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Abstract

Given that Newton’s method is an iterative process, it is natural to study it as a
discrete dynamical system. Of particular interest are the various open sets of initial
seeds that fail to converge to a root under Newton’s method. Thus we examine certain
“bad” polynomials that contain extraneous, attracting periodic cycles.

In particular, we chose to examine Newton’s method applied to a particular fam-
ily of fourth degree polynomials that rely on only one parameter value. These are
polynomials of the form:

pa(z) = (2 + 1)(z = 1)(z = A)(z = )

where A € C. We extensively analyze the parameter plane for this family of polynomials
in cases where A is both real and purely imaginary. More specifically, we have developed
and implemented computer programs to locate A values for which Newton’s method
fails on an open, often relatively large, set of initial conditions. In doing so, we have
discovered some rather surprising dynamical figures in the A-parameter plane, including
Mandelbrot-like sets, tricorns, and swallowtails. Through symmetry and by restricting
to the imaginary axis, we have uncovered certain analytic and numerical evidence that
aids in explaining the existence of such figures.
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1 Introduction to Newton’s Method

Newton’s method for approximating the zeros of a function is one of the most well known
and widely used numerical algorithms. Given that Newton’s method is an iterative process,
it is natural that we study it as a discrete dynamical system. When dealing with a smooth
function of one real variable, the implementation of this algorithm is a fairly straightforward
application of the derivative.

Suppose we are trying to find the roots of a smooth function p(x). For the purposes of
this work, p will usually be considered a polynomial. Given an initial seed x(, we construct
the tangent line approximation for p(x), and record the point at which this line crosses the
x-axis. We label this point z1, and begin the process again with x; as our new initial seed.
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Figure 1.1: A simple example of Newton’s method applied to f(z).

This process can be continued until a sufficient approximation for the root of p(z) is
found. It is defined iteratively as follows
p(z:)
(@)

Tiv1 = T —

The success of this method, however, is problematic. Given the construction of the tangent
line approximation, if the initial guess z, is a critical point of p(x), Newton’s method fails
to converge. For example, if p(z) = 22 — 1, and zy = 0, then z; is undefined, and we are
unable to continue Newton’s method further. Thus, Newton’s method failed to converge to
either of the roots of p, 1 and —1.

This does not appear to bode well for the reliability of Newton’s method. However, we
are always guaranteed that Newton’s method will converge on some neighborhood of the
roots in question. The size of this neighborhood relies on certain factors about the function
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to which we are applying Newton’s method and its domain. Recent work has shown not
only that Newton’s method will always converge, but that we can actually locate and iterate
extremely small sets of initial guesses in order to find all roots under Newton’s method. More
information on this can be found in [8].

Nevertheless, while we are guaranteed that there exists a neighborhood about each root
on which Newton’s method converges and is successful, the main focus in this work will
actually be on the failure of this method.

Beyond mappings of one real variable, one can apply Newton’s method to functions of
complex variables. This can be accomplished by iterating the Newton Map

If p is a polynomial, then N, is a rational map over the Riemann Sphere, C. As with
Newton’s method applied to polynomials of one real variable, we are not assured of the
convergence of N,. For example, consider the polynomial p(z) = 2* — 62? — 11. In this case,
for the initial guess of 2y = 1, the solutions of N, oscillate between 1 and —1. It turns out
that 1 and —1 lie in a particular region of the complex plane that consists of other initial
guesses that oscillate in the same manner, without converging to a root. Furthermore, we
also see that N (+1) = 0. In this example it is relatively easy for one to work through the
calculations to see that 1 and —1 oscillate back and forth between each other under iteration
of N,. Locating all initial seeds that fail to converge to a root, however, is not nearly as
obvious.

The main theme of this paper will be to locate and examine the open sets of initial seeds
on which Newton’s method does not converge when applied to a particular family of fourth
degree polynomials. These are polynomials of the form:

m(z) = (z+1)(z=1)(z = A)(z = N).

In studying the A-parameter plane for this family of polynomials, we uncover some note-
worthy dynamical behavior. With the aid of computer software, we numerically locate
Mandelbrot-like sets, tricorns, and other dynamical figures that have previously been dis-
covered in the case of general cubic maps. Making use of the abundance of symmetry that
exists within our chosen family of polynomials, we are able to significantly reduce the pa-
rameter plane and better explain the existence of the aforementioned figures. We make note
of the strong correlation between our Newton map and a general cubic map, given that both
have two free critical points. Then, in accordance with Milnor’s work on cubics, found in [11],
we find the same type of dynamical behavior in our study of the A-parameter plane. While
a direct conjugacy or correlation between our cubic-/zke map and the general cubic case is
lacking, we have strong numerical evidence that suggests that such a correlation does exist.
Furthermore, using Milnor’s classification of dynamical components, we offer a conjecture as
to where we should expect certain figures to exist in the parameter plane.



2 Introduction to Complex Dynamical Systems

In order to best understand Newton’s Method as a dynamical system of one complex variable,
we will first review some standard facts and results from complex dynamics. Historically it
should be noted that the field of complex dynamics was pioneered by the work of G. Julia
and P. Fatou in the 1920’s. For a more extensive history of Fatou and Julia, and the entire
field of complex dynamics, see [1, 10].

Consider some analytic function f : C — C. As with dynamical systems of real variables,
the main focus of complex dynamical systems is understanding and explaining the behavior
of points under iteration of f. In more basic terms, we are interested in following and
describing where various points go under iteration of f. In order to do so, we must first
familiarize ourselves with some notation.

Given f as above, f?(z) = f(f(z)) denotes the second iterate of f. Following in this
fashion, f3(z) is the third iterate of f, and, in general, we write the n-fold composition of
f with itself as f"(z). Given some 2z, € C we define the orbit of 2, to be the sequence of
points: {z,21 = f(20),22 = f(21) = f2(20),-- 120 = ["(20),---} = {f™(20) };- We refer
to zg as the initial seed of the orbit.

A point z is said to be a periodic point if f"(z) = z for some n € N, and the smallest
such n is known as the period of z. A periodic point of period 1 is known as a fixed point.

A periodic point z with period n is said to be attracting if |(f")'(z)| < 1 and repelling
if |(f™)'(z)| > 1. The dynamical behavior near these attracting and repelling points is exactly
as one what would expect from their respective titles. Points nearby an attracting periodic
point are attracted to that periodic point under iteration. Similarly, points nearby a repelling
periodic points are repelled away from it under iteration. Furthermore, a periodic point z
with period n is said to be indifferent or neutral if |(f")'(2)| = 1. These indifferent or
neutral points may be weakly attracting, repelling, or neither. It should be noted that the
same holds for the entire orbit of z, so we may refer to entire orbits as attracting or repelling.
Lastly, there is a special type of attracting periodic points that will be of particular interest to
us later in this paper. A periodic point z satisfying (f")'(z) = 0 is called superattracting,
a title that corresponds to the rate at which nearby points converge.

Definition 2.1 Let a be an attracting periodic point of period n for the analytic function
f(2). Then the set
{z: f™(2) > aas m — 0o, m € N}

is defined to be the basin of attraction of . The connected component of this set that
contains « is referred to as the immediate attractive basin, denoted B(«).

Definition 2.2 TLet U be an open subset of C, and let g : U — C be a family of complex
analytic functions. The family { g} is said to be normal on U if every sequence of functions
selected from {g;} has a subsequence that converges uniformly on every compact subset of
U, either to a bounded analytic function or to co. The family {gx} is normal at the point
w of U if there is some open subset V of U containing w such that {gx} is a normal family
on V.

This notion of a normal family leads us to the following definition, which is vital to the
study of complex dynamics.



Definition 2.3 Given an analytic function f : C — C, the Julia set of f, denoted Jy, is
the set of all points z € C such that the family {fx} is not normal at z. The Fatou set is
the complement of the Julia set.

For the purposes of this work, we will assume that we are dealing with the Julia set
of a rational function of degree at least two. It is not necessarily the case that all of the
properties and characteristics of the Julia set that we mention will hold in general. It is
straight-forward to see that repelling periodic points must lie in the Julia set. Fatou and
Julia proved even more, showing that for rational maps, the Julia set of f is precisely the
closure of the repelling fixed points of f [6, 9],

Jr = {repelling periodic points of f}

We may conclude from the previous definitions, that given any neighborhood about some
point z € Jy, there is at least one subsequence of {f;} that does not converge uniformly on
some compact subset of U € C. In fact, given the following theorem, we can actually say
quite a bit more.

Theorem 2.4 (Montel’s Theorem) Let {gx} be a family of complex analytic functions on
an open domain U. If {gr} is not a normal family, then for all w € C, with at most two
exceptions, gr(z) = w for some z € U and some k. (See [10].)

From Montel’s Theorem, we see that any neighborhood about a point in the Julia Set is
smeared over the entire complex plane under iteration of the given function (with at most
two exceptions). This property is known as the supersensitivity of J;.

