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Central Configurations

The gravitational force on each body points toward the center of mass
and is proportional to the distance from the center of mass.
Figures by Rick Moeckel (2014), Scholarpedia, 9(4):10667.
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3-Body Collinear Configurations (Euler 1767)
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For each ordering of n arbitrary masses on a line, there exists a unique
central configuration (Moulton, 1910).
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Equilateral Triangle (Lagrange 1772)

The equilateral triangle is a c.c. for any choice of masses.
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Regular n-gon (equal mass required for n ≥ 4)
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1 + n-gon (arbitrary central mass)
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Used by Sir James Clerk Maxwell in 1859 in Stability of the Motion of
Saturn’s Rings (winner of the Adams Prize).
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Released from rest, a central configuration maintains the same shape
as it heads toward total collision (homothetic motion).
Simulation by Rick Moeckel (2014), Scholarpedia, 9(4):10667.
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Given the correct initial velocities, a central configuration will rigidly
rotate about its center of mass. Such a solution is called a relative
equilibrium.
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Any Kepler orbit (elliptic, hyperbolic, ejection-collision) can be attached
to a central configuration to obtain a solution to the full n-body
problem. Above is an example of an asymmetric 8-body c.c. with
elliptic homographic motion (eccentricity 0.8).
Simulation by Rick Moeckel (2014), Scholarpedia, 9(4):10667.
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Figure: The five libration points (Lagrange points) in the Sun-Earth system
(not drawn to scale). In general, L4 and L5 are linearly stable provided the
ratio msun/mp is sufficiently large. These make great “parking spaces.” In
February 2017, the OSIRIS-REX mission spent 10 days looking for asteroids
at Earth’s L4 point.
Source: http://map.gsfc.nasa.gov/mission/observatory_l2.html
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Figure: Weather research and forecasting model from the National Center for
Atmospheric Research (NCAR) showing the field of precipitable water for
Hurricane Rita (2005). Note the presence of three maxima near the vertices
of an equilateral triangle contained within the hurricane’s “polygonal” eyewall.
http://www.atmos.albany.edu/facstaff/kristen/wrf/wrf.html
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Figure: Saturn’s North Pole and its encircling hexagonal cloud structure. First
photographed by Voyager in the 1980’s and here again recently by the
Cassini spacecraft – a remarkably stable structure!
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Definition
A planar central configuration (c.c.) is a configuration of bodies
x = (x1, x2, . . . , xn), xi ∈ R2 such that the acceleration vector for each
body is a common scalar multiple of its position vector (with respect to
the center of mass). Specifically, in the Newtonian n-body problem with
center of mass c, for each index i , ∂U

∂qi
(x) = −λmi(xi − c) or

n∑
j 6=i

mimj(xj − xi)

r3
ij

+ λmi(xi − c) = 0

for some scalar λ independent of i , where rij = ||xj − xi ||3.

U(q) =
n∑

i<j

mimj

rij
is the Newtonian potential function.

Finding c.c.’s is an algebra problem — no dynamics or derivatives.
Summing together the n equations above quickly yields
c = 1

M
∑

mixi .
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Properties of Central Configurations
Released from rest, a c.c. maintains the same shape as it heads
toward total collision (homothetic motion).

Given the correct initial velocities, a c.c. will rigidly rotate about its
center of mass. Such a solution is called a relative equilibrium.

Any Kepler orbit (elliptic, hyperbolic, ejection-collision) can be
attached to a c.c. to obtain a solution to the full n-body problem.

For any collision orbit in the n-body problem, the colliding bodies
asymptotically approach a c.c.

Bifurcations in the topology of the integral manifolds in the planar
problem (holding hc2 constant where h is the value of the energy
and c is the length of the angular momentum vector) occur
precisely at values corresponding to central configurations.

320 articles found on MathSciNet using a general search for
"central configurations" and MSC 70F10
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Symmetries

Suppose that x ∈ R2n is a central configuration. The following are also
central configurations:

1 kx = (kx1, . . . , kxn) for any k > 0 (scaling; c 7→ kc, λ 7→ λ/k3)

2 x − s = (x1 − s, . . . , xn − s) for any s ∈ R2 (translation; c 7→ c − s)

3 Ax = (Ax1, . . . ,Axn) where A ∈ SO(2) (rotation; c 7→ Ac)

Thus, central configurations are not isolated. It is standard practice to
fix a scaling and center of mass c, and then identify solutions that are
equivalent under a rotation.

