Elusive Zeros Under Newton’s Method

Gareth E. Roberts

Department of Mathematics and Computer Science
College of the Holy Cross

Trevor M. O’Brien (Brown University)

MathFest 2010
Complex Dynamics:
Opportunities for Undergraduate Research
Pittsburgh, Pennsylvania
August 5-7, 2010
Newton’s Method

Iterative root-finding method $f(x) = 0$: x_0, x_1, x_2, \ldots

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Figure: Newton’s Method for finding a root of a function on \mathbb{R}. Image source: http://aleph0.clarku.edu/~djoyce/newton/method.html
Newton’s Method as a Dynamical System

\[N_p(z) = z - \frac{p(z)}{p'(z)}, \quad p : \mathbb{C} \mapsto \mathbb{C} \]

If \(\alpha \) is a simple root of \(p \), then \(\alpha \) is a super-attracting fixed point for \(N_p \), i.e., \(N_p(\alpha) = \alpha, N'_p(\alpha) = 0 \).

Newton’s method “tends” to obey the nearest-root principal: initial seeds iterate towards the closest root.

If \(p(z) \) is a quadratic polynomial with distinct roots, \(N_p \) is topologically conjugate to \(z \mapsto z^2 \). The Julia set of \(N_p \) is precisely the perpendicular bisector of the line segment connecting the two roots.
Newton’s Method as a Dynamical System

\[N_p(z) = z - \frac{p(z)}{p'(z)}, \quad p : \mathbb{C} \rightarrow \mathbb{C} \]

If \(\alpha \) is a simple root of \(p \), then \(\alpha \) is a super-attracting fixed point for \(N_p \), ie. \(N_p(\alpha) = \alpha, N'_p(\alpha) = 0 \).
Newton’s Method as a Dynamical System

\[N_p(z) = z - \frac{p(z)}{p'(z)}, \quad p : \mathbb{C} \rightarrow \mathbb{C} \]

- If \(\alpha \) is a simple root of \(p \), then \(\alpha \) is a super-attracting fixed point for \(N_p \), ie. \(N_p(\alpha) = \alpha, N'_p(\alpha) = 0 \).

- Newton’s method “tends” to obey the nearest-root principal: initial seeds iterate towards the closest root.
Newton’s Method as a Dynamical System

\[N_p(z) = z - \frac{p(z)}{p'(z)}, \quad p : \mathbb{C} \mapsto \mathbb{C} \]

- If \(\alpha \) is a simple root of \(p \), then \(\alpha \) is a super-attracting fixed point for \(N_p \), i.e. \(N_p(\alpha) = \alpha, N'_p(\alpha) = 0 \).

- Newton’s method “tends” to obey the nearest-root principal: initial seeds iterate towards the closest root.

- If \(p(z) \) is a quadratic polynomial with distinct roots, \(N_p \) is topologically conjugate to \(z \mapsto z^2 \). The Julia set of \(N_p \) is precisely the perpendicular bisector of the line segment connecting the two roots.
Success of Newton’s Method

- **Good:** Every point in the basin of attraction of a root is quickly drawn towards that root. These are good guesses.
Success of Newton’s Method

- **Good:** Every point in the basin of attraction of a root is quickly drawn towards that root. These are good guesses.

- **Bad:** Points in the Julia set of N_p *never* converge to a root. These are bad places to guess, although a small perturbation of such a guess will still find a root.
Success of Newton’s Method

- **Good**: Every point in the basin of attraction of a root is quickly drawn towards that root. These are good guesses.

- **Bad**: Points in the Julia set of N_p **never** converge to a root. These are bad places to guess, although a small perturbation of such a guess will still find a root.

- **Ugly**: In certain cases, Newton’s method N_p may contain an extraneous attracting cycle distinct from the roots of p. This would yield an entire open **region** of the complex plane that never converges to a root. Here, a small perturbation may not improve your situation!
Figure: The dynamical plane for Newton’s method applied to $p_\lambda(z) = (z - 1)(z + 1)(z - \lambda)(z - \bar{\lambda})$ with $\lambda \approx 0.4438656912 \, i$. The “bad” initial seeds (black) iterate towards a super-attracting period 2-cycle.
The Ugly/Interesting Case

Key Question: How can we find polynomials that contain these extraneous attracting cycles?
The Ugly/Interesting Case

Key Question: How can we find polynomials that contain these extraneous attracting cycles?