Figure 2.1: The Julia set for 22 — 1.



Figure 2.2: A sneak preview of a component of the Julia set for the family of polynomials
we will be working with later. Note the similarity to Figure 2.1.

The dynamical behavior on the Fatou set is often considered to be somewhat boring, as
it contains all of the attractive periodic cycles and their basins of attraction, which behave
in an orderly fashion. On the Julia set, however, the dynamical behavior is far from orderly.

Definition 2.5 (Devaney) The function f: E — E is chaotic if
a) the periodic points of f are dense in D,
b) f is topologically transitive, and
c) f exhibits sensitive dependence on initial conditions. (See [4].)

To best understand this definition, the terms topologically transitive and sensitive depen-
dence on initial conditions must be explained more thoroughly.

Saying that f is topologically transitive is a more precise way of saying that it is “well-
mixed.” That is to say, under iteration of f, points in D are smeared over all of D in an
equally distributed manner. A more rigorous definition is as follows.

Definition 2.6 f is topologically transitive on f if for any two points x,y € D, and any
€ > 0, there is some z € D and some n € N such that [z — z| < € and |f"(2) —y| < e.

Now, when we say f exhibits sensitive dependence on initial conditions, we simply mean
that under iteration of f, points that begin nearby one another do not remain nearby.
Definition 2.7 The function f : D — D exhibits sensitive dependence on initial
conditions if there exists a 6 > 0 such that for any x € D and any € > 0, thereisa y € D
and some n € N such that |z —y| < e and |f"(z) — f*(y)| > §. For more on the criteria for

chaotic maps, see [4] and [7].



Proposition 2.8 i. The Julia Set of a rational function is always closed and non-empty.
i. J; is invariant under f, and f~'. That is to say, Jy is forward and backward invariant:
Jp=f(J) = ().

. Jy is a perfect set (closed with no isolated points), and is therefore uncountable.

w. Dynamical behavior on Jy is chaotic.

v. Jy is supersensitive. (See [1].)

Since we are applying N to a family of polynomials, NV, will always be a rational map.
For this reason, throughout the rest of this work we shall restrict our attention to rational
maps.

Theorem 2.9 Fvery immediate attractive basin of a rational map contains a critical point
of that rational map. (See [10].)

Example 2.10 Let’s consider the squaring map, Qo : C — C, Qq(z) = 22

First off, we note that any complex number z can be written in the form z = re®, where
|z| = r. Then, 22 = r2¢%9. Tt is plain to see that under the squaring map, the origin is a fixed
point. Similarly, since Qo(0c0) = oo, we see that oo is also a fixed point under @)y. Moreover,
it is plain to see that points inside the unit circle, where r < 1, spiral in counterclockwise to
the origin under iteration of @)y, while points outside the unit circle, where r > 1, spiral out
to co. Thus we see that Jg, = {2 : |2| = 1}, the unit circle in C. O

It should be noted that the terminology for this mapping, @y, is significant in the sense
that it represents a particular parameter value for functions of the form Q.(z) = 2% + c.
While this parameter value merely translates the mapping of 22 by some complex number c,
the behavior that results from varying c is extremely interesting, and certainly non-trivial.
The family Q. has been studied extensively by Douady and Hubbard, who were able to prove
a great deal about its dynamical behavior, which has become fundamental in the study of
complex dynamics. For our purposes, we will only discuss the family ). briefly. A more
thorough analysis of this family of quadratics can be found in [5].

With respect to the family of functions @, = 2%+ ¢, we have only the critical point z = 0.
By our previous theorem, if there exists an attracting periodic point w, then 0 € B(w).
Therefore, the orbit of 0 is bounded, as it cannot leave its respective attractive basin, A(w).
Remark 2.11 J; is either connected, or totally disconnected (a Cantor set or fractal dust).
O

This leads to another important definition.
Definition 2.12 The Mandelbrot Set, M, is the set of parameters ¢ for which the Julia

set of (). is connected. B
M = {c e C: Jy, is connected }.

See Figure 2.3.
Theorem 2.13

M ={ce€ C:{Q%0)}r>1 is bounded}
={ce C:Q0) » 0o as k — o}



This is sometimes referred to as the Fundamental Dichotomy of the Mandelbrot Set.
(See [4].)

Figure 2.3: The c-parameter plane for the family Q. = 22 + ¢. The black region represents
parameter values for which the orbit of the critical point z = 0 is bounded. This is known
as the Mandelbrot set.

There is one final definition that must be given which will prove useful later in reducing
the space on which we must study our given dynamical system.

Definition 2.14 Let f: A — A and g : B — B be two maps. Then f is topologically
conjugate to g if there is a homeomorphism 7 : A — B such that 7o f = gor. In this case,
7 is called a topological conjugacy.

It is important to note that topological conjugacy preserves dynamical behavior. That
is to say, given a topological conjugacy 7, fixed points, periodic points and attractive basins
of f are sent under 7 to fixed points, periodic points and attractive basins of g.

3 Newton’s Method as a Complex Dynamical System

Following our brief introduction to complex dynamics, we will now shift our attention back
to Newton’s method. Given a polynomial p(z), we define the Newton map to be
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Proposition 3.1 i. If p(z) has n distinct roots, then N, is a degree n rational map.
. If ¢(2) = p(az + b), then N, is conjugate to N, by the map 7(z) = az + b.
iii. The roots of p(z) are fized points of N,,.
w. The point at oo is a fized point, and since N,(o0) = d%“l, it 1is repelling.
v. The derivative of N, is
p(z)p"(2)

(¥'(2))?
Thus, simple roots of p(z) are superattracting fized points of N,.
vi. Multiple roots are attracting fized points, though they are not superattracting. (See [2].)

N, (2) =

For a root a with multiplicity m, N, = m—1 " which suggests slow convergence for roots

with high multiplicity. "

It is also important to note that inflection points of p(z) are critical points of N,(z). We
refer to an inflection point of p(z) as a free critical point, a point where the second derivative
p"(z) vanishes. Since the only other critical points of N, are the roots of p(z), which are
fixed points of N,, we will attempt to uncover the dynamical behavior of N, by examining
its free critical points.

It should be noted that much work has been done involving the study of Newton’s method
applied to quadratic and cubic polynomials. In both cases, Newton’s method generally
follows the Nearest Root Principle, which is to say that initial seeds will typically converge
to the root to which they are nearest. This fails to hold true in certain cubic cases, though it
is still useful in pointing us in the direction of where to look for sets of bad initial seeds. In
the quadratic case, however, it turns out to be perfectly accurate in classifying the dynamical
behavior of Newton’s method.

Given a quadratic polynomial with two distinct roots, r; and r,, the only region on
which Newton’s method fails is the perpendicular bisector of the line segment joining r;
to ro, which is left invariant. This makes sense intuitively, since points along this line are
equidistant from both 7; and r5. Thus, Newton’s method seems to be confused as to which
root it should converge to. More importantly, the perpendicular bisector is full of repelling
periodic cycles, exactly as the unit circle was under the squaring map. Thus, Newton’s
method applied to the quadratic map is chaotic along this perpendicular bisector. In other
words, the perpendicular bisector of the line segment joining r; to ry is actually the Julia
set for N,.

The only other type of quadratic polynomial left to discuss are those with one root of mul-
tiplicity two, i.e. the squaring map. It turns out that there is a distinct relationship between
quadratic mappings with two distinct roots and the squaring map, (Qy. This relationship can
be seen through the topological conjugacy in the following example.

Example 3.2 Suppose p(z) is a quadratic polynomial with distinct roots r; and ro. Then
N,(z) is topologically conjugate to the squaring map, Qy(z) = 22, under the conjugacy

zZ—T"

h(z) =

Z2—1Ty

The perpendicular bisector of the line segment joining 1 to 7o is the set B = {z: |z — r{| =
|z — ro|}. Then, we see that for any z5 € B, |h(2p)| = 1. Thus, under A, B is mapped to the
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unit circle in C.

Since Julia sets are preserved under topological conjugacy, this confirms that B, the set
of points on the perpendicular bisector of the line segment joining r; to 79 is the Julia set of
N,, since we know that the unit circle is the Julia set for ()g. More specifically, the dynamics
on the perpendicular bisector are conjugate to angle doubling on the unit circle, which we
know is a chaotic map. O

Then, following the Nearest Root Principle, points on the r; side of the Julia set converge
to r1, and points on the opposing side converge to ry. From a dynamical systems point of
view, this is about all we can say, and we care about, with respect to Newton’s method
applied to quadratic polynomials.

