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Definition
A central configuration (c.c.) is a configuration of bodies
(x1,x2, . . . ,xn),xi ∈ Rd such that the acceleration vector for each body
is a common scalar multiple of its position vector. Specifically, in the
Newtonian n-body problem with the center of mass at the origin, for
each index i ,

n∑
j 6=i

mimj(xj − xi)

||xj − xi ||3
+ λmixi = 0

for some scalar λ.

Finding c.c.’s is an algebra problem — no dynamics or derivatives.
The collinear c.c.’s correspond to d = 1, planar c.c.’s to d = 2,
spatial c.c.’s to d = 3. One can also study theoretically the case
d > 3.
Summing together the n equations above quickly yields∑

i mixi = 0.
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Properties of Central Configurations

Released from rest, a c.c. maintains the same shape as it heads
toward total collision (homothetic motion).

Given the correct initial velocities, a c.c. will rigidly rotate about its
center of mass. Such a solution is called a relative equilibrium.
Any Kepler orbit (elliptic, hyperbolic, parabolic, ejection-collision)
can be attached to a c.c. to obtain a solution to the full n-body
problem.
For any collision orbit in the n-body problem, the colliding bodies
asymptotically approach a c.c.
Bifurcations in the topology of the integral manifolds (holding hc2

constant where h is the value of the energy and c is the length of
the angular momentum vector) occur precisely at values
corresponding to central configurations.
209 articles found on MathSciNet using a general search for
"central configurations"
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Equilateral Triangle (Lagrange 1772)
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Regular n-gon (equal mass required for n ≥ 4)
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Cyclic CC’s

Goal: Study the set of 4-body planar, convex, central configurations
lying on a circle. Such a configuration will be called a cyclic central
configuration (c.c.c) since the quadrilateral formed by the positions of
the four bodies is cyclic.

Geometrically interesting problem. Restricting shape makes the
4-body planar c.c.’s more accessible. First posed by Alain Albouy.
If the center of mass coincides with the center of the circle, the
only possibility is the square with equal masses (Hampton, 2003).
If such a co-circular c.c. existed for more bodies, other than the
regular n-gon, this would be a choreography (all bodies tracing out
the same curve) without equal time spacing between bodies.
Spatial 5-body pyramidal c.c.’s exist where four bodies lie on a
sphere with the fifth body at the center of the sphere. The four
bodies forming the base of the configuration are co-circular and
form a c.c.c. in the 4-body problem (Fayçal, 1996; Albouy, 2003)
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Figure: An example of a cyclic central configuration. The center of the
circumscribing circle is marked with an O.
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An Alternate Characterization of CC’s

Let rij = ||qi − qj || where qi denotes the position of the i-th body. The
Newtonian potential function is

U(q) =
n∑

i<j

mimj

rij

The equations of motion for the n-body problem are then given by

mi q̈i =
∂U
∂qi

, i ∈ {1,2, . . .n}

=
n∑

j 6=i

mimj(qj − qi)

r3
ij

Consequently, the i-th equation for a c.c. can be written as
∂U
∂qi

(x) + λmixi = 0.
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CC’s as critical points of U

The moment of inertia I(q) (w.r.t. the center of mass) is defined as

I(q) =
1
2

n∑
i=1

mi ||qi ||2.

Thus, the equations for a c.c. can be viewed as a Lagrange multiplier
problem (set I(q) = k ):

∇U(x) + λ∇I(x) = 0

where x = (x1, . . .xn).

In other words, a c.c. is a critical point of U subject to the constraint
I = k (the mass ellipsoid). This gives a useful topological approach to
studying central configurations (Smale, Conley, Meyer, McCord, etc.)
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Mutual Distances Make Great Coordinates

Recall:

U(q) =
4∑

i<j

mimj

rij

Alternative formula for I in terms of mutual distances: (center of mass
at origin)

I(q) =
1

2M

4∑
i<j

mimj r2
ij

where M = m1 + · · ·+ m4 is the total mass.

Problem: The six variables r12, r13, r14, r23, r24 and r34 are not
independent in the planar problem. Generically, they describe a
tetrahedron, not a planar configuration. It is easy to see that the regular
tetrahedron is the only non-planar c.c. in the four-body problem.
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4-body Planar CC’s

To use the six mutual distances r12, r13, r14, r23, r24, r34 as variables, we
need an additional constraint that ensures the configuration is planar.
We require that the volume of the tetrahedron be zero (Cayley-Menger
determinant).

F =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1

1 0 r2
12 r2

13 r2
14

1 r2
12 0 r2

23 r2
24

1 r2
13 r2

23 0 r2
34

1 r2
14 r2

24 r2
34 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

Cumbersome! Is there a simpler constraint that ensures both planarity
and that the bodies lie on a circle?

