the vortex setting,
nor does the recent argument of Moeckel.

2 For mixed-sign circulations, if
∑
i<j

i,j∈Λ

ΓiΓj 6= 0 for all possible subsets

of indices Λ, then the same result holds.
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The Hessian
Suppose that x ∈ N is a relative equilibrium. The Hessian of H|N at x
can be obtained by restricting the 2n × 2n matrix

G(x) = D2H(x) + ωM

to the tangent space of N , where M = diag{Γ1, Γ1, . . . , Γn, Γn}. This is
easier than working in local coordinates.

Since M is positive definite, we can work with the modified Hessian

M−1G(x) = M−1D2H(x) + ωI,

where I is the 2n × 2n identity matrix. By Sylvester’s Inertia Law,

ind(x) = # of negative eigenvalues of M−1G(x)

Note: One can show using the homogeneity of H and I that

ω = L/I = L,

where L =
∑

i<j ΓiΓj is the total vortex angular momentum.
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Trivial Eigenvalues

Define K = diag{J, J, . . . , J} where J =

[
0 1
−1 0

]
.

1 Due to conservation of the center of vorticity, the vectors
s = [1,0,1,0, . . . ,1,0]T and Ks are in the kernel of M−1D2H(z0).
They are orthogonal to the tangent space of N . Consequently, the
modified Hessian has the eigenvalue L > 0 repeated twice.

2 If x ∈ N is a relative equilibrium, then the vector Kx is in the
kernel of both the Hessian and modified Hessian. This follows
from the rotational symmetry. The vector x , which is orthogonal to
the tangent space of N , produces an eigenvalue of 2L > 0.

Punchline: The modified Hessian always has the trivial eigenvalues
L,L,2L,0. These are excluded when restricting to the manifoldM
(dimension 2n − 4).
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The Stability Matrix

By writing the equations of motion in rotating coordinates, the linear
stability of x is determined by the eigenvalues of the stability matrix

B(x) = K (M−1D2H(x) + LI) = KM−1G(x).

Key idea: We know how K acts on the modified Hessian because
D2H(x) K = −K D2H(x). It follows that R2n splits into n invariant
subspaces of the form {vj ,Kvj}. This is the same splitting for either the
index or stability calculations.

Punchline: The characteristic polynomial of B factors completely as

p(λ) = λ2(λ2 + L2)
n−2∏
j=1

(λ2 + L2 − µ2
j ),

where the µj are the nontrivial eigenvalues of M−1D2H(x).
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Proof of Main Theorem

Theorem (GR)
The Morse index of x is equal to the number of real (nonzero) pairs
±λj of eigenvalues of the corresponding relative equilibrium.

(i) Eigenvalues of M−1G(x) come in pairs (γj ,2L− γj), which is
symmetric w.r.t. L > 0. We can assume γj ≤ L for each j .

(ii) ±
√
γj(γj − 2L) are the eigenvalues of the stability matrix B(x).

Case Eval. Pair of M−1G(x) (index) Eval. pair of B(x) (stability)
1. (−,+) real pair (instability)

2. (0,+) degenerate

3. (+,+) pure imaginary pair (stability)

Note: For pure imaginary eigenvalues ±iβj , we have βj ≤ L = ω.
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The Morse Inequalities

Recall that a relative equilibrium x is a critical point of H restricted to
the manifoldM = (N −∆)/SO(2). The Morse inequalities relate the
indices of the critical points to the topology ofM:∑

k

αk tk =
∑

k

βk tk + (1 + t)Q(t),

where αk is the number of critical points of index k , βk is the k -th Betti
number (the rank of the homology group Hk (M,R)), and Q(t) is a
polynomial with non-negative integer coefficients.

Theorem (Moeckel)
The Poincaré polynomial forM = (N −∆)/SO(2) is

P(t) = (1 + 2t)(1 + 3t) · · · (1 + (n − 1)t).

n = 3: Shape sphere minus 3 points. P(t) = 1 + 2t so β0 = 1, β1 = 2.
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Example: Two pairs of equal strength vortices

Animation: The asymmetric family of relative equilibria: Γ1 = Γ2 = 1
(blue) and Γ3 = Γ4 = m (red), with −1 < m ≤ 1. The configuration is
concave for m > 0 and convex for m < 0.
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Example: Two pairs of equal strength vortices

Set Γ1 = Γ2 = 1, Γ3 = Γ4 = m, with 0 < m < 1. There are exactly 34
distinct relative equilibria (HRS, 2013):

6 convex configurations (isosceles trapezoid, rhombus)
16 concave configurations (kites, asymmetric)
12 collinear configurations

γ0 + γ1t + γ2t2 = 1 + 5t + 6t2 + (1 + t)(r0 + r1t) (1)

We know γ0 ≥ 6 (trapezoid and rhombus) and γ2 ≥ 12 (collinear), so
we have r0 ≥ 5 and r1 ≥ 6. Setting t = 1 in (1) gives

34 = γ0 + γ1 + γ2 = 12 + 2(r0 + r1) or r0 + r1 = 11.

Thus, r0 = 5 and r1 = 6, which implies γ0 = 6, γ1 = 16, and γ2 = 12.

Punchline: The remaining relative equilibria (kites, asymmetric) have
index 1 and hence, one pair of real eigenvalues (unstable).
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Final Thoughts

For H to be a Morse function, the critical points must be
nondegenerate. The Morse inequalities do not hold unless
nondegeneracy is confirmed. But this is a hard problem! The
equilateral triangle with a central vortex (m = 1) is quite
degenerate, with nullity equal to 3. The number of relative
equilibria drops from 34 to 26 when m = 1.

Future work: Apply the same techniques to relative equilibria of
the four-vortex problem with three equal circulations (e.g.,
Γ1 = Γ2 = Γ3 = 1, Γ4 = m).

Is it possible to extend this theory to the setting where vortex
circulations have opposite signs? In this case the level surface
I = 1 becomes a hyperboloid, so the topology changes
dramatically. The circulation matrix M is not positive definite, so
the key matrix M−1D2H(x) no longer behaves nicely (e.g., it may
have complex eigenvalues).
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