As stated earlier, the Nearest Root Principle is also helpful in exploring the dynamics
of Newton’s method applied to cubic polynomials. Naturally, as was the case when dealing
with quadratic polynomials, sets of bad initial seeds typically lie along areas of the complex
plane where the roots of our polynomial are equidistant. In the case of Newton’s method
applied to a cubic polynomial with three distinct roots, this would occur when the convex
hull of the three roots forms an isosceles triangle. In fact, cases where this triangular hull
is isosceles or very close to isosceles are the only places where Newton’s method applied
to cubics fails on an open set. In these cases, extraneous periodic cycles exist and cause
Newton’s method to fail. This was first discovered in 1983 by Curry, Garnett and Sullivan in
their ground-breaking paper “On the iteration of a rational function: Computer experiments
with Newton’s method” [3]. A more detailed analysis of Newton’s method applied to cubic
polynomials can be found in [12].

4 A Symmetric Family of Fourth Degree Polynomials
Consider the family of fourth degree polynomials defined by
P(2)=(z+D(z-1D(E—-N(z—2A)

where A € C is a complex parameter. It is plain to see that the roots of Py are 1, —1, A and
A. By expanding the equation for P, we find that

Py(2) = (22 = 1)(2* = 2Re(V)z + |A]?)
= 2* — 2Re(\)2* + (|A|> — 1)2® + 2Re(\)z — |A[%.

Thus, we observe that P, is a polynomial with real coefficients. As an immediate corollary, it
can be seen that the real axis is invariant under Py. That is to say, if we restrict the domain
of P, to R, the image of P, will also be contained in R. Furthermore, given the definition of
P,, it is clear that P, = P, since the roots or Py are left unchanged if X is replaced by .

For the remainder of this work, we will denote N, as the complex map obtained by
applying Newton’s method to p,. From the facts just mentioned, we see that N, leaves the
real axis invariant for any A € C and that N, = Nj5. This gives a symmetry about the real
axis to our figures in the A\-parameter plane.
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Another nice property of this family of polynomials is that since P, is a polynomial with

real coefficients,
P)\(Z) = P)\(Z)

This follows easily from the fact that ab = @b. Since each derivative of Py is also a polynomial
of real coefficients, the general property holds that

PP() = P ()
From our expanded form of P, a simple calculation yields its first and second derivatives
Py = 42° —6Re(\)2” + 2(]A\]* — 1)z + 2Re())
Py =122 —12Re(M\)z + 2(|A* = 1)

AP -1
6

= 12(2*> — Re(\)z +

).

We may then calculate the free critical points of Ny, where P}(z) vanishes. This gives

Re()) & /(Re(M)2 — 2(]A12 - 1)
(4-1) Ct = 5 .

Since these free critical points will be the primary focus of our study, it will be useful to
qualify their existence in the complex plane as thoroughly as possible. To do so, we shall
consider the discriminant in equation (4.1).

Suppose A = a + bi, and let § = (Re()))? — 2(|A[* — 1). Then, by substitution

2
b=a’—3(a+ ~1).

1, 2, 2
1 2 2

As the sign of § varies, we see a fundamental change in the nature of the free critical
points of N,.

1. § >0 =  Two real free critical points, symmetric about ReT()‘).

2. 0 =0 =  Double free critical point at RBT()‘).

3.0 <0 =  Two free critical points that form complex conjugate pairs, with real
Re(A)
part —=".

13
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Figure 4.1: The hyperbola that divides the complex plane with respect to the nature of the
free critical points of V). Within the curves, our free critical points are real. Outside of the
curves they form a complex conjugate pair.

In order to better understand where this dichotomy takes place in the complex plane, we
solve for § = 0. This results in the hyperbola defined by b — Za* = 1. This can be seen in
Figure 4.1.

The region between the defining curves of the hyperbola corresponds to our first case
where 6 > 0. The actual curves are where the dichotomy occurs, which is where § = 0. Thus,
as we saw earlier, within these regions of the A-parameter plane we have real free critical
points whose orbits are unrelated. However, the outermost regions correspond to the third
case, where 6 < 0. This is where the free critical points are complex conjugates of each other.
As we shall see, the orbits of these critical points under V) are also complex conjugates of
each other.

Now that we have uncovered the necessary information about P, and its free critical
points, we shift our attention toward Newton’s method applied to this family of fourth
degree polynomials. Using the general definition of Newton’s function applied to P\, we
have

” P)\(Z)
P (2)
21 =2Re(V)2° + (A? = 1)22 + 2Re(V)z — [A]?
423 — 6Re(N)22 + 2(|A|2 — 1)z + 2 Re(N)

32" —4Re(N)Z2 4 (A2 —1)22 + A2
423 —6Re(N)22 4+ 2(]A\|2 — 1)z + 2Re())

While this rational map may appear imposing, it possesses certain symmetric properties

N,\(Z) =

14



under conjugacy that significantly reduce the size of the A-parameter plane we need to
consider. It should also be noted that since P, has real coefficients, so does N,.

As described earlier, the parameter plane for Newton’s method applied to Py exhibits
symmetry about the real axis, which can be seen in Figure 4.2. This image was created by
following the orbit of the free critical point c; under iteration of N,. If ¢, converges to one
of the four roots, A\, A, 1, or —1, for some value of ), then that X value is colored red, yellow,
blue or purple, respectively. If ¢, does not converge to within 107% of any root after 100
iterations, the parameter value is colored black. Figures 4.3, 4.4 and 4.5 (computed with the
same color scheme) exhibit some of the interesting behavior found in the parameter plane
that we will examine more closely in the coming sections.

Figure 4.2: The parameter plane for Ny. We make note of the symmetry about the real axis.
This image was produced by following the orbit of the free critical point ¢, . The window is
[—1,1] x [—1,1].

Lemma 4.1 N,(z) = N,(Z).

Proof This is a straightforward calculation. We make use of the fact given earlier, that

15



Figure 4.3: The “beetle” and “tricorn” located in the A-parameter plane along the imaginary
axis.

Figure 4.4: A Mandelbrot-like set located along the imaginary axis.
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M= B
_5_b()
Pi(2)
s P\(?)
()
= Na(2)

Lemma 4.2 N, is topologically conjugate to N_, via the conjugacy
h(z) = —=z.

17



Proof

N oyoh=N_(~2)
_ 3(=2)' —4Re(=N)(=2)’ + (| = AP = D(=2)* + [ = A]”
4(—2)3 —6Re(=A)(—2)2 +2(]| — A2 = 1)(—2) + 2Re(—))
32" —4Re(N)2 + (AP — 1)22 + |A]?
"~ —423 +6Re(V)22 — 2(|A|2 — 1)z — 2Re())

324 —4Re(N)2® + (A2 = 1)22 + A2
423 —6Re(N)22 + 2(|A|2 — 1)z + 2 Re())

= —N\(2)

:hON)\.

[

Thus, given the symmetries of N, under conjugacy, it suffices to study the region R =
{A € C: Re(\) > 0,Im(N\) > 0, # 1}. For instance, given Lemma 4.1, we see that the
first quadrant of the A-parameter plane, R, is conjugate to the fourth quadrant. Then, by
the result of Lemma 4.2, we see that the second quadrant is conjugate to the fourth, and
the third is conjugate to R. So, by applying these two Lemmas, we are able to analyze the
entire \-parameter plane by simply studying the region R.

While this is the region that we will be concerned with throughout the remainder of this
paper, the following lemma shows that in the case where A is purely imaginary, we can, in
fact, reduce our parameter space further.

Lemma 4.3 Suppose A = [3i. Then Ng; is conjugate to N_%i via the conjugacy h(z) = 5 =
é.

Proof This is simply an affine conjugacy that maps roots to roots. Thus, this result follows
from the proof of Lemma 3.1. To emphasize this result, however, we offer an alternative proof

below.
We check directly that N_%i oh = ho Ng;. For A = 3, we have

34 (B 1)+ B
Npi(2) = 423 +2(B2 - 1)z

18



1
320+ (H—1) 2+ 4

4z3+2(ﬂ—12—1)z

Therefore, N_%,-(Z) =

3824 + (1 — B2 +1
46223 +2(1 — %)z

S+ (1-4)2+1
andN_li<i>:ﬂz (1=#)
7 1242162 ()
3PP -2+
 4Biz3 +2Bi(B% — 1)z

1
=5 - Ngi(2)

:hONgz’.

[

Remark 4.4 The imaginary axis is the only region of the complex plane on which this
conjugacy holds.

To see this, suppose the conjugacy in Lemma 4.3 held for general A values not necessarily
on the imaginary axis. Further, let’s consider the polar coordinate representation of A. Since
any complex number z can be written in the form re®, where r is the modulus of z and 6 is
its angle from the real axis, we may make the following substitutions.