Theorem (Fatou, Julia): Every attracting cycle of a rational map attracts at least one critical point.

\[N'(z) = p(z) \cdot p''(z) / [p'(z)]^2, \]

the inflection points of \(p \) are the free critical points of \(N_p \).
The Ugly/Interesting Case

Key Question: How can we find polynomials that contain these extraneous attracting cycles?

Theorem (Fatou, Julia): Every attracting cycle of a rational map attracts at least one critical point.

Simple Technique: Follow the orbit of the critical points which are different from the roots. These “free” critical points will lead to an extraneous attracting cycle should it exist. (Curry, Garnett & Sullivan 1983)
The Ugly/Interesting Case

Key Question: How can we find polynomials that contain these extraneous attracting cycles?

Theorem (Fatou, Julia): Every attracting cycle of a rational map attracts at least one critical point.

Simple Technique: Follow the orbit of the critical points which are different from the roots. These “free” critical points will lead to an extraneous attracting cycle should it exist. (Curry, Garnett & Sullivan 1983)

Since $N'_p(z) = \frac{p(z) p''(z)}{[p'(z)]^2}$, the inflection points of p are the free critical points of N_p.
The Cubic Case

\[p_\lambda(z) = (z - 1)(z + 1)(z - \lambda), \quad \lambda \in \mathbb{C} \]

Figure: The parameter plane for Newton’s method applied to \(p_\lambda \). Black parameter values correspond to polynomials for which the free critical point does not converge to a root, i.e., it is drawn into an extraneous attracting cycle.
Research on Cubic Newton Maps

- J. Head (1988)
- S. Sutherland (1989)
- Tan Lei (1990, 1997)
- F. Haesler and H. Kriete (1993)
- P. Blanchard (1994)
- P. Roesch (1997)
Research on Cubic Newton Maps

- J. Head (1988)
- S. Sutherland (1989)
- Tan Lei (1990, 1997)
- F. Haesler and H. Kriete (1993)
- P. Blanchard (1994)
- P. Roesch (1997)

- Theory of polynomial-like mappings
 A. Douady and J. Hubbard (1985)
A Symmetric Fourth-Degree Polynomial Family

\[p_\lambda(z) = (z - 1)(z + 1)(z - \lambda)(z - \bar{\lambda}), \quad \lambda \in \mathbb{C} \]

\[= z^4 - 2\text{Re}(\lambda)z^3 + (|\lambda|^2 - 1)z^2 + 2\text{Re}(\lambda)z - |\lambda|^2 \]

Symmetric location of the roots (kite configuration) leads to nice reductions and interesting dynamics.
A Symmetric Fourth-Degree Polynomial Family

\[p_\lambda(z) = (z - 1)(z + 1)(z - \lambda)(z - \bar{\lambda}), \quad \lambda \in \mathbb{C} \]

\[= z^4 - 2\text{Re}(\lambda)z^3 + (|\lambda|^2 - 1)z^2 + 2\text{Re}(\lambda)z - |\lambda|^2 \]

Symmetric location of the roots (kite configuration) leads to nice reductions and interesting dynamics.

Two free critical points: \(p''_\lambda = 0 \)

\[c_\pm = \frac{1}{2} \left(\text{Re}(\lambda) \pm \sqrt{(\text{Re}(\lambda))^2 - \frac{2}{3}(|\lambda|^2 - 1)} \right) \]

Goal: Follow the orbits of \(c_\pm \) as \(\lambda \) varies. If an extraneous attracting cycle exists, it must attract at least one of these orbits.
If $\lambda = a + bi$, then the discriminant of the quadratic defining the two critical points c_{\pm} is given by

$$\delta = \frac{1}{3} \left(a^2 - 2b^2 + 2 \right).$$
Symmetry

Let $N_{\lambda} = N_{p_{\lambda}}$
Symmetry

Let \(N_\lambda = N_{p_\lambda} \)

- \(N_{\bar{\lambda}} = N_\lambda \) (symmetric about the real axis)
Symmetry

Let $N_\lambda = N_{p_\lambda}$

- $N_{\bar{\lambda}} = N_\lambda$ (symmetric about the real axis)

