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Background

Cara Donovan (HC ’18): undergraduate math major with a minor
in computer science.

Research started in summer of 2017 (HC Summer Research
Program) and continued through the year as a College Honors
thesis.

Cara had little training in ODE’s, dynamical systems, or
mathematical modeling, but she knew how to program.

Both of us interested in learning about climate science and
low-dimensional mathematical models of the Earth’s climate.

Interdisciplinary project (physics, geology, chemistry, statistics):
Cara’s thesis readers were a geologist and a statistician.
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Figure: Cara Donovan and myself after her senior thesis presentation at Holy
Cross (May 2, 2018).
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Budyko’s Energy Balance Model (1969)

Basic idea: Temperature is driven by differences between energy
coming in (solar radiation) and going out (outgoing longwave radiation)

Variables: y = sin θ, where θ is the usual latitude, y ∈ [0,1]
T = T (t , y), the mean annual temperature at “latitude” y .

R
∂T
∂t

= Q s(y)(1− α)− (A + BT )− C(T − T )

Q = solar constant ≈ 342 W/m2

s(y) = insolation distribution (quadratic)
α = albedo (reflectivity of planet)

A + BT = outgoing longwave radiation
C(T − T ) = meridional heat transport

T =

∫ 1

0
T (t , y) dy = mean global annual temp.
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Albedo and the Ice Line

Albedo varies with latitude, depending on whether the surface is
snow-covered ice, land, sea ice, or water.

Define the parameter η ∈ [0,1] to be the ice line, the latitudinal
boundary between snow-covered ice and water.

Two-step albedo function:

α(y ; η) =

{
αw if y < η

αs if y > η,

where αw ≈ 0.32 (water) and αs ≈ 0.62 (snow-covered ice).

We will assume that Tc = −10◦C is the critical temperature at which
glaciers can form.
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Equilibrium solutions

Let T ∗ = T ∗(y ; η) represent the equilibrium solution of the Budyko
model. Integrating the right-hand side of the ODE with respect to y
from 0 to 1 yields the global mean temperature at equilibrium

T ∗ =
1
B
(Q(1− α(η))− A),

where α(η) =
∫ 1

0 s(y)α(y ; η) dy is the weighted average albedo.

This in turn gives a formula for the equilibrium temperature profile

T ∗ = T ∗(y ; η) =
Q

B + C

(
s(y)(1− α(y , η)) + C

B
(1− α(η))

)
− A

B
.
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Figure: Graphs of equilibrium temperature profiles with two-step albedo
function for different ice lines: η = 1 (red; ice free), η = sin(70◦) (orange;
current), η = sin(42.3◦) (green; Worcester), η = sin(23.5◦) (light blue; Tropic
of Cancer), η = 0 (blue; snowball).
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chemical Carbon Cycle,” by R. A. Bern-
er and A. C. Lasaga; Scientific Amer-
ican, March 1989].

In 1992 Joseph L. Kirschvink, a geo-
biologist at the California Institute of
Technology, pointed out that during a
global glaciation, an event he termed a
snowball earth, shifting tectonic plates
would continue to build volcanoes and
to supply the atmosphere with carbon
dioxide. At the same time, the liquid
water needed to erode rocks and bury
the carbon would be trapped in ice.
With nowhere to go, carbon dioxide
would collect to incredibly high levels—
high enough, Kirschvink proposed, to
heat the planet and end the global freeze.

Kirschvink had originally promoted
the idea of a Neoproterozoic deep freeze
in part because of mysterious iron de-
posits found mixed with the glacial de-
bris. These rare deposits are found

much earlier in earth history when the
oceans (and atmosphere) contained
very little oxygen and iron could read-
ily dissolve. (Iron is virtually insoluble
in the presence of oxygen.) Kirschvink
reasoned that millions of years of ice
cover would deprive the oceans of
oxygen, so that dissolved iron expelled
from seafloor hot springs could accu-
mulate in the water. Once a carbon
dioxide–induced greenhouse effect be-
gan melting the ice, oxygen would again
mix with the seawater and force the
iron to precipitate out with the debris
once carried by the sea ice and glaciers.