. 1 1 .
)= 6 Z— — -l
ret, y=.e,
In order for our conjugacy to hold, we must have
1 z
XN/\(Z) = N;(x)-
Inserting our polar representation for A, we have
1N( ) 1 3z —drcosfz2® + (r? — 1)z2% + r?
— z2) = —
A A\ 423 — 6rcos 022 +2(r2 — 1)z + 2rcos 6

Then,

— 7 e0s0(5)* + (5 — 1)(
AGP — TewdG2 4 2% )G
32* —dcosfe?2 + (1 —r?)z
A (423 — 6cosBe?22 + 2(1 — r2)ze20 + 272 cos fe*if) -

2 cosH

§) 7‘2
)+

2 210 —{—7"264w
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Thus, we see that for 1 N,(z) = N%(f), we must have § = %. Thus, it is clear that the
conjugacy between N, and N 1 only holds when ) is on the imaginary axis. 0

This makes sense, given that we are dealing with an affine conjugacy. Under an affine
conjugacy, roots are always mapped to other roots. For instance, on the imaginary axis, we
see that % = —1. However, when we move A off the imaginary axis, this is no longer the
case, as we see that \ is not mapped to any other root.

Even though our use of this conjugacy is limited to the imaginary axis, it will prove to
be useful not only in the case where A is purely imaginary, but also in the more general case
where A has both real and imaginary parts. We will be able to use the result of Lemma 4.3
to predict and explain the existence of various dynamical components in the A-parameter
plane.

5 Restriction to the Real Axis

We begin our study of V) by restricting to A values on the real axis. Let us first take a look
at how this effects our family of polynomials, Py.

Since Im(\) = 0, it is plain to see that A = A. Thus, our family of functions now has a
double root at A, and P, is defined by

P(z) = (2 = 1)(z — \)*
Furthermore,
Py(2) =2(2* = 1)(z = \) + 22(2 — \)?
=2(z—A)(222 — Az —1).

As mentioned earlier, since N, is a rational map with real coefficients, the real axis is
invariant under N,. Then, since all free critical points for A € R are real, we can study N,
as a real-valued dynamical system when we restrict our domain to the real axis.

Given the symmetric nature of N, discussed in the previous section, we need only study
A > 0. Since we are dealing with a real-valued system in this case, we will use the standard
convention and replace our general complex variable z with x, where x € R. Thus, our new
Newton’s function is
3zt =4+ (W =12+ N2
C 43 — 6022 +2(02 — 1)z + 2\

At first glance this does not appear to be much nicer to work with than our general Newton’s
function. Upon inspection, however, we can greatly simplify this map by factoring out the
term (z — A) from both the numerator and denominator. We are then left with

N)\(.T)

33 — M —xz— )\
N = .
o) = SaE o
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Along with the reduction of the Newton function, we can also redefine our free critical points

for A € R. We now have
Aty /ix2+2

2
Furthermore, now that the denominator of N\ has been reduced to a quadratic polynomial,
we are able to solve for the poles of this rational map.

A+ VX8
i

The derivative of our Newton function has also become significantly reduced. Recall, for any

polynomial p, N = (18)(,13’;,). Then, since we can write

C4 =

b+

Pi(z) =12(z — c-)(z — cy),
we see that
1222 = 1)(z = N?*(z —c_) (2 — ¢3)
(2(z = A)(222 — Az — 1))?

N, =

32— 1) —e)(z—ey)
B (222 — Az — 1)?

At this point, we would like to begin examining /N, as a real-valued dynamical system.
Due to the results of Lemma 4.1 and Lemma 4.2, we are only concerned with A\ values such
that A > 0. Nevertheless, along the real axis, we would like to be able to explain how our
system changes qualitatively as we vary A. More specifically, we would like to know what
happens to our free critical points, c. as A changes. By studying the relationships between
our roots, free critical points, and poles, we are able to predict A values where we might
expect bifurcations to occur. As it turns out, there are three distinct cases that we must
consider.

Case1: 0< A <«1

Lemma 5.1 For 0 < A <1,

2
—§<p<c<0§/\<c+<p+<1.

Proof We are given 0 < A < 1. We then see that A < ¢, if and only if

A2 2
/\+\/?+§

A
ST

)\2+2
3 3

= )\<\/)‘—2+g
3 3
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Then, after squaring both sides and equating terms, we have

2 2
_)\2 < =
3 3
— NM<1l
Thus, since we had assumed A < 1, we see that A < c, is valid.
Similarly, ¢y < p4 if and only if

2
A5 +3 _A+VPES

After squaring both sides and simplifying, we have

4 A2 2 8
—)\? 4)\\/— Z4+-<8
3 + 3-1-3—4-3<
A2 2
= M43/ + 2 <4
3 3
A2 2
= 3N/ o <4- N
3+3

3N +6X2 < AP —8)M2+ 16

Squaring again yields

— M+7N2-8<0
— (M+8)(\-1)<0
— A? — 1 < 0 since \? + 8 is positive VA € C.

Again, given our hypothesis, we see that this series of inequalities holds true. We will now
show that p, < 1. This is true if and only if

A+\/m<1
4

— VA2 +8<4-—-)\.

Squaring both sides gives us

A +8<16—8)\+ \?
<— —8 < —8)

<— A< 1.
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At this point, we have shown the nonnegative portion of our inequality to be true. We will
now show ¢_ < 0, which holds true if and only if

After squaring, we have

— 0< =2)2+42

which is satisfied by A < 1.
Next, p_ < c_ if and only if

2
M-V 8 A—yF+3
i ST 2

2
— —VAX2+8< -2 )

A2 2
= 2\/§+§<)\+\/)\2+8.

After squaring and some simplification, we have

2
3

4 8
§A2+§<2)\2+2)\\/)\2+8+8

— 0<2X24+6MV)2+8+16

which is valid since A > 0.
Lastly, we must show that ’T‘/i < p_, which holds if and only if

V2 A=) +38
5 < 1

— —2/2<)A—VA\2+38
— VX218 < \+2V2.
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Squaring both sides gives us

AN 4+8< A2 +4\/2+8

— 4\2>0

<~ A>0.

Lemma 5.2 Suppose 0 < X\ < 1. Then for all z € [c_,c;], Nx*(z) = X as k — oo.

Proof We begin by showing that Ny(c_) > c_.
3(c2)® = Aeo)2—(c2) — A

M) = = -
C3(e )P = Me )P = (c0) = A =A4(e f+2A@J2+2@J
Mfe-) =e-= i)~ 2h(e)
_ —(e)*+ @V+@)
4(c_) —2X(c) —

) — c_, we first calculate the signs of the numerator and

To determine the sign of N, (c_
) — 2. Since we

denominator, respectively. We begin with the denominator, 4(c_) — 2A(c—
showed in Lemma 5.1 that ¢ < 0, and since A > 0, we see that 4(c_) and —2\(c_) are

positive terms. In fact,

\/ +2p2 42 A—/5 +2
A(c_) — 2X\(c— 2| —5—
1 [ 2 2
N/ 2
3 37373
2
5

Thus, the denominator in this case is negative.
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Let us now consider the numerator of N,(c_).

—(e )’ + M)+ (o) = A= (c-)* (A = (c-)) + (=) — A

P £+2 2= £+2
:(C_)2 N 23 3 n 23 3_)\
A2 2 A2 2
)2y B . B
ST 2 2 2 2

= (c4)((c-)" = 1).

As we saw in Lemma 5.1, —1 < c_ < 0, which implies that (¢_)? —1 < 0. Further, since the
same lemma tells us that ¢, > 0, we see that the numerator of Ny(c_) — c_ is negative in
this case. Further, since we have already shown the denominator to be negative, we see that

Ni(c—) —c- >0,

which implies that
Ny(eZ) > c_

for0 < A< 1.

A similar series of calculations shows that Ny(c.) < c;. Further, since we know that
the only fixed point in the interval (c_,c;) is A, it must be the case that Ny(z) > z for all
x € [c_,\), and Ny(z) < z for all x € (A, ¢;]. This can be seen in Figure 5.1.

Now that we know the relation between N, and the diagonal on [c_, ¢y ], we must consider
the slope of N, on this interval. Let = € [c_, cy], and consider Nj(z). In our definition of
Nj, it is plain to see that the denominator is always positive. Thus, to determine the sign of
N/ (z), we simply check each term in the numerator. Since ¢, < 1, we see that (z* —1) < 0.
Further, since x is located between c_ and c,, it is clear that the product of the remaining
terms, (z —c_) and (x — c;) must be negative as well (or zero). Therefore, N}(z) > 0. So,
we see that N, is non-decreasing on [c_, cy].

Case 1A:c_ <z < A\

As shown above, for x € [c_,\), N\(z) is decreasing and Ny(z) > z. Thus, we see that
N )\k(m) forms an increasing sequence that is bounded above by the fixed point A. We would
like to show that N,*(z) must converge to \.
Assume
kll)rg) Ny\F(x) = \* where \* < .

Then, since N, is continuous, we have

TA*
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Figure 5.1: To the left is the general picture of N, for 0 < A < 1. To the right is an orbit
diagram showing the dynamical behavior of the free critical points ¢, and ¢ . From this
picture we see that both free critical points converge to the root A under iteration of N,.

By substitution
Ny(X*) = Ny Jim NyF(z))
—00
= lim N,*"(2)
k—00
= \*

This is a contradiction, since A\* is not a fixed point of Ny (A is the only fixed point between
c_ and c;.) Therefore, in this case, Ny*(z) converges to .

