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Abstract

Saari’s conjecture adapted to the restricted three-body problem is proven analytically
using BKK theory. Specifically, we show that it is not possible for a solution of the planar,
circular, restricted three-body problem to travel along a level curve of the amended potential
function unless it is fixed at a critical point (one of the five libration points.) Due to the
low dimension of the problem, our proof does not rely on the use of a computer.
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1 Introduction

Finiteness questions in the field of celestial mechanics have been prevalent in recent literature.
In particular, excellent progress has transpired concerning Saari’s conjecture for the classical
n-body problem [3, 7, 9, 10], a generalized Saari’s conjecture [5, 11, 13] and the Smale/Wintner
question [4] concerning the finiteness of relative equilibria in the n-body problem [14, 15].
Saari’s conjecture [12] simply states that the only solutions to the n-body problem with
a constant moment of inertia (a constant total size) are relative equilibria (rigid rotations).
Although at first glance this does not appear to be a question concerning finiteness, one successful
approach is to use the mutual distances as variables and show that imposing the fixed inertia
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constraint on a solution leads to a set of polynomial equations in these variables that has a finite
set of solutions. If all of the mutual distances are fixed, then the constant moment of inertia
solution must indeed be a rigid rotation, thus proving the conjecture.

This is precisely the approach taken by Rick Moeckel to prove Saari’s conjecture for the planar,
three-body problem in a wonderful paper utilizing Bernstein-Khovanskii-Kushnirenko (BKK)
theory [9]. What makes BKK theory so appealing is that it provides a relatively straight-forward
criterion for determining if a system of polynomial equations has a finite number of solutions for
which all variables are nonzero. Since both Saari’s conjecture and the Smale/Wintner question
can be formulated in terms of mutual distances that physically speaking, never vanish, BKK
theory is ideally suited to address these challenging problems.

Inspired by Moeckel’s work in [9], we use BKK theory to prove a version of Saari’s conjecture
for the planar, circular, restricted three-body problem. We show that the only solutions with a
constant value of the amended potential are equilibria, critical points of the potential function.
Equivalently, the only solutions with a constant velocity are fixed points (velocity zero). After
motivating the problem, we derive two polynomial equations in two distance variables which
must be satisfied by a solution with constant potential. We then apply BKK theory to show
that the number of solutions to this system is finite, thereby obtaining the result. Due to the
low dimension of the problem, it is possible to do all the necessary calculations by hand.

2 The Restricted Three-body Problem

To begin, we examine Saari’s conjecture for the Newtonian n-body problem [12]. Suppose that
q = (q1,92,---,9,) € R*" represents the coordinates of n bodies in the plane with respective
masses m;. The classical, planar n-body problem is characterized by the Newtonian potential

function U given by
m;m,;
U(q) = E - J

i<j Y
where 7;; = ||q; — q;|| measures the distance between the i-th and j-th bodies. The equations of
motion for the i-th body are
s = oUu
Zq’L - aqz

The corresponding set of differential equations is Hamiltonian with Hamiltonian H = K — U,
where K is the kinetic energy, given by

n

. 1 )
K(q) = 2 Z miHQi||2'

i=1
The moment of inertia I measures the total size of the system,

n

I(q) = 2 Z mi||qi||2'

=1



Without loss of generality, we have taken the moment of inertia with respect to a center of mass
fixed at the origin.

A solution rigidly rotating about its center of mass (the origin in our case) is called a relative
equiltbrium because it is a fixed point in a rotating coordinate system. This special solution takes

the form q; = R(wt)x; where
R(t) = [ cost —sint ]

sint cost

is a rotation matrix and x; is the initial position of the i-th body. Clearly, such a solution has
a constant moment of inertia. Saari conjectured that these are the only solutions in the n-body
problem having constant I [12].

Imposing the constraint I = ¢ on a solution is more restrictive than it first appears due to
the Lagrange-Jacobi identity [6]. Differentiating I twice with respect to ¢ and using the fact that
U is a homogeneous function of degree —1 leads to

I =2K-U = 2H+U.