Roberts (Holy Cross) Cyclic Central Configurations HC Faculty Seminar 11 / 28



4-body Planar CC’s

To use the six mutual distances r12, r13, r14, r23, r24, r34 as variables, we
need an additional constraint that ensures the configuration is planar.
We require that the volume of the tetrahedron be zero (Cayley-Menger
determinant).

F =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1

1 0 r2
12 r2

13 r2
14

1 r2
12 0 r2

23 r2
24

1 r2
13 r2

23 0 r2
34

1 r2
14 r2

24 r2
34 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

Cumbersome! Is there a simpler constraint that ensures both planarity
and that the bodies lie on a circle?

Roberts (Holy Cross) Cyclic Central Configurations HC Faculty Seminar 11 / 28



Ptolemy’s Theorem

If four bodies lie on a common circle and are numbered sequentially
(ie. the diagonals have lengths r13 and r24), then P = 0, where

P = r12r34 + r14r23 − r13r24.

Theorem (Apostol, 1967): For any convex quadrilateral numbered
sequentially or for any tetrahedron, P ≥ 0 with equality iff the four
bodies lie on a circle.

If we restrict to the space of geometrically realizable configurations,
rij > 0 and rij + rjk > rik for all possible triples of indices (i , j , k), then
P = 0 iff the configuration is cyclic (with a sequential ordering.)

Goal: Find critical points of U + λM(I − I0) + σP satisfying I = I0 and
P = 0.
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Using the six mutual distances as variables, we find

m1m2(r−3
12 − λ) = σ

r34

r12
, m3m4(r−3

34 − λ) = σ
r12

r34

m1m3(r−3
13 − λ) = −σ r24

r13
, m2m4(r−3

24 − λ) = −σ r13

r24

m1m4(r−3
14 − λ) = σ

r23

r14
, m2m3(r−3

23 − λ) = σ
r14

r23
.

This yields a well-known relation of Dziobek (1900)

(r−3
12 − λ)(r−3

34 − λ) = (r−3
13 − λ)(r−3

24 − λ) = (r−3
14 − λ)(r−3

23 − λ) (1)

which must be true for any planar 4-body c.c., not just cyclic c.c.’s.
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Eliminating λ from equation (1) in a clever way yields

(r3
13 − r3

12)(r3
23 − r3

34)(r3
24 − r3

14) = (r3
12 − r3

14)(r3
24 − r3

34)(r3
13 − r3

23). (2)

Equation (2) is necessary and sufficient for a 4-body planar c.c. given
that the six mutual distances determine a geometrically realizable
planar configuration. However, it does not ensure positivity of the
masses.

Generically, the space of 4-body planar c.c.’s is three dimensional
since it is described by the equations F = 0, I = I0 and equation (2).
Restricting to a circle yields a two dimensional space.
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Mass Ratios

m2

m1
=

(λ− r−3
13 ) r13r14

(r−3
23 − λ) r23r24

=
(r−3

14 − λ) r13r14

(λ− r−3
24 ) r23r24

m3

m1
=

(r−3
12 − λ) r12r14

(r−3
23 − λ) r23r34

=
(r−3

14 − λ) r12r14

(r−3
34 − λ) r23r34

m4

m1
=

(r−3
12 − λ) r12r13

(λ− r−3
24 ) r24r34

=
(λ− r−3

13 ) r12r13

(r−3
34 − λ) r24r34

.

Without loss of generality, let r12 = 1 be the longest exterior side and
let r14 ≥ r23. Requiring positive masses gives

r13 ≥ r24 > r12 = 1 ≥ r14 ≥ r23 ≥ r34. (3)

The diagonals are longer than any of the exterior sides. The longest
exterior side is opposite the smallest.
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Symmetric Example: Kite Configurations

A quadrilateral is a kite if two opposite bodies lie on an axis of
symmetry of the configuration. Equation (2) is immediately satisfied
when r12 = r14 = 1 and r23 = r34, yielding a kite configuration with an
axis of symmetry between bodies 1 and 3.

Set r23 = r34 = x and the diagonals r13 = c and r24 = 2x/c where
x ∈ (0,1] is a parameter and c =

√
1 + x2. These distances satisfy

Ptolemy’s relation P = 0.

We find m2 = m4, as expected from symmetry. Setting m1 = 1, we
have m2 = m4 = m and m3 = αm where

m =
4x(c3 − 1)

c(8− c3)
and α =

c(8x3 − c3)

4(c3 − x3)
.

To ensure positive masses, we must have 1/
√

3 < x ≤ 1.
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Figure: An example of a cyclic kite central configuration with m2 = m4.
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Theorem
There exists a one-parameter family of cyclic kite central
configurations with bodies one and three lying on the diameter of the
circumscribing circle. The masses are m1 = 1,m2 = m4 = m and
m3 = αm and are ordered m1 ≥ m2 = m4 ≥ m3 with equality iff the
configuration is a square. At one end of the family (x = 1/

√
3) is a c.c.

of the planar, restricted 4-body problem, with bodies 1, 2 and 4 forming
an equilateral triangle and m3 = 0. At the other end (x = 1) is the
square with equal masses.
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Figure: The values of the masses for the cyclic kite c.c.’s
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The longest arc along the cirmcumscribing circle, denoted θ12, occurs
between bodies 1 and 2. We have that

θ12 = π − 2 arctan(x)

and the maximum arc is 120◦ (m3 = 0) while the minimum arc is 90◦

(square).