Case 1B: A <z < ;.

In this case, we have shown that Ny(z) < z for all z € (), cy], and that N,(z) is decreasing
for all such x. Thus, we see that N,*(z) forms a decreasing sequence that is bounded below
by A. A similar argument to that above shows that all = in this interval converge to A under
iteration of N,. []

At A = 1, we find our first bifurcation point. Here, we see that ¢, = 1 = A. Thus, we
now have a triple root at A = 1. So dynamically, ¢, has become a fixed point, while c_
continues to converge to A, which happens to be 1 in this case. For A =1,

_3a*+2z+1

N (x) 4z + 2

from which similar arguments as above show that c. — A. Moving further along the real
axis, as A becomes greater than 1, we see that c_ converges to 1, which is now less than .
As we shall see in Case 2, we have a bit of a reversal of roles with respect to our important
values.
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Case 2: 1< A <5

Lemma 5.3 For1 < A <5,

2
—\/7_<p_<0<0_<1<p+<0+<)\

Proof As mentioned previously, in this case we see that A and 1 swap positions from what

/22
we saw in Case 1. Furthermore, as a result of this, ¢, = ﬁ jumps to the other side of
the positive pole, p,. Showing that this is the case follows from a straightforward series of
calculations similar to that found in the proof of Lemma 5.1. A generic picture of this case
can be seen in Figure 5.2. []

Lemma 5.4 Suppose 1 < A < 5. Then Ny¥(c_) — 1, and NyF(cy) = X as k — co.

Proof Again, the proof here is very similar to that of Lemma 5.4 found in Case 1. While the
positioning of our important values has changed somewhat, no radically different dynamical
behavior has been introduced. As discussed earlier, while c_ converged to A in Case 1, at
the bifurcation A = 1, A and 1 essentially swap roles with respect to the behavior of c_.
Furthermore, now that c, is greater than p,, its dynamical behavior is very straightforward
given the nature of N, in this region. Since ) is the only fixed point greater than p,, we see
that ¢y converges to A. The details of this proof are similar to those found in the proof of
Lemma 5.4. The orbit diagram in Figure 5.2 is an example of this behavior. []

x X

Figure 5.2: To the left is the general picture of Ny for 1 < A < 5. To the right is an orbit
diagram which shows the dynamic behavior of ¢y and c_. This verifies that c. — 1 and
cy+ — A under iteration of V.
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Figure 5.3: To the left is the general graph of N, for A > 5. To the right is a web diagram
showing the orbit of ¢, as it converges to the root \.

When A\ = 5, we have a bifurcation similar to what we saw for A = 1. In this case,
we have ¢ = 1, though our Newton map is not significantly reduced. Furthermore, the
dynamical behavior of the free critical points does not change, although the relative location
of our key values does change somewhat.

Case 3: A > 5

Lemma 5.5 For A\ > 5,
V2

—7<p,<0<1<c,<p+<c+</\.
Proof This proof is very similar to that of Lemma 5.1 from Case 1. The only difference
here is that c_ has become greater than 1. The rest of the inequality is left unchanged from

Case 2 (see Figure 5.3). []

Lemma 5.6 Suppose A > 5. Then Nx*(c_) = 1, and Nx*(c) = X as k — .

Proof This proof is very similar to that of Lemma 5.2 from Case 1. The behavior of ¢,
and c_ can be seen from the orbit diagram in Figure 5.3. []

After examining these three cases, it is plain to see that when A € R, there is no interesting
dynamical behavior. For each A\ € R, N)(c;) and N)(c;) converge to one of the three roots
of P, monotonically. Moreover, by Theorem 2.9, there are no extraneous periodic cycles
in C since the orbits of the free critical points are accounted for. Thus, we see that in
the parameter plane, the real axis is dynamically straight-forward. As we shall see in the
following section, the same cannot be said of the imaginary axis.
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6 Restriction to the Imaginary Axis

Let us now suppose that A = fi. Here, A\ lies on the imaginary axis, so Re(\) = 0. We
will denote N for the map corresponding to Newton’s method applied to Ps;. Recall from
Lemma 4.3 that we need only study [ values for 0 < 8 < 1. Furthermore, it should be noted
that when A lies along the imaginary axis, the complex hull of the four roots of P, forms a
rhombus, which one might expect to lead to interesting dynamical behavior. Similar to our
work in the real case, we would like to study Ng as a real dynamical system. To do this,
however, we must first verify that the imaginary axis is, in fact, invariant under Np.
We begin by simplifying our polynomial Pg;,

Pgi(z) = (2 = 1)(z" + 8°)
:Z4+(52—1)22—52

As we did in the case of A real, we will now compute our key dynamical values. We begin
with the poles of N, which are critical points of Pg;. Since Pg(2) = 42° +-2(5° — 1)z, we see
that zero will always be a pole for our Newton function in this case. Solving the remaining
quadratic term, we find the other two poles

VEDDEF =2)

Py = =% g
_ W22
B 2
1_ 2
=+ ﬂ
2

Now that we have located the poles of Ng, we must do the same for its free critical points,
where

Pl.(z) =122 +2(B* - 1)
vanishes. In a similar calculation to that above, we solve for Pj; to obtain our free critical
points

L /96— 967

Cy =

24
B i4,/6—652
o 24
1_ 2
=+ b .
6

A rather nice relationship between c. and p. emerges from their respective definitions. We
see that our poles and free critical points are actually scalar multiples of each other, with

cy = %(pi), respectively.
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Once again, we have a simplified version of our Newton function.

3+ (P -1+ B
No@) = = o —1a

Similar to the Newton map in the real case, Ng has real coefficients, and thus leaves the
real axis invariant. This is vital to our study of the imaginary axis due to the fact that
as we saw in Section 4, for 0 < B < 1, the free critical points of Ng are real. Thus it is
important to confirm that the real axis is invariant under Ng so that we may proceed to
study it as a real-valued dynamical system. Moreover, it is also the case that the imaginary
axis is invariant under Ng.

Let z = bi. Then,

3(bi)* + (8% — 1)(bi)? + B2
4(bi)3 + 2(82 — 1)(bi)

_ 30+ (87— 1)(=0) + 52

o i(4b3 4+ 2(82 = 1)b)

=3t (B2 -1 - B2

I TEY PR DT A

Nj(z) = Nj(bi) =

It is then plain to see that as we iterate purely imaginary values, we do not stray from
the imaginary axis under Ng. While we have already confirmed that we need only study
B values between 0 and 1, this fact is useful in the sense that for § > 1, our free critical
points are purely imaginary. Therefore, as it was important to ensure the invariance of
the real axis under Njg, it is also important to confirm that Ng leaves the imaginary axis
invariant, because otherwise we would not be able to iterate our simplified Newton map on
the entire axis. Nevertheless, given our conjugacy earlier in Lemma 4.3, this confirms what
we expected. In the proof of Lemma 4.3, we saw that Ng was conjugate to N_% via an

inversion and rotation by 7. Thus, under this rotation, we see that our free critical points
on the real axis are scaled and rotated to the imaginary axis.

We are now able to study Vg as a real-valued dynamical system. From this point on, we
will use the standard convention and replace our complex variable z with the real variable
. We begin with some basic properties of Ng, and its dynamical behavior. For instance,
given the following, we see that Nz is an odd function:

3(—2)" + (87— 1)(=2)* + B2
A(—x)* +2(8* — 1)(—x)

3+ (1) +
B 423 +2(5% — 1)z

= —Nps(z).

Lemma 6.1 —%<p_<c_§0§c+<p+<%.

Ng(—z) =
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Proof This is a fairly straightforward series of calculations. First off, since 0 < § < 1, we
see that 1 — 82 > 0. Thus, given the equations for c; we have ¢c. < 0 < c,. Further, as
mentioned above, cy = %(pi). It is then plain to see that p_ < c¢_ and c; < p,. Lastly,

since 8 > 0, it is clear that p_ > —% and p; < %, which completes our inequality (see

Figure 6.1). []

Figure 6.1: A general graph of Nz for 0 < 8 < 1.

Lemma 6.2 For 0 < 3 <1, Ng(cy) is decreasing with respect to 8, while Ng(c_) is increas-
ing with respect to 3.

Proof Recall, c; =4/ 1_6’32. We then begin by simplifying Ng(c.).

(22 + (B - V() +
VEEEE) +2(8 - 1)
_ (=) +p
VEE (- p)
_—u(l=p)+p
—A(1-p):

Ng(cy) = ’
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For simplicity, we let v = 1 — 8. Taking the derivative of Ng(c;) with respect to 8 and
simplifying the numerator gives

d __( ) +ﬁ2 4 3,1 1 2 2 45 1
Num %(W> = —%(7)2(3( 1B +28) = (=35 (7) +6)(—6(v)2)
i i i
= 9\f() + f() 3\/6(7) 6(v)
_ B _ 8 —E (y)2 — 4_ﬁ3( )2
0V6 36 V6

Then, since (3 is positive, we see that each of these terms is negative. Thus, we have shown
that Ng(c;) is decreasing in § for 0 < § < 1.