Since H is a constant of motion, any solution with constant moment of inertia I must also have
a constant value of U and thereby, a constant value of K as well. This fact helps us motivate a
related conjecture for the restricted three-body problem.

The planar, circular, restricted three-body problem (PCR3BP) consists of two large masses
traveling along circular orbits and a third infinitesimal mass subject to the gravitation of the two
large “primaries.” All three bodies are traveling in the same plane of motion and the infinitesimal
mass is assumed to have no effect on the motion of the larger bodies. Without loss of generality,
we take the total mass of the two large primaries to be one. The equations of motion for the third
mass are usually taken in a revolving frame, rotating at the same speed as the two primaries. In
this frame, the first primary has position q; = (1 — p,0) and mass m; = p while the second is
located at qu = (—p, 0) with mass my = 1 — u. Note that the center of mass of the two primaries
is at the origin and consequently, in the non-rotating frame, each primary is on a circular orbit
centered at the origin. The mass parameter p is usually chosen so that 0 < p < 1, although our
methods allow for any value of i (even complex) with the important and physically necessary
condition that u # 0, 1.

Let (z,y) denote the position of the third body in the rotating frame with velocity (u,v).
The variables we use in our two key polynomial equations are a and b, representing the distances
from the infinitesimal particle to the first and second primary, respectively. Specifically, we have

a=(x—1+p?+y> and b=+/(z+p)+y2 (1)

The values of a and b determine a unique position (z,y) of the infinitesimal mass up to a sign
choice of y. The inverse of equation (1) is given by

z=3%—p+3i0*—a®) and y=+ivV—a*+2a2b? + 20> — b* + 202 — 1. 2
2 KT 3 Yy 2

The equations of motion describing the trajectory of the infinitesimal mass in the rotating



frame are given by

T = u
Yy = v
v = Vp+ 2w (3)
v o= Vy,—2u
where . . .
2 2 H — M
= — — - — 1—
is called the amended potential. It is well-known and easy to check that the quantity
1
E:§(u2+v2)—V (4)

is conserved for the above system. This is essentially the Jacobi integral. We have added a
constant to V' to make the change of variables from (z,y) to (a, b) easier. Regardless of the value
of the velocity (u,v), we must have E +V > 0. Thus, for a fixed value of the energy integral
E, the inequality V(z,y) > —FE determines a region in the zy-plane for which the motion of the
particle is confined.

The question we are concerned with in this work is whether it is possible for a solution
of the PCR3BP to travel along a level curve of V. By equation (4), such a solution would
necessarily have constant velocity (constant kinetic energy). Thus, this condition imposes the
same constraints as does Saari’s conjecture in the full n-body problem.

Moreover, any equilibrium in the PCR3BP has a constant value of V. In fact, the equilibria
for system (3) are precisely the critical points of V. It is well-known that there are exactly
five such points, called the libration points in classical literature [8]. Two of these are minima
located at (1/2 — u,++v/3/2), each forming an equilateral triangle configuration with the two
primaries. The remaining critical points are saddles found along the z-axis, one in each of the
three open intervals determined by the primaries, (—oo, —p), (—p, 1 — p) and (1 — p,00). Our
main result states that these are the only solutions with constant V', thus proving a version of
Saari’s conjecture for the restricted three-body problem.

Theorem 2.1 The only solutions to the circular, planar, restricted three-body problem with a
constant value of the amended potential V' are equilibria.

