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Background

@ Cara Donovan (HC ’18): undergraduate math major with a minor
in computer science.

@ Research started in summer of 2017 (HC Summer Research
Program) and continued through the year as a College Honors
thesis.

@ Cara had little training in ODE’s, dynamical systems, or
mathematical modeling, but she knew how to program.

@ Both of us interested in learning about climate science and
low-dimensional mathematical models of the Earth’s climate.

@ Interdisciplinary project (physics, geology, chemistry, statistics):
Cara’s thesis readers were a geologist and a statistician.
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Figure: Cara Donovan and myself after her senior thesis presentation at Holy
Cross (May 2, 2018).
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Budyko’s Energy Balance Model (1969)

Basic idea: Temperature is driven by differences between energy
coming in (solar radiation) and going out (outgoing longwave radiation)

Variables: y = sinf, where 6 is the usual latitude, y € [0, 1]
T = T(t,y), the mean annual temperature at “latitude” y.

oT =

RW = Qs(y) 1 —a)—(A+BT)—C(T-T)
Q = solar constant ~ 342 W/m?

s(y) = insolation distribution (quadratic)
a = albedo (reflectivity of planet)

A+ BT = outgoing longwave radiation
C(T —T) = meridional heat transport

]
T = / T(t,y)dy = mean global annual temp.
0
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Albedo and the Ice Line

Albedo varies with latitude, depending on whether the surface is
snow-covered ice, land, sea ice, or water.

Define the parameter n € [0, 1] to be the ice line, the latitudinal
boundary between snow-covered ice and water.

Two-step albedo function:
a(yin) = :
ag ify>n,
where oy, ~ 0.32 (water) and «as ~ 0.62 (snow-covered ice).

We will assume that T, = —10°C is the critical temperature at which
glaciers can form.
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Equilibrium solutions

Let T* = T*(y;n) represent the equilibrium solution of the Budyko
model. Integrating the right-hand side of the ODE with respect to y
from 0 to 1 yields the global mean temperature at equilibrium

‘ﬁ::gou—am»—m,

where @(n fo a(y;n) dy is the weighted average albedo.
This in turn gives a formula for the equilibrium temperature profile

A

T = T = =2 (s —aty.n) + S0 —am)) - 4.
B+C B B
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30 Equilibrium temperature profiles for different ice lines
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Figure: Graphs of equilibrium temperature profiles with two-step albedo

function for different ice lines: n = 1 (red; ice free), n = sin(70°) (orange;

current), n = sin(42.3°) (green; Worcester), n = sin(23.5°) (light blue; Tropic
of Cancer), n = 0 (blue; snowball).
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EVOLUTION OF A SNOWBALL EARTH EVENT ...

Stage 1
Snowball Earth Prologue

Stage 2
Snowball Earth
at Its Coldest

CARBON DIOXIDE

SEAICE
HOT VOLCANO
SPRING

Figure: Ample geological evidence suggests the Earth was almost entirely
covered by glaciers twice in the Neoproterozoic era (about 700 mya).
(Hoffman and Schrag, “Snowball Earth,” Scientific American, Jan. 2000)
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... AND ITS HOTHOUSE AFTERMATH

Stage 3 Stage 4
Snowball Earth Hothouse Aftermath
as It Thaws

GLACIERS

CARBONATE
SEDIMENT
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Widiasih’s Extension of Budyko Model (2013)

Recall that T, = —10°C is the critical temperature at which glaciers
can form.

Treat the ice line ) as a variable and append the ODE

dn
ot

to the Budyko model, where ¢ is a small parameter and

= €(h(n) — T¢)

h(n) = T (n.n)= % (yin; T*(y,m) +y[r2+ T*(%n))

— g s (1- 252+ 50 —at)| - §

is the equilibrium temperature at the ice line. This extension models
the movement of the ice line and enables a stability analysis of any
equilibria.
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Figure: Plot of h(n) — T, for the Widiasih ice line equation
dn/dt = e(h(n) — T;) showing two equilibria ice line positions at 7 ~ 0.2562
(unstable) and 7o = 0.9394 (stable).
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Modeling Climate in the Neoproterozoic Era

Assume land is clustered near the equator and introduce a new
parameter «; ~ 0.4 to model the albedo of land.

Three-step albedo function: (y; ~ 0.35)
ap FO<y<y,

aly,n) =% aw ifyr<y<n,
as ifnp<y<1.

Bifurcation Analysis: What happens as we vary as? What if we vary A
(a proxy for the amount of CO, in the atmosphere) as well?
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Figure: Bifurcation diagram showing the location of the ice line equilibria
(roots of h(n) — T;) as the albedo parameter « is varied. Note the saddle
node bifurcation (tipping point) at as ~ 0.69557. Figure by Cara Donovan.
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A Discrete Dynamical Systems Approach

Following the work of Walsh and Widiasih (2014), we approximate the
Budyko-Widiasih PDE model by

Toa(y) = Ta(y) + F(Tn(y), 1)
Myt = nn+ G(Ta(Y), 1n),
where
F(T.n) = % (@sy)(1 - aly.n)) - (A+BT) - C(T - T))

G(T.n) = (T(n)— Te).

ne NU{0}isinyears and y € [0, 1] represents latitude, as before.

Given an initial temperature profile To(y) and an initial ice line nyg,
iterations of the system give next year’s temperature and ice line.
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Figure: Iterations of the coupled Budyko-Widiasih model under
Neoproterozoic conditions with e = 1072, 79 = 0.2, as = 0.65, and

A(n) = 2% + 1218 Simulation took 7653 iterations to reach Snowball state
(n = 0). Figure created by Cara Donovan using Matlab.
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Adjustments to the Model: Conditional Albedo

Assuming a band of land around the equator for y € [0, y;], we define
two albedo functions depending on the location of the ice line .

@ If » > y, (planet is land, water, and snow-covered ice), then

Qy fo<y<wy

A1) = 9 atar  aea .
{ Qepaw - Gsstwanh(M(y —n))  fy <y <1

Q@ If0 <7 <y, (planet is land and snow-covered ice), then

+ —
ag(y.n) = =S5+ L tanh(M(y — ).

We also vary A with 7 to reflect a decline in silicate weathering:

200 ye<n<i
A(n) = _ _
133.3n+ 153.3 0<n<y.

Roberts (Holy Cross) Conceptual Climate Modeling SIAM Portland 2018 17/21



Some Results: Heading to Snowball
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Figure: Simulation of the ice line n under Neoproterozoic conditions with
e =105 and 19 = 0.8. Snowball Earth is reached after 6605 iterations.
Figure created by Cara Donovan using Matlab.
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Time to Snowball (€ vs. n*)
Piecewise A and Conditional Albedo
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Figure: Log plot of time to reach Snowball state (n*) versus e under
Neoproterozoic conditions. A simple inverse relationship is suggested:
n* =~ 1/e. Figure created by Cara Donovan using Microsoft Excel.
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Concluding Remarks

@ Low-dimensional energy balance models capture overall climate
states quite well. Interesting bifurcations (tipping points) occur.

@ Our models and simulations support the theory that land clustered
near the equator is a necessary condition for the climate to head
toward a Snowball state.

@ Plenty of interesting research projects in conceptual climate
modeling that are accessible to motivated undergraduates (e.g.,

climate of other planets, effects of deforestation, impact of climate
change)

@ Research with undergraduates is rewarding, important, and fun!

@ Thank you for your attention!
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