With this greenhouse scenario in mind,
climate modelers Kenneth Caldeira of
Lawrence Livermore National Labora-
tory and James F. Kasting of Pennsylva-
nia State University estimated in 1992
that overcoming the runaway freeze
would require roughly 350 times the

present-day concentration of carbon
dioxide. Assuming volcanoes of the
Neoproterozoic belched out gases at the
same rate as they do today, the planet
would have remained locked in ice for
up to tens of millions of years before
enough carbon dioxide could accumu-
late to begin melting the sea ice. A
snowball earth would be not only the
most severe conceivable ice age, it would
be the most prolonged.

Carbonate Clues

Kirschvink was unaware of two
emerging lines of evidence that

would strongly support his snowball
earth hypothesis. The first is that the
Neoproterozoic glacial deposits are al-
most everywhere blanketed by carbon-
ate rocks. Such rocks typically form in
warm, shallow seas, such as the Ba-

72 Scientific American January 2000
Snowball Earth

Breakup of a single landmass 770 million years ago leaves
small continents scattered near the equator. Formerly land-
locked areas are now closer to oceanic sources of moisture.
Increased rainfall scrubs more heat-trapping carbon dioxide
out of the air and erodes continental rocks more quickly.
Consequently, global temperatures fall, and large ice packs
form in the polar oceans.The white ice reflects more solar en-
ergy than does darker seawater, driving temperatures even
lower. This feedback cycle triggers an unstoppable cooling
effect that will engulf the planet in ice within a millennium.

Average global temperatures plummet to –50 degrees Cel-
sius shortly after the runaway freeze begins.The oceans ice
over to an average depth of more than a kilometer, limited
only by heat emanating slowly from the earth’s interior.Most
microscopic marine organisms die, but a few cling to life
around volcanic hot springs. The cold, dry air arrests the
growth of land glaciers, creating vast deserts of windblown
sand.With no rainfall,carbon dioxide emitted from volcanoes
is not removed from the atmosphere.As carbon dioxide ac-
cumulates,the planet warms and sea ice slowly thins.

Stage 1
Snowball Earth Prologue

Stage 2
Snowball Earth 
at Its Coldest

VOLCANO

CARBON DIOXIDE

HOT 
SPRING

SEA ICE

SAND 
DUNES

EVOLUTION OF A SNOWBALL EARTH EVENT . . .

Copyright 1999 Scientific American, Inc.

Figure: Ample geological evidence suggests the Earth was almost entirely
covered by glaciers twice in the Neoproterozoic era (about 700 mya).
(Hoffman and Schrag, “Snowball Earth,” Scientific American, Jan. 2000)
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hama Banks in what is now the Atlantic
Ocean. If the ice and warm water had
occurred millions of years apart, no one
would have been surprised. But the
transition from glacial deposits to these
“cap” carbonates is abrupt and lacks
evidence that significant time passed be-
tween when the glaciers dropped their
last loads and when the carbonates
formed. Geologists were stumped to ex-
plain so sudden a change from glacial to
tropical climates.

Pondering our field observations from
Namibia, we realized that this change is
no paradox. Thick sequences of carbon-
ate rocks are the expected consequence
of the extreme greenhouse conditions
unique to the transient aftermath of a
snowball earth. If the earth froze over,
an ultrahigh carbon dioxide atmosphere
would be needed to raise temperatures
to the melting point at the equator. Once

melting begins, low-albedo seawater re-
places high-albedo ice and the runaway
freeze is reversed [see illustration below].
The greenhouse atmosphere helps to
drive surface temperatures upward to al-
most 50 degrees C, according to calcula-
tions made last summer by climate mod-
eler Raymond T. Pierrehumbert of the
University of Chicago.