3 Saari’s Conjecture

In this section we derive two polynomial equations in ¢ and b that must be satisfied by any
solution having a constant value of the amended potential. We then apply a theorem from BKK
theory to prove the number of solutions to these equations is finite. By equations (1) and (2),
the number of solutions to any system of equations in one set of variables is finite if and only
if it is finite in the other set of variables. Thus, the values of (z,y) being held constant implies
that the solution is fixed and therefore at equilibrium.
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To obtain two equations in two unknowns we eliminate the velocity variables u and v. Suppose
that (x(t),y(t)) is a solution to the PCR3BP for which V(z(t),y(t)) = ¢/2 is constant. As
mentioned above, a constant value of V forces a constant value of the velocity. We set u?4+v? = k
for some nonnegative constant k. Differentiating V' = ¢/2 with respect to ¢ gives the identity
Vzu + Vyv = 0 which can then be used to solve for u and v,

_ =VEY, VA

=_' d p=_Y"-'z

IVV] Vv

The signs indicate that if 4+ is chosen for w, then — is taken for v and vice-versa. Our final
equation comes from differentiating V' = ¢/2 with respect to ¢ twice. By substituting in the
expressions for u and v and using the equations of motion, the end result is two equations in x
and y. In sum, the system of four equations in the variables z,y, v and v

V = ¢/2
vt =
Veu+Vyv =
V =0

can be reduced to a system of two equations in the variables  and v,

V = ¢/2
IVVI[* F 2VE [|[VV|P + k(VEVyy — 2ViVy Viy + ViVey) = 0. (5)
Denote A = Vnyy — 2V VyVy + V;wa. Equation (5) has an interesting geometric interpre-
tation in terms of curvature. Using the formula for the curvature of a planar curve, any solution

to the differential equation £ = £V}, § = FV, (necessarily traveling along a level curve of V') will
have curvature A

Fe—a-
IVVI?

This gives an intrinsic expression for the curvature of a level curve of V' at the point (z,y). On
the other hand, our solution (z(t),y(t)) traveling along a level curve of V' has curvature

K =

Ty =y
T k32
Equating these two expressions for curvature and using u?+v? = k gives an alternative derivation
of equation (5).
To remove the square roots from the second term on the left-hand side of equation (5), we
rearrange terms and square both sides. Our final system is

V. = ¢/2 (6)
IV = 4k[|VV][° + 2kA||VV|[* + KA = 0. (7)



Converting these equations into the variables a and b and clearing denominators produces a
system of two polynomial equations.
Equation (6) is readily converted into ab-coordinates using the identity

2 +y® = pa® + (1 — p)b® + pi* — . (8)
Using this substitution and multiplying through by ab, we obtain our first polynomial equation,
pa’b + (1 — p)ab® — cab+ 2(1 — p)a + 2ub = 0. 9)

To facilitate the calculations, we have written the polynomial on the left-hand side in lexico-
graphic order with the ordering a > b.

Equation (7) is considerably harder to compute by hand. Indeed, calculations using Maple
show that, upon clearing denominators, this polynomial has 404 terms (monomials in C|a, b]).
When the coefficients are expanded, it requires 30 8.5 x 11 pages to render the entire polyno-
mial. Fortunately, as explained in the next subsection, we need only compute two terms inside
equation (7), ||[VV||? and A, both of which can be calculated by hand.

Taking partial derivatives of V', we find

V. = Lo Mae=1+p) (A-plz+p

a’d b3

v, = y(l_%_(lb—gﬂ)>

ply’ =2 —14+p)*) (1 —p)y®—2(z+p)?)

szz = 1- a5 - b
pool-p

‘/yy = 2+ E + B3 - me
plz—14+p)  Q—p)(z+p)

Vey = 3y ( p + = )

Using equations (2), (8) and the identity

1
(@ +p)(z—1+p)+y" =@+ —1),
we compute

IVV][? = (pa®* — p(1 — p)a®b + (1 — p)a®d® — p(l — p)a’d* — (2 — p)(1 — p)a’d?
+u(1 = p)a'd + (1 — p)*a* — p(l + p)a®d* + p(l — p)a*b — p(1 — p)ab®
+u(1 = p)ab* + p(1 — p)ab® — p(1 — p)ab + p2b*) /a*bt.

The calculation of A, involving both the first and second partials of V', is more laborious, resulting
in an expression containing 44 terms in the numerator (see the Appendix for details.)



Figure 1: The Newton polytope for the equation uab + (1 — p)ab® — cab + 2(1 — p)a + 2ub =0
is a trapezoid in the ab-plane.