- $N_\lambda \sim N_{-\lambda}$ via $h(z) = -z$ (symmetric about the origin)
Symmetry

Let $N_\lambda = N_{p_\lambda}$

- $N_{\overline{\lambda}} = N_\lambda$ (symmetric about the real axis)

- $N_\lambda \sim N_{-\lambda}$ via $h(z) = -z$ (symmetric about the origin)

- Real axis is invariant under N_λ
Symmetry

Let $N_{\lambda} = N_{p_{\lambda}}$

- $N_{\bar{\lambda}} = N_{\lambda}$ (symmetric about the real axis)

- $N_{\lambda} \sim N_{-\lambda}$ via $h(z) = -z$ (symmetric about the origin)

Real axis is invariant under N_{λ}

- For $\lambda \in \mathbb{R}$, c_{\pm} converge to a root of p_{λ} (analytic proof)
Symmetry

Let $N_{\lambda} = N_{p_{\lambda}}$

- $N_{\bar{\lambda}} = N_{\lambda}$ (symmetric about the real axis)

- $N_{\lambda} \sim N_{-\lambda}$ via $h(z) = -z$ (symmetric about the origin)

Real axis is invariant under N_{λ}

For $\lambda \in \mathbb{R}$, c_{\pm} converge to a root of p_{λ} (analytic proof)

For $\lambda = \beta i$, $N_{\beta i} \sim N_{i/\beta}$. For this interesting case, we can restrict to a complicated 1-d real map with $0 < \beta \leq 1$ (analytic work)
The Case $\lambda = \beta i$

$$N_\beta(x) = \frac{3x^4 + (\beta^2 - 1)x^2 + \beta^2}{4x^3 + 2(\beta^2 - 1)x}.$$

Free critical points are real and symmetric with respect to the origin. Thus, any extraneous attracting cycle for Newton’s method must lie on the real axis.
The Case $\lambda = \beta i$

$$N_\beta(x) = \frac{3x^4 + (\beta^2 - 1)x^2 + \beta^2}{4x^3 + 2(\beta^2 - 1)x}.$$

- Free critical points are real and symmetric with respect to the origin. Thus, any extraneous attracting cycle for Newton’s method must lie on the real axis.

- N_β is an odd function.
The Case $\lambda = \beta i$

\[N_\beta(x) = \frac{3x^4 + (\beta^2 - 1)x^2 + \beta^2}{4x^3 + 2(\beta^2 - 1)x}. \]

- Free critical points are real and symmetric with respect to the origin. Thus, any extraneous attracting cycle for Newton’s method must lie on the real axis.
- N_β is an odd function.
- For $1/\sqrt{3} \leq \beta < 1$, c_+ converges to -1 while c_- converges to 1 under iteration of N_β.
The Case $\lambda = \beta i$

$$N_\beta(x) = \frac{3x^4 + (\beta^2 - 1)x^2 + \beta^2}{4x^3 + 2(\beta^2 - 1)x}.$$

- Free critical points are real and symmetric with respect to the origin. Thus, any extraneous attracting cycle for Newton’s method must lie on the real axis.

- N_β is an odd function.

- For $1/\sqrt{3} \leq \beta < 1$, c_+ converges to -1 while c_- converges to 1 under iteration of N_β.

- For $\beta_2 = (2\sqrt{5} - 3)/\sqrt{11} \approx 0.4438656912$, c_+ and c_- lie on a super-attracting 2-cycle.
The Case $\lambda = \beta i$

$$N_\beta(x) = \frac{3x^4 + (\beta^2 - 1)x^2 + \beta^2}{4x^3 + 2(\beta^2 - 1)x}.$$

- Free critical points are real and symmetric with respect to the origin. Thus, any extraneous attracting cycle for Newton’s method must lie on the real axis.

- N_β is an odd function.

- For $1/\sqrt{3} \leq \beta < 1$, c_+ converges to -1 while c_- converges to 1 under iteration of N_β.

- For $\beta_2 = (2\sqrt{5} - 3)/\sqrt{11} \approx 0.4438656912$, c_+ and c_- lie on a super-attracting 2-cycle.