Moreover, since we have shown that Nz is an odd function, and that ¢. = —c;, we see
that Ng(c_) = —Ng(c;). Therefore, differentiating Ng(c_) with respect to § would result in
multiplying % (Ng(c4+)) by —1. Thus, since we have shown Ng(cy) to be decreasing in £, it

follows that Ng(c_) is increasing in g for 0 < g < 1. []

Lemma 6.3 For 1/v/3 < <1, Ng(c;) < —1 and Ng(c_) > 1. Therefore, ¢, converges to
—1 and c_ converges to 1 under iteration of Ng.

Proof As we saw in the proof of Lemma 6.2, Ng(c;) = % Thus for 8 = 1//3,

we have

Voo CR@)+

R0
8
— 27
__8 ../2
96 3

Using Lemma 6.2, since Ng(c;) decreases with respect to /3, it follows that for 1/1/3 <
B <1, Ng(cy) < —1. Given that Ng is odd, this same argument shows that Ng(c_) > 1 for
the given range of 8 values.

From this point, the proof that ¢, and c_ converge to —1 and 1 respectively is very
similar to that of Lemma 5.2 in the real case. []

Given our general picture of Ng and the fact that Ng(c,) increases in 3 for 0 < 8 < 1,
it appears that for some 3 value we will have Ng(c;) = Ng(c—) = 0. We compute this value
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for future inspection:

02 3+ (87— (e)* + 52

4(c4)? +2(8% = 1)(cq)
0=3(cy)* + (B — 1)(cy)* + B

1— 2\2 1— 2
=320 ) v
. Ly Ly
T 12 6
=—%G—WY+W

1, T,
_125+65 12

Ly 2
:—E(ﬁ —145% +1)
Then, letting A = 52, the quartic in parentheses vanishes iff

_ 14+4/192
- 2

=7+4/3.

A

Then, since (2—+/3)% = 7T—4+/3, we see that 8 = 2—+/3 & 0.2679491924 is the only solution
to Ng(cy) = Ng(c—) =0 for 0 < 8 < 1. As it turns out, this value will prove to be a very

valuable landmark in our study of the A-parameter plane.

While the orbits of ¢ and c; converged quickly to roots in the case where \ was real, it

is readily apparent that this is not the case when A = fi.

Example 6.4 We will show that for a particular 8 value, Ng(c_) = ¢4 and Ng(cy) = c_.
Since Npg is an odd function, and since ¢ = —c+, we need only show that one of the previous
equations holds true. Without loss of generality, we show that Ng(c;) = c_.

Ns(ey) = c-
= Ng(cy) —c-=0

= Ng(cy) +c.=0.

To simplify the following series of calculations, we let A = 3?. Thus, we have cy

i,/%. So,

3(/52)* + (A - 1)(, /52 + 4
/e ra-1/HE
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Setting this equal to zero yields

1-A4)2 (1-A) 1-A 1-4A

0=3( g~ (5 )+ A+ () + 24~ 1))
:11_2(1_14)2_é(l—A)2+A+%(1—A)2—%(I—Ay
:_3—161(1—A)2+A

—11 o8 11
AT A
36 36 36
Thus,

1296

A=

—11
18

294720
- 11

Then, since we are only concerned with 3 values between 0 and 1, and 82 = A = % V1720

we have

b

8 — 29 — 12V/5
1

— 5= /29—112\/5.

Therefore, taking the positive root, we have found that for 5 ~ 0.4438656912, the orbits of c_
and c; fail to converge to a root under Newton’s method, since they lie on a superattracting
cycle of period 2. This can be seen in Figure 6.2. g

Since it is virtually impossible to deal with higher iterations of Ny analytically, a computer
program was written to help us uncover periodic points numerically. The full code for the
program is given in the Appendix. The program works as follows. We are given some period
n. Then, since we are assured that no periodic behavior occurs on the imaginary axis for
1/v/3 < B < 1, the initial § value used by the program is 0.58, which is slightly greater
than our landmark value 1/1/3. Then, we utilize the bisection method to find solutions to
the equation Ng(c+) —c; = 0. These solutions are superattracting periodic points of period
n. By making small changes in 3 values (107%), we are able to straddle the z-axis and then
iterate the bisection method 100 times to hone in on a solution. After these iterations are
completed, 3 is decreased by 1077, and the process repeats itself. This is done until 3 reaches

34



Figure 6.2: The orbit diagram for Nz with 8 ~ 0.4438656912.

B
0.4438657165

0.3835689425
0.2291103601
0.1341462433
0.3642913699
0.3363839984

g
0.2158225775

0.2113012969
0.1134351641
0.0616595671
0.2299712598
0.2296915054

p
0.2275660932

0.2249682546
0.1846443415
0.1577119529
0.1301919222
0.1289675832

p
0.1125293225

0.0917167962
0.0570865125
0.0298646167

or ot on o3

oW w N N3

[S2 S QTSGR

ot ot ot ot ot o 3

Table 6.1: A table of all periodic points up to period 5 on the imaginary axis. These are
approximations found using a bisection method program.

0. It should also be noted that error checking devices are also put into place to ensure we
do not mistake poles for periodic points.

Using this bisection technique, our program gives a fairly exhaustive list of periodic
points along the imaginary axis for 8 € [0,1]. It should be noted, however, that these
are approximate values, subject to some round-off error. Nevertheless, according to this
program, we find that our first periodic value, § ~ 0.4438657165, is confirmed by this
program. Table 6.1 gives a comprehensive listing of the data that was found using this
program.

Using this numerical tool, we observed some noteworthy behavior. For instance, a period
doubling cascade to chaos is readily apparent from our data, and can be seen in Table 6.2.
While the periodic points of period 256 are too numerous to list in their entirety, (letting
the program run exhaustively on only period 16 yields 2,525 periodic points), the evidence
exhibited in Table 6.2 certainly substantiates the claim to a period doubling cascade to chaos.
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B
0.3835689425

n
2
4 | 0.3642913699
8

0.3601377606
16 | 0.3592396379
32 | 0.3590471745

64 | 0.359005928
128 | 0.3589970469

Table 6.2: A table exhibiting the period doubling behavior found on the imaginary axis.

To visualize the dynamical behavior of Ng, we created another computer program to plot
the bifurcation diagram as a function of 3. The vertical axis captures the long-term behavior
of both critical points. As can be seen in Figures 6.3 and 6.4, our period doubling claim is
further supported. Furthermore, our landmark 3 value of 8 = 2 — v/3 &~ 0.268 appears to
be a divider for much of the interesting dynamical behavior. For -values slightly smaller
than 2 — v/3, the image of both critical points is close to the pole at zero and consequently,
further iteration leads to convergence to either 1 or —1. As long as the image of the critical
points is trapped close to the pole at zero, the long-term behavior will be convergence to
roots. This explains the gap in the center of Figure 6.3.

Figure 6.3: The bifurcation diagram for N showing the asymptotic behavior of both free
critical points under iteration as a function of 4. The horizontal line segments at the top
and bottom of the figure are 1 and —1 representing (-values where the free critical points
converge to those roots. The significant gap in the center of the figure begins at 8 = 2 —+/3.

After compiling this extensive amount of data, some observations about the behavior
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Figure 6.4: A zoom of the bifurcation diagram from Figure 6.3 for 0.268 ~ 2 — /3 < 3 <
1/4/3 =~ 0.577.

of these periodic points is warranted. For instance, when we computed the value g =~
0.4438656912, we saw that c, and c_ existed on the same periodic orbit. However, as we will
see, this is not always the case. Consider the only other period 2 value, § = 0.3836689425.
In this case we see that c; and c_ lie on disjoint periodic orbits. See Figure 7.2 for a
web diagram exhibiting this behavior. After realizing that two distinct types of behavior
were possible for superattracting critical points, a second program was written that not only
produced the periodic 8 values, but also labeled them according to the type of behavior
exhibited by their periodic orbits. For reasons we will see in the next section, we refer to
B-values for which ¢, and c_ lie on the same orbit as bitransitive, while values for which the
orbits of the free critical points do not coincide are referred to as disjoint.

As we can see, B-values for which ¢, and c_ lie on the same orbit occur relatively rarely
in contrast with the disjoint case. Note also that there do not exist §-values yielding a
bitransitive case with odd period. In fact, this will never be the case.

Lemma 6.5 For -values corresponding to superattracting periodic points with odd period,
cy and c_ do not lie on the same orbit.