3.1 BKK Theory

To prove our main result we use a theorem from BKK theory first introduced to the field by
Moeckel [9]. Let C* = C—{0}. We think of each element k = (k1,...,k,) € Z%, as an exponent
vector of the monomial 21252 ... 2%» abbreviated simply as 2*. A polynomial f € Clz, ... z,] is

a sum of monomials, generically written as
f= E 2"
k

where ¢, € C* for each k£ and there are only a finite number of terms in the sum. The Newton
polytope for f, denoted N(f), is the convex hull in R" of the set of all exponent vectors k
occurring for f. For example, the exponent vectors for the polynomial in equation (9) are
(3,1),(1,3),(1,1),(1,0), (0,1). Therefore, the Newton polytope for this polynomial is a trapezoid
in the ab-plane, with vertices at (3,1), (1, 3), (1,0), (0,1). The vertex (1,1) lies inside the convex
hull determined by the others (see Figure 1).

Suppose that r = (r1,79,...,7,) is a solution to the system of m polynomial equations

fi(z1,.-,2zn) = 0
fo(z1,..0yzn) = 0
: (10)
fm(z1,--yz0) = 0,

that is, r belongs to the affine variety V(fi,..., fmm). We say that r lies in the algebraic torus T
if r; € C* Vi. For our problem, since neither variable can vanish, we are only interested in the
part of the variety lying in T. In general, we will call r a trivial solution if r; = 0 for some 1.
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The concept of the reduced equation is central to our work. Let o = (v, ..., ) be a vector
of rational numbers. For a given polynomial f, the reduced polynomial f, is the sum of all terms
of f whose exponent vectors k satisfy

a-k= min a-l. (11)
1EN(S)
The last equation defines a face of the polytope N(f) with inward pointing normal «, although
this face is not necessarily of codimension one. For all exponent vectors k£ on this face, the dot
product «-k will be strictly smaller than the dot product of a with any exponent vector elsewhere
in N(f).

Continuing our example above, consider the rational vector & = (1,1) and the Newton
polytope determined by the polynomial from equation (9). This is the inward pointing normal
for the lower left face and clearly, « - k£ attains a minimum of one along this face. Geometrically
speaking, the family of parallel lines a + b = 7, determined by the normal vector @ = (1,1),
attains a minimum value of v = 1 over the Newton polytope N(f). The only exponent vectors
coming from condition (11) are (1,0) and (0, 1). Therefore, for o = (1, 1), the reduced polynomial
fo 1s simply

fala,b) = 2(1 — p)a + 2ub.

In contrast, suppose that o = (1,3). This is not a normal vector to any of the four sides of
the trapezoid. However, the mimimum of « - & is attained over N(f) at the vertex (1,0). This is
a “face” of codimension 2. Geometrically speaking, the family of parallel lines a 4+ 3b = v taken
over N(f) has a mimimum value of v = 1 at the corner point (1,0). The reduced polynomial in
this case is simply

fala,b) =2(1 — pa
since the only exponent vector satisfying condition (11) is (1,0).

For a given rational vector & = (v, . .., o), the reduced equations for system (10) are defined

using the reduced polynomials corresponding to a:

fia(z1,-y2,) = 0
foalz1y - szn) = 0

: (12)
fma(21, ..., 20) = 0.

Bernstein makes use of these reduced equations in the following theorem [1]. A readable proof
using algebraic geometry and fractional-power Puiseux series can be found in [9].

Theorem 3.1 Suppose that system (10) has infinitely many solutions in T. Then there ezists
a vector o = (v, ..., ) with a; € Q and o; =1 for some j, such that the system of reduced
equations (12) also has a solution in T.