Theorem
The supremum of the largest interior angle of the kite ccc is 120◦ while
the infimum of the smallest interior angle is 60◦. Moreover, the arc
length along the circumscribing circle between bodies 1 and 2 is a
decreasing function of the parameter x with a supremum of
2π/(3

√
3 ) ≈ 1.2092 and a minimum attained at the square

configuration of 2−3/2 π ≈ 1.1107.

Roberts (Holy Cross) Cyclic Central Configurations HC Faculty Seminar 20 / 28



Symmetric Example: Isosceles Trapezoid

Theorem
A cyclic central configuration is an isosceles trapezoid if and only if
m1 = m2 and m3 = m4.

Key calculation in proof: If m1 = m2, then

r2
23r2

24(r3
13 − r3

14)− r2
13r2

14(r3
24 − r3

23) = 0. (4)

Likewise, if m3 = m4, then

r2
13r2

23(r3
24 − r3

14)− r2
14r2

24(r3
13 − r3

23) = 0. (5)

Taking the difference of equations (4) and (5) and factoring the result
yields

(r13−r24)(r2
13r2

14r2
24+r2

13r2
23r2

24+r13r3
14r2

23+r13r2
14r3

23+r3
14r2

23r24+r2
14r3

23r24) = 0.
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Figure: An example of an isosceles trapezoid central configuration. The
center of the circumscribing circle is marked with an O.
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We set m1 = m2 = 1. Then, m3 = m4 = m where

m =
x2(1− y3)

y3 − x3 .

In order for the isosceles trapezoid to be a c.c., we must have

f = (y2 + x)3/2(2y3 − x3 − 1)− y3 − x3y3 + 2x3 = 0. (6)

Examining f = 0, we see that while the smallest side of the trapezoid
(parallel to the base) can range from 0 to 1, the length of the congruent
legs is considerably constrained between approximately 0.91 and 1.

Conjecture: y is a differentiable function of x and m is an increasing
function of x ranging from 0 to 1.
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Figure: The relationship between the two distances x = r34 and y = r14 = r23
in the isosceles trapezoid family of cc’s.
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Theorem
The maximum arclength θ12 in the isosceles trapezoid family of cc’s is
a monotonically decreasing function of the smallest sidelength x. The
maximum of θ12 is 120◦ at the equilateral triangle (m3 = m4 = 0 and
r34 = 0) while the minimum is 90◦ attained at the square configuration.

Note that these bounds are the same as those for the kite family of
cyclic central configurations.
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Some Geometric Properties of CCC’s

1 The maximum interior angle of a 4-body cyclic central
configuration lies between 90◦ and 120◦ while the minimum
interior angle lies between 60◦ and 90◦.

2 Any cyclic c.c. containing two opposite bodies (1 opposite 3 or 2
opposite 4) on a diameter of the circumscribing circle must be a
kite configuration.

3 No cyclic c.c. can lie entirely in a semi-circle.
4 Three bodies of a c.c.c. cannot lie on the same half of the circle

as the longest side r12 unless the configuration is a kite.
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Some Open Questions/Future Work

For a cyclic quadrilateral ordered sequentially, the lengths of each
diagonal r13 and r24 can be written as

r13 =

√
ab
c

and r24 =

√
ac
b

(7)

where a = r12r34 + r14r23, b = r12r14 + r23r34 and c = r12r23 + r14r34.

If the two equations in (7) hold, then both P = 0 and V = 0 follow.
Substituting formulae (7) for r13 and r24 into

(r3
13 − r3

12)(r3
23 − r3

34)(r3
24 − r3

14) = (r3
12 − r3

14)(r3
24 − r3

34)(r3
13 − r3

23)

and setting r12 = 1 yields a complicated equation in three variables,

F (r14, r23, r34) = 0.
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Let Ω denote the set of mutual distances satisfying

r13 ≥ r24 > r12 = 1 ≥ r14 ≥ r23 ≥ r34

and π(Ω) its projection onto r14r23r34 space.

Let Γ denote the intersection of F = 0 and π(Ω). Any point on the
surface Γ yields a c.c.c. with positive masses.

Let G : Γ 7→ R3 be the mass map taking a point in Γ to a 3-tuple of
positive mass ratios.

Key Question: Is G one-to-one? In other words, if the four masses are
fixed and a cyclic c.c. exists, is it unique?

What do the surfaces F = 0 and Γ look like? What does the image of
G look like in the mass space? The boundaries are determined by the
kite and isosceles trapezoid configurations.
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