- For odd periods, the free critical points can never lie on the same periodic orbit.
Figure: The orbit diagram for N_β with $\beta = (2\sqrt{5} - 3)/\sqrt{11} \approx 0.4438656912$ showing a super-attracting 2-cycle between c_+ and c_-.
Figure: The dynamical plane for Newton’s method applied to
\(p_\lambda(z) = (z - 1)(z + 1)(z - \lambda)(z - \bar{\lambda}) \) with \(\lambda \approx 0.4438656912 i \). The “bad”
initial seeds (black) iterate towards a super-attracting period 2-cycle.
<table>
<thead>
<tr>
<th>Per</th>
<th>β</th>
<th>Type</th>
<th>Per</th>
<th>β</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.4438657165</td>
<td>Bitransitive</td>
<td>5</td>
<td>0.2296915054</td>
<td>Disjoint</td>
</tr>
<tr>
<td>2</td>
<td>0.3835689425</td>
<td>Disjoint</td>
<td>5</td>
<td>0.2275660932</td>
<td>Disjoint</td>
</tr>
<tr>
<td>3</td>
<td>0.2291103601</td>
<td>Disjoint</td>
<td>5</td>
<td>0.2249682546</td>
<td>Disjoint</td>
</tr>
<tr>
<td>3</td>
<td>0.1341462433</td>
<td>Disjoint</td>
<td>5</td>
<td>0.1846443415</td>
<td>Disjoint</td>
</tr>
<tr>
<td>4</td>
<td>0.3642913699</td>
<td>Disjoint</td>
<td>5</td>
<td>0.1577119529</td>
<td>Disjoint</td>
</tr>
<tr>
<td>4</td>
<td>0.3363839984</td>
<td>Disjoint</td>
<td>5</td>
<td>0.1301919222</td>
<td>Disjoint</td>
</tr>
<tr>
<td>4</td>
<td>0.2158225775</td>
<td>Bitransitive</td>
<td>5</td>
<td>0.1289675832</td>
<td>Disjoint</td>
</tr>
<tr>
<td>4</td>
<td>0.2113012969</td>
<td>Disjoint</td>
<td>5</td>
<td>0.1125293225</td>
<td>Disjoint</td>
</tr>
<tr>
<td>4</td>
<td>0.1134351641</td>
<td>Disjoint</td>
<td>5</td>
<td>0.0917167962</td>
<td>Disjoint</td>
</tr>
<tr>
<td>4</td>
<td>0.0616595671</td>
<td>Disjoint</td>
<td>5</td>
<td>0.0570865125</td>
<td>Disjoint</td>
</tr>
<tr>
<td>5</td>
<td>0.2299712598</td>
<td>Disjoint</td>
<td>5</td>
<td>0.0298646167</td>
<td>Disjoint</td>
</tr>
</tbody>
</table>

Table: The table of β values for which N_β has super-attracting periodic cycles. Also listed is the type of cycle: Bitransitive (free critical points on same orbit) or Disjoint (free critical points on separate orbits).
Figure: The bifurcation diagram for N_β showing the asymptotic behavior of both free critical points as a function of β. The horizontal line segments at the top and bottom of the figure are 1 and -1.
Figure: The λ-parameter plane for N_λ following the orbit of both free critical points (shading indicates different rates of convergence.) The window is $[-1, 1] \times [-i, i]$.
A Connection to Cubic Maps

Suppose that both critical points are attracted to periodic cycles (not necessarily the same):

- **Bitransitive:** Critical points attracted to same periodic orbit. Obtain swallow configurations and tricorns in a real cross-section of the parameter plane. Prototype models:
 - **Swallow:** \(x \mapsto x^2 + c_1, x_0 \mapsto x_0^2 + c_2, c_1, c_2 \in \mathbb{R} \)
 - **Tricorn:** \(z \mapsto z^2 + c, c \in \mathbb{C} \)

- **Disjoint Periodic Sinks:** Critical points attracted to different periodic orbits. Obtain product configurations and Mandelbrot sets in a real cross-section of the parameter plane. Prototype models:
 - **Product:** \(x \mapsto x^2 + c_1, y \mapsto y^2 + c_2, c_1, c_2 \in \mathbb{R} \)
 - **Mandelbrot Set:** \(z \mapsto z^2 + c, c \in \mathbb{C} \)
A Connection to Cubic Maps