We will apply Theorem 3.1 to the polynomial system determined by equations (6) and (7),
written as polynomials in Cla, b]. For notational convenience, let

A=a'*||[VV|]? and B =4d"b'A
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so that A, B € Cla, b]. We clear denominators in equation (7) by multiplying through by 16a'65'6.
This yields the polynomial system

pa*b + (1 — p)ab® — cab+ 2(1 — p)a +2pb = 0 (13)
16A* — 64ka*b* A® 4+ 8kabA?B + k*a*V’B* = 0. (14)

As mentioned above, the Newton polytope for the first polynomial is a trapezoid in the ab-
plane, with vertices at (3, 1), (1, 3), (1, 0), (0, 1). To compute the second Newton polytope without
actually expanding each of the four terms in equation (14), we just search for the “outermost”
exponent vectors in Z2 . Any exponent vector (ky, k) lying vertically between two other exponent
vectors, can be ignored. For example, in A, the exponent vectors (1,4) and (1,3) lie between
(1,6) and (1,1). Equivalently,

ab® >len ab* >len ab® >iex Gb.

For a fixed power of a, we only keep the vectors with the highest and lowest powers in b,
since everything in between will lie inside the Newton polytope. This gives a simple method for
computing the Newton polytope of a polynomial in two variables. For each power of a, delete any
exponent vectors lying vertically between two others. Then, from the remaining set of vectors,
throw out any that lie inward of a line segment connecting two outer vectors.

An added benefit of this method is that we can construct the Newton polytope of A* by
building up from the outermost exponent vectors of lower powers of A. This follows because lex-
icographical ordering (or any monomial ordering) is preserved under multiplication by a mono-
mial. The “inner” vectors will only contribute to create more inner vectors and are thus ignorable
when computing the polytope of higher powers. For example, the outermost exponent vectors of
A are

(6,4),(6,1),(4,6),(4,0),(3,4),(3,1), (1,6), (1,1), (0, 4)

while the ignorable, inner vectors are
(4,4),(4,3), (4,1),(1,4), (1, 3).
Consequently, the outermost exponent vectors of A? are

(12,8), (12,2), (10,10), (10, 1), (9,8), (9, 2), (8, 12%(8, 0), (
(4,10), (4,2),(3,8),(3,5), (2,12),(2,2), (1, 10),

all of which are generated by adding two outermost exponent vectors of A together. Continuing
in this fashion, the outermost vectors for A* are easily deduced to be

6,8), (6,2), (5,12), (5, 1),

(24,16), (24,4), (22, 18), (22, 3), (21, 16), (21, 4), (20, 20), (20, 2), (19, 18), (19, 3), (18, 22), (18, 1),
(17,20), (17,2), (16, 24), (16,0), (15, 22), (15, 1), (14, 20), (14, 2), (13,24), (13,1), (12, 22), (12,2),
(11,20), (11, 3), (10, 24), (10, 2), (9, 22), (9, 3), (8, 20%(8,4)(7 24), (7,3), (6,22), (6,4),
(5,20), (5,7), (4,24), (4,4),(3,22), (3,7), (2, 20), (2, 10), (1, 18), (1,13), (0, 16)



Figure 2: The Newton polytope for equation (14) has only seven vertices.

The outermost vectors for the remaining three terms of equation (14), a*b* A%, abA? B and a?b*> B?,
can be computed in a similar manner. Taking the union of all these vectors and then computing
the outermost vectors of that union gives

(24,16), (24,4), (22, 18), (22, 3), (21, 16), (21, 4), (20, 20), (20, 2), (19, 18), (19, 3), (18, 22), (18, 1),
(17,20), (17,2), (16, 24), (16,0), (15, 22), (15, 1), (14, 20), (14, 2), (13, 24), (13, 1), (12, 22), (12, 2),
(11,24), (11,2), (10, 24), (10,2), (9,22), (9,3), (8, 24), (8, 3), (7, 24), (7, 3), (6, 24), (6, 4),
(5,24), (5,4), (4,24), (4,4), (3,22), (3,7), (2, 20), (2,10), (1, 18), (1, 13), (0, 16).