Proof Without loss of generality, suppose Ng(c+) = c; for some primitive odd period
n. Further, suppose that c¢_ and c; lie on the same periodic orbit. This implies that
Nj(cy) = c_ for some k < n. However, since Ng is an odd function and ¢, = —c_, this also
implies that N, g(c,) = c;. Then, by a simple substitution we have

Ner) = N (N3 (e.)
= N5"(c-).
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B Type
0.4438657165 | Bitransitive
0.3835689425 Disjoint
0.2291103601 Disjoint
0.1341462433 Disjoint
0.3642913699 Disjoint
0.3363839984 Disjoint
0.2158225775 | Bitransitive
0.2113012969 Disjoint
0.1134351641 Disjoint
0.0616595671 Disjoint
0.2299712598 Disjoint

B Type
0.2296915054 | Disjoint
0.2275660932 | Disjoint
0.2249682546 | Disjoint
0.1846443415 | Disjoint
0.1577119529 | Disjoint
0.1301919222 | Disjoint
0.1289675832 | Disjoint
0.1125293225 | Disjoint
0.0917167962 | Disjoint
0.0570865125 | Disjoint
0.0298646167 | Disjoint

[ B N O N AN GUNGUN VI O s
O O O O O Ot Ot ot ot ot o3

Table 6.3: The table of periodic 8 values listed along with their type of dynamical behavior.

However, we also have that Ng(c+) = c_. Therefore, we see that c_ is periodic with even
period 2k. Again, given the symmetry of Ng, this also implies that c, is periodic with even
period 2k. Since k < n and n is the least period of the orbit, it follows that 2k must equal n.
But this contradicts the fact that n is odd. Thus, we see that for 3-values with odd period
superattracting orbits, c; and c_ cannot lie on the same orbit. []

Given Lemma 6.5, we focus our attention on periodic values of 8 with even period. It is
apparent through our collection of data that some type of bifurcation exists between the two
period 2 values, 8 = 0.4438657165 and 8 = 0.3835689425. The first of these points exists as
the first special case we discovered where the two free critical points lie on the same orbit.
However, as we proceed down the imaginary axis to the second period 2 point, this behavior
is lost. In order to get a better understanding of why this occurs, we look to the second
iterate of Ng. As mentioned earlier, dealing with even the second iterate of N analytically
is very difficult, so for this reason we turn to Maple to get a graphical understanding of the
second iterate.

We notice two distinct types of bifurcations occurring at our bitransitive and disjoint
periodic values. For instance, at the first bitransitive value, § = 0.4438656192, we notice
that the portion of the graph that breaks through the graph is parabolic in nature, which
lead to a saddle-node bifurcation. However, as we decrease 3 slightly, the graph of the
second iterate of Ng begins to alter in a qualitative way. The graph goes from having a
parabolic-like shape to a fourth degree-like “w” shape. When we look at the second iterate
for B = 0.3835689425, our second period 2 value, we notice the resulting behavior of a
pitchfork bifurcation (see Figure 6.5). This behavior seems to generalize well to all of the
periodic values produced by our program.

After examining the graphs of the higher iterates of Ng via Maple, it seems as though each
bitransitive value for 3 is a periodic value that results from a saddle node bifurcation, while
our disjoint cases are the result of pitchfork bifurcations. For example, this exact behavior
can be seen once again in the case of our bitransitive period 4 value, § = 0.2158225775 and
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Figure 6.5: Graphs of the second iterate of Ng. To the left we have the bitransitive case and
to the right we have the disjoint case for period 2 values of 5.

its closest disjoint neighbor, § = 0.2113012969. This can be seen in Figure 6.6.

Although we are only dealing with a cross section of the complex plane in this case, the
peculiar behavior that we have observed of Ny proves to be very insightful for the general
case. As we shall see, the type of superattracting periodic orbit that occurs on the imaginary
axis provides us with valuable information about what we should expect, and what we see,
when we move )\ off of the imaginary axis and into the first quadrant of the parameter plane.

0.8 0.6
0.7
0.6 0.5
0.5 |
/(
N 0.4 N 0.4
//
0.3
0.2 0.3
0.1
o 0.320.34 0.36 0.38° 0.4 0.42 0.44 0.46 0.48 0.5 0.270.30.327 0.34 0.36 0.38" 04 0.42 0.44 0.46 0.48 0.5

X X

Figure 6.6: Graphs of the fourth iterate of Ng. To the left (8 ~ 0.2158225775) we have the
bitransitive case and to the right (8 &~ 0.2113012969) we have the disjoint case for period 4
orbits.
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7 The General Case: Moving off Both Axes

Unfortunately, once we move off both the real and imaginary axes, we are no longer able
to work with the simplified versions of our Newton function as we had been doing in the
previous sections. Recall from Section 4 that the definition of the Newton function in the
general case is
Ny(2) = 3z —4Re(N)2* + (A2 = 1)22 + |\]?

A 423 — 6Re(N) 22 + 2(|A\|2 — 1)z + 2Re())’
Similarly, we must now deal with the general definition of the free critical points as well

Re(A) % 1/(Re )2 — 2(|A? — 1)
+ = 2 .

C

It is important to note, however, that we have only two free critical points. The A-parameter
plane for N, is shown in Figure 7.1. Here we follow the orbits of both critical points under
iteration of N, for varying A. The deeper red colors indicate faster convergence to a root,
while the lighter colors indicate a slower convergence. Black represents A-values where one
or both critical points fails to converge to a root after some specified number of iterations.
The same color scheme is used for all remaining figures in the parameter plane.

Figure 7.1: The A-parameter plane for N,. On the left, the window is [—2, 2] x [—21, 2i] and
on the right the window is [—1,1] x [—4, 1]

We find a striking similarity between the dynamical behavior of N, and that of a general
complex cubic polynomial. This is not entirely surprising, since a general cubic map has two
free critical points, which is exactly what we have for V,.

In [11], Milnor explains in detail the different types of dynamical behavior found in the
general cubic case. According to Milnor, there are four distinct classifications of hyperbolic
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components in the cubic case. These four cases are referred to as adjacent critical points,
bitransitive, capture, and disjoint periodic sinks. As suggested by our discussion in Section 6,
only two of these cases are relevant for our study of /V): the bitransitive and disjoint periodic
sinks cases (see Figure 7.2).

2 5.
Y N 1‘
Co 7
-2 1 / 1 2
X
—1
-1
-2 -1 1 2

-2

Figure 7.2: An example of bitransitive behavior (left) for a period 4 value of 8 and of disjoint
periodic sink behavior (right) for a period 3 value of 3.

Definition 7.1 Let U be the entire attractive basin for V). We find the following two types
of dynamical behavior in the A-parameter plane.

Bitransitive The two free critical points belong to different components Uy and U; of U,
but there exist integers p, ¢ > 0 such that f?(Uy) = U; and f9(U;) = Uy. We assume that p
and ¢ are primitive, so that both U, and U; have period p + g.

Disjoint Periodic Sinks: The two free critical points belong to different components U
and U;, where no forward image of U; is equal to Uy. In this case, each of the two components
Uy and U; must be periodic, though their periods p and ¢ may be different.

Milnor goes on to explain which types of dynamical figures we should expect from each
of these cases. In the Bitransitive case, there are two possibilities, either the swallow con-
figuration (indicated in Figure 7.3) or a three pointed configuration which Milnor terms the
“tricorn” (see Figure 7.4). The tricorn actually contains three embedded copies of the Man-
delbrot set, where the cusp of each has been stretched out over a triangular region, joining
them in this peculiar fashion. In the case of Disjoint Periodic Sinks, we are told to expect
either a product configuration (see Figure 7.5) or an actual copy of the Mandelbrot set itself
(see Figure 7.6).
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Figure 7.3: A swallow configuration in the parameter plane for N, centered at our bitransitive
value A\ ~ 0.443865i.

Figure 7.4: A tricorn in the parameter plane for N, centered at 1/0.443865 i, the inversion
of the bitransitive value from Figure 7.3.
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Figure 7.5: A zoom of the parameter plane near a disjoint periodic value A ~ 0.2291i,
exhibiting a product-like configuration.

Figure 7.6: A Mandelbrot-like set in the parameter plane centered at 1/0.2291 i, the inversion
of the disjoint periodic sink value found in Figure 7.5.
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Figure 7.7: The swallow which contains our second bitransitive value, A ~ 0.2158i.

Now, while we are not assured analytically where this behavior occurs off of the real and
imaginary axes, we do have bitransitive and disjoint periodic sink values of £ from our work
on the imaginary axis. Thus, we can attempt to locate these points in our more detailed
pictures of the complex planes, in hopes of explaining the general dynamical behavior of N,.
Furthermore, it should be noted that Milnor’s results cannot be directly correlated to our
work on Newton’s method simply due to the fact that we are dealing with a cubic-like map
and not an actual cubic polynomial.