Resumed evaporation also helps to
warm the atmosphere because water
vapor is a powerful greenhouse gas,
and a swollen reservoir of moisture in
the atmosphere would drive an en-
hanced water cycle. Torrential rain
would scrub some of the carbon diox-
ide out of the air in the form of carbon-
ic acid, which would rapidly erode the
rock debris left bare as the glaciers sub-
sided. Chemical erosion products would
quickly build up in the ocean water,
leading to the precipitation of carbon-

ate sediment that would rapidly accu-
mulate on the seafloor and later be-
come rock. Structures preserved in the
Namibian cap carbonates indicate that
they accumulated extremely rapidly,
perhaps in only a few thousand years.
For example, crystals of the mineral
aragonite, clusters of which are as tall
as a person, could precipitate only from
seawater highly saturated in calcium
carbonate.

Cap carbonates harbor a second line
of evidence that supports Kirschvink’s
snowball escape scenario. They contain
an unusual pattern in the ratio of two
isotopes of carbon: common carbon 12
and rare carbon 13, which has an extra
neutron in its nucleus. The same pat-
terns are observed in cap carbonates
worldwide, but no one thought to in-
terpret them in terms of a snowball
earth. Along with Alan Jay Kaufman,

Scientific American January 2000      73
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Concentrations of carbon dioxide in the atmosphere increase
1,000-fold as a result of some 10 million years of normal vol-
canic activity. The ongoing greenhouse warming effect
pushes temperatures to the melting point at the equator. As
the planet heats up,moisture from sea ice sublimating near
the equator refreezes at higher elevations and feeds the
growth of land glaciers. The open water that eventually
forms in the tropics absorbs more solar energy and initiates
a faster rise in global temperatures.In a matter of centuries,a
brutally hot,wet world will supplant the deep freeze.

As tropical oceans thaw, seawater evaporates and works
along with carbon dioxide to produce even more intense
greenhouse conditions. Surface temperatures soar to more
than 50 degrees Celsius,driving an intense cycle of evapora-
tion and rainfall.Torrents of carbonic acid rain erode the rock
debris left in the wake of the retreating glaciers. Swollen
rivers wash bicarbonate and other ions into the oceans,
where they form carbonate sediment. New life-forms—en-
gendered by prolonged genetic isolation and selective pres-
sure—populate the world as global climate returns to normal.

Stage 3
Snowball Earth 
as It Thaws

Stage 4
Hothouse Aftermath

GLACIERS CARBONATE
SEDIMENT

Snowball Earth

. . . AND ITS HOTHOUSE AFTERMATH

Copyright 1999 Scientific American, Inc.
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Widiasih’s Extension of Budyko Model (2013)

Recall that Tc = −10◦C is the critical temperature at which glaciers
can form.

Treat the ice line η as a variable and append the ODE

dη
dt

= ε(h(η)− Tc)

to the Budyko model, where ε is a small parameter and

h(η) = T ∗(η, η) =
1
2

(
lim

y→η−
T ∗(y , η) + lim

y→η+
T ∗(y , η)

)

=
Q

B + C

[
s(η)

(
1− αw + αs

2

)
+

C
B
(1− α(η))

]
− A

B

is the equilibrium temperature at the ice line. This extension models
the movement of the ice line and enables a stability analysis of any
equilibria.
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Figure: Plot of h(η)− Tc for the Widiasih ice line equation
dη/dt = ε(h(η)− Tc) showing two equilibria ice line positions at η1 ≈ 0.2562
(unstable) and η2 ≈ 0.9394 (stable).
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Modeling Climate in the Neoproterozoic Era

Assume land is clustered near the equator and introduce a new
parameter αl ≈ 0.4 to model the albedo of land.

Three-step albedo function: (yL ≈ 0.35)

α(y , η) =


αl if 0 ≤ y < yL,

αw if yL < y < η,

αs if η < y ≤ 1 .