Remarkably, most of these exponent vectors come from the first term in equation (14), 16A%.
Only six vectors come from 8kabA? B, two arise out of k?a?b? B? and none come from —64ka*b* A3.
A simple hand-drawn plot of these last 47 vectors yields the Newton polytope for the polynomial
in equation (14). It has only seven vertices:

(24,16), (24, 4), (16, 24), (16,0), (4, 24), (4,4), (0, 16)

(see Figure 2). Although this seems a surprisingly small number, many of the remaining exponent
vectors (22 to be precise) can not be discarded as they lie on an edge of the Newton polytope
and consequently will have to be included in the reduced equations for that face.

3.2 Proof of Theorem 2.1

We now prove Theorem 2.1 using BKK theory. By contradiction, suppose that the system of
equations (13) and (14) has an infinite number of solutions in T. By Theorem 3.1, there exists
a vector of rationals (a1, ap) with a; = 1 for some i such that the system of reduced equations
also has a solution in T. We will show that all choices of « lead to only trivial solutions, where
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either a = 0 or b = 0. Throughout the proof, the only restrictions on the mass parameter u are
p# 0, p# 1

First, consider the Newton polytope for the simpler equation (13). Moving counterclockwise
from the top of the polytope, the inward pointing normals with at least one component equal to
one are (1,—1/2),(1,1) and (—1/2,1). We claim that these are the only three vectors we need to
consider. Each vertex of the polytope corresponds to only one term of the polynomial, and this
term vanishes only if one of a or b is zero. For example, any vector of the form o = (1, ¢), where
g is some rational number satisfying —1/2 < ¢ < 1, will achieve a minimum dot product over
the polytope at the vertex (0,1). The first reduced equation for all of these vectors is identical,
simply 2ub = 0 which has no solutions in T. In this case, we avoid having to examine the reduced
equation of (14) because the first reduced equation has only trivial solutions. Thus, even though
(1,1/3) is an inward pointing normal for the second polytope, it leads to a trivial reduced first
equation. A similar argument works for the other three vertices, thereby eliminating all vectors
« from contention other than (1,—-1/2),(1,1) and (—1/2,1).

Beginning with @ = (1,—1/2), we see that this is also an inward pointing normal for
the second polytope. The exponent vectors lying on this edge for the second polytope are
(0,16), (1,18), (2,20), (3,22), (4, 24) all of which come solely from the A* term in equation (14).
In fact, all of these exponent vectors arise from raising the binomial —u(1 — u)ab® + p2b* to the
fourth power. Thus, the reduced equations corresponding to a = (1, —1/2) are

(1—pab®*+2ub = 0
16(—p(1 — p)ab® + p?6")* = 0

which simplifies to

b((1 — pab®* +2u) = 0
16020 (— (1 — p)ab® + p)* = 0.

Since b # 0, we can substitute —(1 — p)ab? = 2u from the first equation into the second to obtain
166" (3p)* = 0.

Since this last equation has only b = 0 as a solution (assuming g # 0), we have eliminated
a = (1,—1/2) from contention.

Next, we consider the vector & = (1,1) which leads to a nontrivial reduced first equation.
However, the reduced second equation for this vector corresponds to just the vertex (4,4) and
like the previous case, this exponent vector arises from the A* term. This gives a trivial reduced
second equation of

16(—p(1 — p)ab)* = 0

which has no solutions in T since p(1 — p) # 0.

Finally, we examine the reduced equations for the vector & = (—1/2,1). This is also an
inward pointing normal of the second polytope, whose edge contains the exponent vectors
(24,4), (22,3),(20,2),(18,1) and (16,0). Fortunately, as with o = (1, —1/2), these exponents
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all come from the A* term, occurring by raising the binomial —u(1 — u)ah + (1 — u)?a* to the
fourth power. In factored form, the reduced equations for o = (—1/2,1) are

a(pa’b+2(1 - p)) =
16(1 — p)*a*®(—pa®b+1 - p)* = 0.

Since a # 0, we can substitute —ua®b = 2(1 — p) into the second equation, obtaining
16(1 — p)*a"*(3(1 — p))* = 0.