Note: Reflections of x are also central configurations (e.g., multiplying
the first coordinate of c and each xi by −1), but these are regarded as
distinct solutions.
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An Alternate Characterization of CC’s

The system of equations defining a central configuration can be written
more compactly as

∇U(x) + λ∇I(x) = 0, (1)

where I is one half the moment of inertia, I = 1
2
∑n

i=1 mi ||qi − c||2.

Thus, a central configuration is a critical point of U subject to the
constraint I = k (the mass ellipsoid). This gives a useful topological
approach to studying central configurations (Smale, Conley, Meyer,
McCord, Moeckel, Ferrario, etc.)

Smale/Wintner/Chazy Question: For a fixed choice of masses, is the
number of equivalence classes of planar central configurations finite?
(Smale’s 6th problem for the 21st century)
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Research Goals

1 Describe the set of all convex four-body central configurations.
Convex means that no body is contained within the convex hull of
the other three. Dimension? Coordinates? Boundaries?

2 Classify the convex central configurations according to symmetry
or a special geometric property (kite, trapezoid, rhombus,
co-circular, equidiagonal, tangential, etc.). What is the dimension
of each subset and how is it situated within the larger space?

3 Show that there is a unique central configuration for any fixed
choice of positive masses in a prescribed order. This is
Problem #10 on a published list of open problems in celestial
mechanics by Albouy, Cabral, and Santos (2012). Existence was
proven by MacMillan and Bartky (1932).
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Figure: Classifying convex quadrilaterals. Which of the above can be a central
configuration? Dimension of each subset? Image Source: Jlipskoch Alexgabi
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Mutual Distances

Treating the six mutual distances r12, r13, r14, r23, r24, r34 as variables, a
central configuration is a critical point of

U − λ(I − I0)−
µ

32
V

subject to the constraints I = I0 and V = 0, where I = 1
2M
∑

i<j mimj r2
ij ,

and V is the Cayley-Menger determinant

V =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1

1 0 r2
12 r2

13 r2
14

1 r2
12 0 r2

23 r2
24

1 r2
13 r2

23 0 r2
34

1 r2
14 r2

24 r2
34 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Key Formula: ∂V
∂r2

ij
= −32 AiAj where Ai is the signed area of the

triangle whose vertices contain all bodies except for the i th body.
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Dziobek’s Equations

m1m2(r−3
12 − λ

′) = σA1A2 m3m4(r−3
34 − λ

′) = σA3A4

m1m3(r−3
13 − λ

′) = σA1A3 m2m4(r−3
24 − λ

′) = σA2A4

m1m4(r−3
14 − λ

′) = σA1A4 m2m3(r−3
23 − λ

′) = σA2A3

where λ′ and µ are re-scaled Lagrange multipliers.

This leads to the famous equations of Dziobek (1900):

(r−3
12 − λ

′)(r−3
34 − λ

′) = (r−3
13 − λ

′)(r−3
24 − λ

′) = (r−3
14 − λ

′)(r−3
23 − λ

′)

Necessary and Sufficient: If these last equations are satisfied for a
planar configuration, then the ratios of the masses can be obtained by
dividing appropriate pairs in the first list. However, positivity of the
masses must still be checked.
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Relationships between the mutual distances

Requiring positivity of the masses enforces the following requirements
on the mutual distances of a convex central configuration:

The diagonals must be longer than all exterior sides.

The longest and shortest exterior sides are opposite each other.

Simple Consequence: The only possible rectangular c.c. is a square,
and the only possible parallelogram is a rhombus.

