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Abstract

For the Newtonian n-body problem, Saari’s conjecture states that the only solutions
with a constant moment of inertia are relative equilibria, solutions rigidly rotating about
their center of mass. We consider the same conjecture applied to Hamiltonian systems
with power-law potential functions. A family of counterexamples is given in the five-
body problem (including the Newtonian case) where one of the masses is taken to be
negative. The conjecture is also shown to be false in the case of the inverse square
potential and two kinds of counterexamples are presented. One type includes solutions
with collisions, derived analytically, while the other consists of periodic solutions shown
to exist using standard variational methods.
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1 Introduction

We investigate a generalized version of Saari’s conjecture for an n-body problem with power-
law potential functions. Let q = (qi,Q9,...,q,) € R* represent the coordinates of the n
bodies in position space with respective masses m;. The family of potential functions U(q) of

interest for this work is "
U= —3° (1)

T
i<j tJ

where r;; = ||q; — q;|| measures the distance between the i-th and j-th bodies, and a > 0 is
a real parameter. We will usually treat the masses m; as positive, real numbers. However,
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interesting solutions arise when at least one mass is taken to be negative. Let M = m; +---+
m,, represent the total mass. Without loss of generality we assume that the center of mass

1 n
q = —Z miq;
M=

is always at the origin.
The case a = 1 corresponds to the classical n-body problem of celestial mechanics. Note
that U(q) is a homogeneous potential of degree —a.. The equations of motion for this potential

function are )
mim;(q;
= T Z > ai2 (2)

i#]

The key quantity for this work is the moment of inertia /, measuring the size of the system
with respect to the center of mass, given by

mi;q; =

1 n
I(q) = 2 Z mi||Qi||2'

i=1

The system of differential equations determined by (2) is a Hamiltonian system with Hamil-

tonian function
n

H=1 3" milal? - Ula)
i=1
One simple but very important type of solution to these physical systems is a relative
equiltbrium, named in part because it is a fixed solution in a rotating coordinate system. To
define these special trajectories, we first introduce the notion of a central configuration, which
plays an important role in the counterexample developed in Section 2.

Definition 1.1 A central configuration for a system of type (2) is a configuration x € R3"
which satisfies the algebraic equations

VU(x)+ AVI(x) =0. (3)
for some value of \.

From the definition above, a central configuration is a critical point of the potential function
U restricted to the “mass ellipsoid” defined as the level set I = k, where A plays the role of
a Lagrange multiplier. Classifying central configurations and illuminating their properties is
an on-going subject of interest in celestial mechanics [7, 15]. Central configurations can be
collinear, coplanar or spatial.



Suppose for the moment that we are in the planar n-body problem, with the position
vector q € R*™. Denote R(t) as the rotation matrix

R(t) = [cost —sint] ()

sint cost

and let R(t)q = (R(t)ai, R(t)qq, ..., R(t)q,). Any planar central configuration x begets a
family of homographic solutions that preserve the shape of the configuration. Those solutions
for which the size is also constant are called relative equilibria.

Definition 1.2 A relative equilibrium for a planar Hamiltonian system of type (2) is a solu-
tion of the form q(t) = R(wt)x.

It follows by substituting q(¢) = R(wt)x into equation (2) that x must be a planar central
configuration with multiplier A\ = w?. A relative equilibrium is a periodic solution whose initial
configuration (determined by x) is rigidly rotated about the center of mass (in this case the
origin). While spatial central configurations exist, it is not possible to have a purely spatial
(non-coplanar) relative equilibrium.

Note that the equations for a planar central configuration are invariant under rotation.
Specifically, if R is a 2 x 2 orthogonal matrix and x is a central configuration with multiplier
A, then Rx is also a central configuration with the same multiplier. When counting solutions
to equation (3) for a fixed multiplier A, it is standard to identify solutions which are identical
under rotation, and refer to equivalence classes of central configurations. Holding A fixed
enforces a particular size on the configuration, so we can ignore scalar changes in the positions
of the bodies. For our purposes, a relative equilibrium will always denote a particular solution
to the differential equations defined by (2) while an equivalence class of relative equilibria
refers to the set of all planar central configurations that are equivalent under rotation.

In 1970, Don Saari made a wonderful conjecture regarding trajectories of a fixed size: Every
solution of the Newtonian n-body problem that has a constant moment of inertia is a relative
equilibrium [14]. No proof or counterexample for the planar case n > 4 or for the spatial
case n > 3 has been offered. If Saari’s conjecture were true, it would be a remarkable fact.
Imposing a restriction on the size of a solution, seemingly a minor constraint in a many-body
problem, forces that solution to become a rigid rotation.