Bifurcation Analysis: What happens as we vary αs? What if we vary A
(a proxy for the amount of CO2 in the atmosphere) as well?
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Figure: Bifurcation diagram showing the location of the ice line equilibria
(roots of h(η)− Tc) as the albedo parameter αs is varied. Note the saddle
node bifurcation (tipping point) at αs ≈ 0.69557. Figure by Cara Donovan.
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Figure 4:
The number of equilibrium solutions as alphas and A vary. Red corresponds to 2 
equilibrium solutions (1 stable, 1 unstable), green corresponds to 1 equilibrium 
solution and blue corresponds to no equilibrium solutions. � represents 
Neoproterozoic conditions, ★ represents current climate conditions. Figure 
generated in MATLAB.

Less CO2

More CO2

★

�

Figure: Two-dimensional bifurcation diagram indicating the number of ice line
equilibria as A and αS are varied. Red means two equilibria (one stable, one
unstable); green means one equilibrium (the other root is less than 0 or
greater than 1); blue indicates no equilibria. Figure by Cara Donovan.
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A Discrete Dynamical Systems Approach

Following the work of Walsh and Widiasih (2014), we approximate the
Budyko-Widiasih PDE model by

Tn+1(y) = Tn(y) + F (Tn(y), ηn)

ηn+1 = ηn + G(Tn(y), ηn),

where

F (T , η) =
K
R
(
Qs(y)(1− α(y , η))− (A + BT )− C(T − T )

)
G(T , η) = ε(T (η)− Tc).

n ∈ N ∪ {0} is in years and y ∈ [0,1] represents latitude, as before.

Given an initial temperature profile T0(y) and an initial ice line η0,
iterations of the system give next year’s temperature and ice line.
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Figure: Iterations of the coupled Budyko-Widiasih model under
Neoproterozoic conditions with ε = 10−5, η0 = 0.2, αs = 0.65, and
A(η) = 220

7 η + 1216
7 . Simulation took 7653 iterations to reach Snowball state

(η = 0). Figure created by Cara Donovan using Matlab.
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Adjustments to the Model: Conditional Albedo

Assuming a band of land around the equator for y ∈ [0, yL], we define
two albedo functions depending on the location of the ice line η.

1 If η > yL (planet is land, water, and snow-covered ice), then

α1(y , η) =

{
αl if 0 ≤ y < yL
αs+αw

2 + αs−αw
2 tanh(M(y − η)) if yL ≤ y ≤ 1.

2 If 0 ≤ η ≤ yL (planet is land and snow-covered ice), then

α2(y , η) =
αs + αl

2
+
αs − αl

2
tanh(M(y − η)).

We also vary A with η to reflect a decline in silicate weathering:

A(η) =

{
200 yL < η < 1

133.3 η + 153.3 0 < η ≤ yL.
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Some Results: Heading to Snowball

Figure: Simulation of the ice line η under Neoproterozoic conditions with
ε = 10−5 and η0 = 0.8. Snowball Earth is reached after 6605 iterations.
Figure created by Cara Donovan using Matlab.
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Figure: Log plot of time to reach Snowball state (n∗) versus ε under
Neoproterozoic conditions. A simple inverse relationship is suggested:
n∗ ≈ 1/ε . Figure created by Cara Donovan using Microsoft Excel.
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Concluding Remarks

Low-dimensional energy balance models capture overall climate
states quite well. Interesting bifurcations (tipping points) occur.

Our models and simulations support the theory that land clustered
near the equator is a necessary condition for the climate to head
toward a Snowball state.

Plenty of interesting research projects in conceptual climate
modeling that are accessible to motivated undergraduates (e.g.,
climate of other planets, effects of deforestation, impact of climate
change)

Research with undergraduates is rewarding, important, and fun!

Thank you for your attention!
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