Assuming that the bodies are ordered sequentially in a
counter-clockwise fashion and that r12 is the longest exterior
side-length, we have the following inequalities:

r13, r24 > r12 ≥ r14, r23 ≥ r34
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Set Up: Finding Good Coordinates

Variables: a,b, c > 0 and θ ∈ (0, π)
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Symmetric Example: Kites

Figure: Two kite central configurations with different symmetry axes. Kites
with a horizontal axis of symmetry lie in the plane a = c, (m2 = m4) while
those with a vertical axis of symmetry lie in the plane b = 1 (m1 = m3). All
kites have θ = π/2.
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Symmetric Example: Rhombus

Figure: A rhombus central configuration. The rhombii occur at the intersection
of the two kite planes a = c and b = 1 (a line). We must have two pairs of
opposite equal masses.
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Consequences of inequalities between mutual distances

Let E denote the set of central configurations satisfying

r13, r24 > r12 ≥ r14, r23 ≥ r34.

r2
12 − r2

14 = (a + c)(a− c − 2 cos θ)

r2
23 − r2

34 = (a + c)(a− c + 2b cos θ)

Then,

r12 ≥ r14 =⇒ a− c ≥ 2 cos θ

r23 ≥ r34 =⇒ a− c ≥ −2b cos θ.

Thus, a ≥ c. Similarly, r12 ≥ r23 and r14 ≥ r34 imply that b ≤ 1.

Therefore, a = c and b = 1 (kites) are boundaries of E .
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Bisecting Diagonals

What if one diagonal bisects the other?

r12 ≥ r14 and r23 ≥ r34 give

1
2b

(c − a) ≤ cos θ ≤ 1
2
(a− c)

1
2c

(b − 1) ≤ cos θ ≤ 1
2a

(1− b)

Thus, a = c or b = 1 imply θ = π/2
(diagonals are perpendicular).

Theorem (MC, JC, GR)
A convex central configuration with one diagonal bisecting the other
must be a kite.
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Trapezoids

Sides x2 − x1 and x3 − x4 are parallel iff

a sin θ
a cos θ − 1

=
c sin θ

c cos θ − b

iff (ab − c) sin θ = 0.

Since sin θ 6= 0, c = ab.

Similarly, sides x2 − x3 and x1 − x4 are parallel iff a = bc. However,
a ≥ c and 1 ≥ b always, so a = bc implies a = c and b = 1 (rhombus).

Theorem (MC, JC, GR)
A four-body central configuration is a trapezoid if and only if c = ab.
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Trapezoids (cont.)

Figure: Trapezoidal configurations must satisfy c = ab. Assuming the
configuration is not a rhombus, the parallel sides are x2 − x1 and x3 − x4.
Isosceles trapezoids exist when a = 1 and c = b (a line in abc-space).
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Co-circular Case

The set of 4-body co-circular central configurations with positive
masses is a two-dimensional surface, a graph over two of the exterior
side-lengths (Cors and GR, 2012).

Theorem (MC, JC, GR)
A four-body central configuration is co-circular if and only if b = ac.
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Proof of Co-circular Case

Recall the cross ratio from complex analysis:

(z1 − z3)(z2 − z4)

(z1 − z4)(z2 − z3)
. (2)

The cross ratio is real if and only if the four points z1, z2, z3, and z4 lie
on a circle or a line.

Setting z1 = 1, z2 = aeiθ, z3 = −b, and z4 = −ceiθ, we compute the
cross ratio to be

(a + c)(b + 1)
aceiθ + be−iθ + a + bc

.

This is real if and only if sin θ(ac − b) = 0. Thus b = ac is a necessary
and sufficient condition for the four bodies to lie on a common circle.

Thanks to Richard Montgomery for suggesting the cross ratio.
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Equidiagonal Case

Figure: The diagonals have equal lengths if and only if a + c = b + 1.
Examples include the isosceles trapezoids and two one-parameter families of
kites.
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Recap of Special Cases

Kites: a = c or b = 1 (two orthogonal planes)

Rhombii: a = c and b = 1 (a line)

Trapezoids: c = ab (a saddle)

Isosceles Trapezoids: a = 1 and b = c (a line)

Co-circular configurations: b = ac (a saddle)

Equidiagonal: a + c = b + 1 (a plane)

Punchline: All of our classes of central configurations are defined by
linear or quadratic equations. Ideal coordinates!
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The Set of Convex C.C.’s

Recall Dziobek’s equations:

(r−3
12 − λ

′)(r−3
34 − λ

′) = (r−3
13 − λ

′)(r−3
24 − λ

′) = (r−3
14 − λ

′)(r−3
23 − λ

′).