The conjecture has recently generated a good deal of scholarly interest, in part due to a talk
given by Chris McCord at the Midwest Dynamical Systems Conference held at the University
of Cincinnati, October 4-7, 2002. At the meeting McCord announced a computer-assisted
proof of the conjecture for the equal mass planar 3-body problem [6]. Rick Moeckel has
developed an interesting computer-assisted proof using BKK theory and algebraic geometry
for the planar three-body problem using mutual distances as coordinates [8]. Moeckel’s work
applies to any choice of masses (including negative values) as long as m; # 0 Vi and M # 0.
Jerry Marsden proposed a generalized version of Saari’s conjecture at the same Midwest



meeting: For a simple mechanical system with symmetry on the configuration manifold, the
locked inertia tensor I1(q) is constant along a solution if and only if q is a relative equilibrium.
Marsden’s generalization appears to be more restrictive on the motion than Saari’s original
conjecture and is not discussed here.

We present several counterexamples to a simple generalization of Saari’s conjecture to me-
chanical systems of type (2) with potential function (1). We begin by showing that Saari’s
conjecture fails in the five-body problem for the masses (1,1,1,1,—1/2%"!). The counterex-
ample presented is valid for all « and is based on a continuum of planar central configurations
established in [13]. The relationship between Saari’s conjecture and a famous question on the
finiteness of equivalence classes of relative equilibria is discussed as well. The existence of a
counterexample to Saari’s conjecture given a continuum of planar central configurations was
independently pointed out by Alain Chenciner in the proceedings of the Celestial Mechanics
Conference in honor of Don Saari [2].

In Section 3 we show that Saari’s conjecture is false for the inverse square potential (o = 2.)
This potential has been well studied, dating back to the works of Newton and Jacobi [5]. One
counterexample is derived in Section 3.1 for the equal mass 4-body problem. The configuration
for this solution is always a rhombus with constant side length, beginning and ending in
binary collision. In Section 3.2 we use standard variational techniques to prove the existence
of periodic solutions with constant inertia which are not relative equilibria. Although these
examples may cast a shadow of doubt on the validity of Saari’s conjecture for the Newtonian
n-body problem, we are unable to make any definitive claims as to the truthfulness of that
conjecture.

2 A Continuum of Relative Equilibria

There is a clear connection between Saari’s conjecture and an old question in celestial me-
chanics posed by Wintner [18] and later re-emphasized by Smale as one of his open problems
for the 21st century [17]. The question is whether the number of equivalence classes of relative
equilibria in the n-body problem is finite or not. To date, finiteness has only been proven
for the case n = 3, for four equal masses [1] and generically when n = 4 [9]. Since planar
central configurations can be formulated as critical points of the potential function restricted
to the mass ellipsoid I = k, an entire curve of such critical points would present a tempting
counterexample to Saari’s conjecture. In a relative equilibrium solution, each configuration
along the orbit is also a critical point of U restricted to I = k.

Although the two conjectures are certainly not equivalent, there is a relationship worth
pursuing. It is straight-forward to see that a continuum of relative equilibria will provide a
solution to the m-body problem if and only if each component is the solution to the same
harmonic oscillator equation.

Lemma 2.1 Suppose that q(s) is a one-parameter family of planar central configurations,
that is, q(s) satisfies equation (3) for each value of s, for the same multiplier X > 0, with
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I(q(s)) = k a constant. Then, q(s) is a solution to the generalized n-body problem described by
system, (2) if and only if each component of q;(s) can be expressed as & cos(v/ X s)+Esin(vV/ X s).

Proof: This follows directly from equation (3). Substitution of q(s) into the differential
equation (2) yields

d’q; _ 0U(q(s)) 0I(qa(s))

i = = —A—F— = —Amq;.
s 0q; 0q; md

Thus, in order for q(s) to be a solution, each of its 2n components must satisfy the standard
harmonic oscillator equation with frequency v/A/(27). This is both a necessary and sufficient
condition. Note that any relative equilibrium solution satisfies this requirement since each
component is the product of the orthogonal matrix R(v/) s) and a constant vector. 4

Under the same hypotheses as the lemma, the power-law potential function U is constant
along q(s) taking the value 2\k/a. This is easily seen by taking the dot product of q(s) with
equation (3) and using the fact that U is homogeneous of degree —« and I is homogeneous
of degree 2. We then obtain

—aU(q(s)) +2 M (q(s)) = 0 ()

or U(q(s)) = 2X\k/a.