Nevertheless, if we recall the hyperbola from Section 4 that helped us to define the nature
of our free critical points, we find some interesting parallels between our study and Milnor’s.
For instance, all of our bitransitive values that occur between the curves of the hyperbola,
where the free critical points are real, result in a swallow configuration in the parameter
plane (Figure 7.7). When these bitransitive values are inverted, and the free critical points
become complex, the result is a tricorn (Figure 7.8). Similarly, for our disjoint periodic sink
values, whenever the free critical points are real, the result is a product configuration. Upon
inversion, making our free critical points complex, we find Mandelbrot-like sets. Thus, it
seems that the nature of our free critical points is the determining factor behind which of the
dynamical components we should expect in the A-parameter plane. However, there are some
exceptions to this. For instance, there are disjoint periodic sink values that are very close
to bitransitive values and are contained inside of a swallow configuration in the parameter
plane. After studying this behavior extensively via computer experiments, we developed the
following conjecture:
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Figure 7.8: Another tricorn, this one containing the inversion of the bitransitive value in
Figure 7.7.

Conjecture: Each bitransitive A\-value where Re(A) = 0 and 0 < Im(\) < 1 is the center of
a swallow configuration in the parameter plane.

There is certainly a good deal more to be said about the A-parameter plane, though we
believe that the key to understanding exactly what is going on relies on a better comprehen-
sion of the general cubic case and how that information can be related to our Newton map
Nj.

8 Extending Work on this Family Further

Throughout this work, our main concern has been examining the A-parameter plane and
trying to categorize the various types of behavior that we find there. Of course, while we
were able to explain the existence of certain figures in correlation with Milnor’s work on
cubics, there is still much of the A-parameter plane that is left unexplained. It should be
noted however, that we were able to define the curves that bound the diamond shaped region
we find about the origin in the parameter plane (see Figure 7.1). These curves are the result
of A-values for which both p’ and p” vanish. That is, A-values for which the free critical points
of N, happen to coincide with one of its poles. A contour plot of these values then reveals
the four curves that bound the region of what appears to be chaotic dynamical behavior
about the origin.

We then suspect that the self-replicating “leaves” that can be seen approaching the real
axis in Figure 7.1 are preimages of the outermost bounding curves. Unfortunately, taking
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preimages of our Newton map is an extremely difficult task. While our suspicions can be
substantiated by numerical evidence, we are unable to define these curves analytically to
ensure that they are in fact preimages of our defined outermost curves.

Switching gears all together, an alternative approach to this family of polynomials that
has not yet been mentioned has to do with the dynamical plane. While we explained the
interesting behavior that occurs in the parameter plane at some length, it should be noted
that we have also observed some noteworthy phenomena in the dynamical plane. For in-
stance, as mentioned in Section 3, the Nearest Root Principle does not hold with respect to
our family of polynomials.

Furthermore, in studying the dynamical plane, we are able to get a better sense of exactly
how successful (or unsuccessful) Newton’s method can become in this particular instance.
While only studying the dynamical plane briefly, we were able to draw a few parallels from
our work with the parameter plane.

For example, the important value of A ~ 0.4438656912:, turns out to be quite useful
again in the dynamical plane, as it appears to be in a neighborhood of A values for which
Newton’s method fails on a fairly substantial portion of the complex plane. This can be seen
in Figure 8.1. This image was created by iterating each point in the complex plane under
Ny where A\ = 0.4438656912i. If the initial seed converges to one of the four roots, A, \, 1,
or —1, then it is colored yellow, red, blue or purple, respectively. If the initial seed does
not converge to within 107% of any root after 100 iterations, it is colored black. This same
scheme is used for the remaining figures in the dynamical plane.

Figure 8.1: The dynamical plane for A ~ 0.4438656912i, a bitransitive value.

However, once we cross our landmark value of A = (2 — \/?:)i, we see that the size of
the attractive basin for extraneous attractive cycles decreases significantly. In Figure 8.2,
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which depicts the Julia set for a disjoint period 3 value of A, it is difficult to detect any black
regions at all. Naturally, it would be worthwhile to try and understand this phenomenon
more rigorously.

Figure 8.2: The dynamical plane for A ~ 0.2291i, a disjoint periodic value of odd period.

Through our brief look at the dynamical plane, however, we were able to confirm some of
our beliefs having to do with the figures we found in the parameter plane. For instance, recall
the definition of bitransitive behavior from Section 7. In this case, the open sets U; and Us,
each containing one of the free critical points, become interchanged after some number of
iterations of N,. However, in the case of disjoint periodic sink behavior, something prevents
this from happening. The nature of these neighborhoods U; and U, about the free critical
points changes in some qualitative way.

As it turns out, after viewing the dynamical plane for our known bitransitive and disjoint
periodic sink values of A\, some conclusions can be drawn. In the bitransitive case, each
component in the attractive basin is a quasi-circular, connected set. This makes sense since
each component is mapped onto another component at some periodic interval. Examples of
this can be seen in Figures 8.1 and 8.3.

In the case of disjoint periodic sink behavior, the components in the attractive basin
appear to have been pinched off and separated, most likely as the result of a pole being
introduced (see Figures 8.4 and 8.5). This limits the way in which we are able to choose U
and U, about the free critical points of N,. As a result, forward iterates of U; and U, never
intersect, resulting in the disjoint behavior discussed previously in Section 6.

While this confirms our theories on bitransitive and disjoint periodic sink behavior, the
more interesting question still remains. That is, while we are familiar with some of the
dynamical components that we find in the A-parameter plane, are we assured that these are
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Figure 8.4: The dynamical plane for A ~ 0.3835i, a disjoint periodic value.
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Figure 8.5: The dynamical plane for A &~ 0.2113i, a disjoint periodic value.

the only types of components that can arise in the case of Newton’s method applied to a
fourth degree polynomial?

9 Appendix

/*******************************************************************

*

*
*
*
*
*
*
*
*
*
*

Author:
Date:
Purpose:

Trevor 0’Brien

June 25, 2004

Given a polynomial of the form $(x"2 - 1)(x"2 + \beta"2)$,
this program will determine which critical points are periodic
points of the corresponding Newton’s function. The user

may input the period they are looking for, and an upper bound
for the initial guess. A bisection method is used to narrow
in on the zero of the function $N"k(c) - c$. Such zeros are
periodic points of $N(x)$ with period $k$.

******************************************************************/

\#include <iostream>
\#include <math.h>
\#include <iomanip>
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float Newton(float beta, int period);
void GetInfo(int\& period);
void BisectionMethod(int period, float beta, float\& betaDifference,
float\& midpoint);
void DisplayResults(float betaDifference, float midpoint, int\& count, int period);
bool Bitransitive(float beta, int period);

int main()

{
float beta, midpoint, betaDifference;
int period, count;
beta = 0.58;
count = 0;
GetInfo(period);
while(beta > 0){
BisectionMethod(period, beta, betaDifference, midpoint);
DisplayResults(betaDifference, midpoint, count, period);
beta = midpoint - .000001;
}
cout << endl << setw(50) << "Goodbye for now!" << endl;
return O;
}

void BisectionMethod(int period, float beta, float\& betaDifference,
float\& midpoint)
{
float newBeta = beta;
float value = Newton(beta, period);

do{
newBeta = newBeta - 0.000001;
}while((Newton(newBeta, period)*value) > 0);
midpoint = (beta + newBeta)/2;
for(int i = 0; i < 100; i++){
if (Newton(midpoint, period)*Newton(beta, period) < 0){
newBeta = midpoint;

midpoint = (beta + midpoint)/2;
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betaDifference = Newton(midpoint, period) - Newton(beta, period);
Yelsed{
beta = midpoint;
midpoint = (newBeta + midpoint)/2;
betaDifference = Newton(midpoint, period) - Newton(newBeta, period);
}
}

void GetInfo(int\& period){

cout << endl << "Please enter period: ";

cin >> period;

cout << endl;

cout << "And the results..." << endl << endl;

cout << setw(35) << "The periodic points of period " << period
<< " are:" << endl << endl;

}

float Newton(float beta, int period)
{

float estimate, x, criticalPt;

criticalPt = sqrt((1 - pow(beta, 2))/6);
X = criticalPt;

for(int j = 0; j < period; j++){

estimate = (3*pow(x, 4) + (pow(beta, 2) - 1)*pow(x, 2) + pow(beta,2))/
(4xpow(x, 3) + 2x(pow(beta, 2) - 1)*x);

X = estimate;

}

return x - criticalPt;

void DisplayResults(float betaDifference, float midpoint, int\& count, int period)
{
if (fabs(betaDifference) < 1){
count++;
cout << count << ". ";
cout << setw(21) << setprecision(10) << midpoint;
if (Bitransitive(midpoint, period)){
cout << " BITRANSITIVE";
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}
cout << endl;
}
bool Bitransitive(float beta, int period){

float estimate, criticalPt, x;
bool bitransitive = false;

criticalPt = sqrt((1 - pow(beta, 2))/6);
X = criticalPt;

for(int j = 0; j < period; j++){

estimate = (3xpow(x, 4) + (pow(beta, 2) - 1)*pow(x, 2) + pow(beta,2))/
(4xpow(x, 3) + 2x(pow(beta, 2) - 1)*x);

X = estimate;
if(fabs(x + criticalPt) < .000001){
bitransitive = true;

}
}
return bitransitive;
}
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