Suppose that both critical points are attracted to periodic cycles (not necessarily the same):

- **Bitransitive**: Critical points attracted to same periodic orbit. Obtain *swallow configurations* and *tricorns* in a real cross-section of the parameter plane. Prototype models:
 - **Swallow**: \(x \mapsto (x^2 + c_1)^2 + c_2, \quad c_1, c_2 \in \mathbb{R} \)
 - **Tricorn**: \(z \mapsto (z^2 + c)^2 + \bar{c}, \quad c \in \mathbb{C} \)
A Connection to Cubic Maps

Suppose that both critical points are attracted to periodic cycles (not necessarily the same):

- **Bitransitive:** Critical points attracted to same periodic orbit. Obtain *swallow configurations* and *tricorns* in a real cross-section of the parameter plane. Prototype models:
 - Swallow: $x \mapsto (x^2 + c_1)^2 + c_2$, $c_1, c_2 \in \mathbb{R}$
 - Tricorn: $z \mapsto (z^2 + c)^2 + \bar{c}$, $c \in \mathbb{C}$

- **Disjoint Periodic Sinks:** Critical points attracted to different periodic orbits. Obtain *product configurations* and *Mandelbrot sets* in a real cross-section of the parameter plane. Prototype models:
 - Product: $x \mapsto x^2 + c_1$, $y \mapsto y^2 + c_2$, $c_1, c_2 \in \mathbb{R}$
 - Mandelbrot Set: $z \mapsto z^2 + c$, $c \in \mathbb{C}$
Figure: An example of Milnor’s “swallow configuration” in the parameter plane for N_λ centered at the bitransitive value $\lambda \approx 0.443865i$.
Figure: As expected (according to Milnor), a tricorn is located in the parameter plane at the inversion \((1/\beta) \, i\) of the bitransitive value of the previous figure. In this case, the two free critical points are complex conjugates. The prototype for this case is the map \(z \mapsto (z^2 + c)^2 + \bar{c}\).
Figure: Zooming in on the parameter plane near the a disjoint periodic value, $\lambda \approx 0.2291i$, exhibiting a “product” configuration.
Figure: The Mandelbrot-like set in the parameter plane arising from the inversion \((1/\beta) i\) of our disjoint periodic value of the previous figure.
Some Final Observations

- **Conjecture:** Each bitransitive λ-value corresponding to the two free critical points sharing the same super-attracting n-cycle lies at the center of a swallow configuration in the parameter plane.

The yellow diamond shaped boundary in the parameter plane is defined by those λ-values where both p'_λ and p''_λ simultaneously vanish. If $\lambda = a + bi$, this occurs on the algebraic curve $(a^2 - 2b^2 + 2)^3 - 27a^2(b^2 + 1)^2 = 0$.

Taking successive pre-images of this curve appears to define the sequence of intertwining yellow “leaves” that approach the real axis.
Some Final Observations

- **Conjecture:** Each bitransitive λ-value corresponding to the two free critical points sharing the same super-attracting n-cycle lies at the center of a swallow configuration in the parameter plane.

- The yellow diamond shaped boundary in the parameter plane is defined by those λ-values where both p'_λ and p''_λ simultaneously vanish. If $\lambda = a + bi$, this occurs on the algebraic curve

\[
(a^2 - 2b^2 + 2)^3 - 27a^2(b^2 + 1)^2 = 0.
\]

Taking successive pre-images of this curve appears to define the sequence of intertwining yellow “leaves” that approach the real axis.
Some Final Observations

Conjecture: Each bitransitive λ-value corresponding to the two free critical points sharing the same super-attracting n-cycle lies at the center of a swallow configuration in the parameter plane.

The yellow diamond shaped boundary in the parameter plane is defined by those λ-values where both p'_λ and p''_λ simultaneously vanish. If $\lambda = a + bi$, this occurs on the algebraic curve

$$(a^2 - 2b^2 + 2)^3 - 27a^2(b^2 + 1)^2 = 0.$$

Taking successive pre-images of this curve appears to define the sequence of intertwining yellow “leaves” that approach the real axis.

Thank You for Your Attention