While it seems unlikely that a continuum of relative equilibria equivalence classes exists
in the classical n-body problem, there is an example if the coefficients m,; are allowed to take
on different signs. In [13] we presented such an example for the Newtonian 5-body problem.
For the case of the generalized potential function U in equation (1), this continuum of central
configurations occurs in the planar 5-body problem with masses m; = my = m3 = my =1
and mg = —1/22FL,

To begin, we describe a symmetric configuration by setting q = —q;,q4+ = —q3 and
qs = (0,0). By the perpendicular bisector theorem (see [7],) for the configuration to be
central and non-collinear, it follows that the positions of the 3rd and 4th bodies must lie on
the perpendicular bisector of the segment joining q; and q2. This places the first four bodies
at the vertices of a thombus. Identifying R? with C, we set q; = ze? and q; = yie?, with
x >0,y > 0 and 6 as real variables (see Figure 1 where § = 0.) It turns out that for the
values of the masses stated above, this yields a planar central configuration for all & and any
choice of =,y or 6.

Theorem 2.2 Let my = my = mg = my = 1 and ms = —1/2°%1. Set q = ze?, qy =
—q1,93 = yie? qu = —q3 and qs = 0. This configuration is central for all o with multiplier

A = 2a/c®t? where ¢ = \/2? + 12



Figure 1: The 14+rhombus family of relative equilibria, where # = 0 and m = —1/2%*1.

Proof: It is a straight-forward calculation to check that this set up satisfies equation (3) for
any value of a. The mutual distances are rio = 2x,7r34 = 2y,7T13 = T14 = T93 = T94 = C,T15 =
ros = x and 135 = 7145 = y. The symmetry implies that the forces on the first and second
bodies differ only in sign, as do the forces on the third and fourth bodies. The forces on the
central body cancel out to zero. Equation (3) then reduces to the two equations

2ze?®  xe? —yie?  xet + yiet zetd e 0
~*\(22)e cotz cat2 " patigatz | TA¥ET =

2uie’?  yie? —xe?  yie? + ze? yie® \uie? 0

- (2y)a+2 ca+2 cot+2 - Qot1yat? +Ayee” = 0.

Dividing the first equation by ze? and the second by yie® yields

2 2 1 \ =
—a (2$)a+2 cot2  Qatlpat2 + =0

+
2 2 1
o ((Qy)a+2 Tz T 2a+1ya—|—2> tA =0

Remarkably, both of these last equations are satisfied with the correct choice of the multiplier
A = 2a/c**? independent of the values of z,y or 6. Il

Note that the inertia for any configuration in the continuum is given by I = 22 4+ y? = ¢%.
Holding the inertia constant will require the side of the rhombus to remain constant as well.
The potential function becomes a function of two variables and U(z,y) = 4/c* is constant for



any choice of x,y satisfying 22 + 32 = c2. As a check, equation (5) then gives the value of A
listed in the theorem.

Physically, the reason the continuum works is that the negative central mass acts as a
repeller cancelling out the forces along the diagonals of the rhombus. The corresponding
centrifugal force needed to maintain the equilibrium works out to be the same for the 1st
and 2nd bodies as it is for the 3rd and 4th, essentially because the equations for each pair
of bodies decouples. It should be pointed out that I(q) is no longer positive definite when
negative masses are allowed. This means that requiring solutions to satisfy I = ¢? constrains
them to a mass hyperboloid rather than a mass ellipsoid. Thus the potential function can
remain constant even if the configuration is arbitrarily close to triple collision.

To find a solution to the generalized n-body problem with constant inertia I = c2, we
must choose a path q(s) through the continuum such that each component satisfies the same
harmonic oscillator equation

d*q; .
ds?

with A = 2a/c®*2. We now calculate all such possible paths for fixed ¢ and c.
Substituting q; = ze into equation (6) leads to the system of differential equations

—Aq; (6)

i—z6 = —)z
260 +x6 = 0.
Multiplying the second equation by z and integrating once leads to the identity 20 = wi,

where w; is an integration constant. Similar equations are obtained for q3 = yie? resulting in
the system

I = % -\ (7)
2

. w

j o= y—§ — Ay (8)

. w1 wo

with two integration constants w; and w,. This system must be solved subject to the constraint
12 + y? = 2. Multiplying this constraint by 6 and using equation (9), we see that =
(w1 + wy)/c®. There are two cases depending on whether the angle # moves uniformly or is
constant.

Case 1: wjws # 0

Equation (9) implies that w; and wy have the same sign, that is, wiws > 0. This in turn
implies that wy + we # 0 and that w; /(w1 + we), we/ (w1 + we) are positive constants less than
one. Equation (9) then yields

x=yw/(w +ws)c and y=+/wy/(w;+ws)c
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both constant, so that the motion is a relative equilibrium. Substituting these values for x
and y into the differential equations (7) and (8) gives the condition w; + wy = sgn(w;)vV/Ac2.
Therefore, the angular velocity of the relative equilibrium depends only on ¢ (and «) and a
choice of sign, (s) = £v/As + 6. There are essentially two free parameters, w;, controlling
the breadth of the rhombus and 6, specifying a starting angle.