This last equation has only @ = 0 as a solution since p # 1. This eliminates the last remaining
vector from contention. Thus, for any choice of «, the reduced equations do not have a solution
in T. This contradiction proves that the system of equations (13) and (14) has a finite number
of nonzero solutions. This completes the proof of Theorem 2.1. 0

Remarks:

1. As stated in the introduction, a simple corollary to Theorem 2.1 is that any solution to
the PCR3BP with a constant velocity must be at rest at one of the five libration points.
This follows from equation (4) since constant velocity u? + v? implies constant potential
V. This has an interesting interpretation in terms of orbital mechanics. For example, it
is not possible to have a satellite, moving only under the influence of gravity, to orbit the
Earth-moon system at a constant speed.

2. In [9], Moeckel computes the normal fan of the Minkowski sum polytope (the “big Minkowski”)
in order to insure that all vectors « are accounted for when applying Theorem 3.1. In our
case, this is not necessary since we only have two polytopes and the reduced first equation
is trivial at each vertex of the first polytope.

3. One of the nice aspects of doing the calculations by hand for equation (14) is that it
provides insight into why Theorem 3.1 can be successfully applied to our problem. In the
calculation of the second Newton polytope, nearly all of the vertices arise from the A*
term. Consequently, the reduced second equation for the inward pointing normals come
from raising a positive term to the fourth power. Thus it is not surprising that such an
equation has only trivial solutions. Interestingly enough, using Theorem 3.1 to show that
the number of equilibrium points for system (3) is finite will not succeed. In this case, the
reduced equations for V, = 0,V,, = 0 written as polynomials in a and b have nontrivial
solutions along two faces.

4. The area of the Minkowski sum polytope is 556.5. Subtracting off the areas of the polytopes
in Figures 1 and 2 gives a mixed volume (or area in this case) of 104. This is the number
of nontrivial solutions to equations (13) and (14) counted with multiplicities. Since the
number of real solutions is 4 (one for the Lagrange equilateral triangle a = b = 1, and three
for the collinear equilibria), 100 of these solutions must be complex-valued.
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4 Appendix

To calculate A = V2V, — 2V, V,V,, + V;Vm by hand, we simplified the quantity V2V, + V;fVm
and —2V,V,V,, separately, converted each expression into a and b variables, and then combined
like terms, obtaining

A = (=3p?(1 — p)a*tb? + 4pa®b” — 2u(1 — p)(4 — 3u)a’b* + 6p2(1 — pu)a’b?
+4p(1 — p)?a®b + 6% (1 — p)a®b® + 4(1 — w)a™ — 4p(1 — p)a’™» — (1 — p)(3u® — 8 + 12)a™v®
+2p(1 = p) (4 + p)a’™d* +4(1 = p)*(3 — p)a’™® — 3p*(1 — p)a’d® — 4p(1 — p)?a’b — 4(1 — p)*a’
—p(Bp? + 2p + 7)asb” + 2u(1 — p) (7 — 5p)abb* — 12u2(1 — p)a®v? — Tu(1 — p)2a®b
=3p* (1 — p)ad?* = 2u(1 — p) (1 + 3p)a’d® + 2u(1 — p) (5 — p)a’d” + 2u(1 — p)(2 + 5p)a’d’
—20u(1 — p)a*d* — 2pu(1 — p)?a*d® + 6p2(1 — p)a*d?® + 10u(1 — p)?a*b + 4p*(2 + p)a®b”
—2u%(1 — p)a*b* + 6p2(1 — u)a®b? — 3u(1 — p)?ab't + 6p(1 — p)?a?b® + 6u(1 — p)?a?b®
=3u(1 — w)?a?b” — 12p(1 — p)%a?b® — 3u(1 — p)?a?b® + 61(1 — p)?a®b* + 6p(1 — p)%a®b?
=3u(1 — p)?a?b + 4p*(1 — p)ab® — 4p*(1 — p)ab” — 7u?(1 — p)ab® + 10p*(1 — p)ab*
—3u*(1 — pw)ab® — 4p3b7) /(4a™b7).
This expression was confirmed using Maple.
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