Eliminating λ′ from the above gives

F = (r3
24− r3

14)(r
3
13− r3

12)(r
3
23− r3

34)−(r3
12− r3

14)(r
3
24− r3

34)(r
3
13− r3

23) = 0.

Up to an isometry, relabeling, and rescaling, the set of all four-body
convex central configurations with positive masses is given by

E = {(a,b, c, θ) ∈ R4 : a,b, c > 0, θ ∈ (0, π),F (a,b, c, θ) = 0,

and r13, r24 > r12 ≥ r14, r23 ≥ r34}.
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Eliminating θ

Theorem (MC, JC, GR)
Let D represent the projection of E into abc-space. For each
(a,b, c) ∈ D, there exists a unique angle θ which makes the
configuration central. More precisely, the set of four-body convex
central configurations with positive masses is the graph of a
differentiable function θ = f (a,b, c) over the domain D.

D ⊂ R+3
is given by

0 < c ≤ a, 0 < b ≤ 1, 1
2(−a +

√
4− 3a2 ) < c < 1

a(b
2 + 2b),

b > 1
2(−1 +

√
4a2 − 3 ), and c > −a +

√
a2 + b .

These inequalities can be derived from those governing the mutual
distances: r13, r24 > r12 ≥ r14, r23 ≥ r34 .
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Figure: The faces of D. For each point (a,b, c) ∈ D, there exists a unique
angle θ that makes the corresponding configuration central.
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Properties of D

D has 5 vertices, 6 faces, and 9 edges (agrees with
V − E + F = 2).

The kites a = c and b = 1 are two of the faces of D.

The other faces are defined by equations such as r13 = r12 = r23.
These are degenerate cases, where one or three (not two!) of the
masses vanishes (c.c.’s for the restricted problem).

θ ∈ (π/3, π/2]. Moreover, θ = π/2 if and only if the configuration is
a kite.

D can be written as the union of four elementary regions in
abc-space, where c is bounded by functions of a and b.
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Figure: The projection of D into the ab-plane. The dashed red curves divide
the region into four sub-regions over which c is bounded by functions of a
and b.
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Equation Mutual Distances Masses

a = c r12 = r14 and r23 = r34 m2 = m4

b = 1 r12 = r23 and r14 = r34 m1 = m3

c = 1
a(b

2 + 2b) r13 = r12 = r14 m2 = m3 = m4 = 0

c = 1
2(−a +

√
4− 3a2 ) r24 = r12 = r14 m3 = 0

b = 1
2(−1 +

√
4a2 − 3 ) r13 = r12 = r23 m4 = 0

c = −a +
√

a2 + b r24 = r12 = r23 m1 = m3 = m4 = 0

Table: The six faces on the boundary of D and the corresponding masses.
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Figure: The set D along with the co-circular central configurations (b = ac,
red).
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Figure: The set D along with the trapezoidal central configurations (c = ab,
purple).
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Figure: The set D along with both co-circular (red) and trapezoidal central
configurations (purple).
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Figure: A cross-section of D with the boundary r24 = r12 = r14 (m3 = 0)
showing the different classes: kites (green), equidiagonal (red), co-circular
(black), trapezoids (grey), and r14 = r23 (blue).
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Comments/Future Work:

1 Proof of main theorem done in two parts: existence of θ
accomplished by showing F has opposite signs at lower and
upper bounds for θ while uniqueness follows from showing
∂F/∂θ < 0. Result then follows from the implicit function theorem.

2 We intend to use a 3d-printer to produce a model of D, perhaps
including key cross sections (trapezoids, co-circular, etc.). This will
give us a more intuitive understanding of the structure of D and
the set of convex central configurations.

3 The hope is to use D to prove uniqueness in the masses. Little
has been proven in the field about this, e.g., it is unknown
whether, given a choice of masses for which a co-circular c.c.
exists, that particular c.c. is unique.

4 Thank you for your attention!
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