Case 2: wjwy =0
Note that since z and y are both positive, equation (9) shows that

w =0 iff wy=0 iff §=0.
In this case we obtain the simple system
==Xz, §=-M\y. (10)
Differentiating the constraint 2% + y? = ¢? once yields the relation
TT = —yvy. (11)

Another differentiation and substitution using equation (10) gives i? + 9> = Ac¢?. Finally,
replacing ¢ in this last equation with the value given in (11) yields

= 14] (12)
Of course we know that z is a simple harmonic oscillator x(s) = k; cos(v/As — ky) for
some constants k; and k,. Substitution into equation (12) gives y(s) = |k; sin(v/As — k)| and
since x and y are constrained to a circle of radius ¢, we have |k;| = ¢. Varying k, results in
a reparameterization of time, thus we set ks = 0. There are two types of motion depending
on which pair of bodies comes from or heads toward triple collision. The side length of the
rhombus remains constant during the motion but one of the diagonals collapses as the other
is enlarged.
The motion for solution Type A is described by

7
z(s) = ccos(VA s), s)=csin(vVAs), 0<s<——
(5) = ceos(VAs),  y(s) = esin(vXs) o
which has bodies 3 and 4 coming from a triple collision at the origin and bodies 1 and 2
heading towards a triple collision. The motion for solution Type B is described by

: T
z(s) = ccos(VAs), y(s) csin(VA s), Wil <s<0
which has bodies 1 and 2 coming from a triple collision at the origin and bodies 3 and 4
heading towards a triple collision. The value of 6(s) = 6, is arbitrary and simply controls the
angle of the diagonal between bodies 1 and 2. The two motions are identical under a 90-degree
rotation of fy and a relabeling of the masses. Clearly, neither type of motion corresponds to
a relative equilibrium.



Theorem 2.3 For each c,a > 0, there exist two types of solutions to the generalized 5-body
problem with masses (1,1,1,1, —1/2%1) which have a constant moment of inertia I = c¢* but
are not relative equilibria. At any fized time the configuration of bodies forms a planar central
configuration. Each motion begins and ends with triple collision.

Remark: The calculations above show that if the moment of inertia is held constant, then
solutions of Type A and B are the only possible non-relative equilibrium motions passing
through the continuum of central configurations. Other interesting motions are possible if the
inertia is allowed to vary but these are not counterexamples to Saari’s conjecture.

Corollary 2.4 If negative masses are permitted, Saari’s conjecture fails in the generalized
5-body problem.

One important consequence of the theorem and its corollary is that any algebraic proof of
Saari’s conjecture for the Newtonian five-body problem will need to restrict the coefficients
m; to be positive or else yield conditions on the masses which necessarily exclude the case
above. Straight-forward applications of techniques from algebraic geometry may not succeed
without being aware of this restriction.

3 The Inverse Square Potential

In this section we explain why Saari’s conjecture fails in the case of the inverse square potential
U(q) = Y mgm;/r;}. There is a relatively large set (codimension 2) of choices for the initial
positions and velocities of the n bodies leading to solutions with a constant moment of inertia
which are not relative equilibria. One specific example is presented in Section 3.1 for the case
of four equal masses. It is a rhombus with constant side length, beginning and ending in
a binary collision. The strong amount of symmetry present allows us to explicitly calculate
a simple expression for this solution. The existence of families of periodic solutions with
constant inertia is easily proven using variational methods.

Due to the well-known Lagrange-Jacobi identity [5], it is clear that for the special case
«a = 2, solutions with constant inertia are readily found. To derive it, treat the inertia I as a
function of ¢ and differentiate once obtaining

I = Z miq; - q; -
i1

Using the fact that U is homogeneous of degree —q, a further differentiation yields the
Lagrange-Jacobi identity

. n ) - oU
I=> millall”+) G 5o = 2H+2-aU (13)
i=1 i=1 t
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Therefore, if o # 2, the moment of inertia I being constant along a solution forces the potential
function U to be constant as well. This added constraint on the motion is used by McCord
and Moeckel in their proofs for the Newtonian potential function. For the case a = 2, it is
possible to have solutions containing collisions (infinite potential) while still having constant
moment of inertia.

Setting a = 2, two integrations of (13) yields the important formula

I(t) = Ht® + cit + ¢,

where ¢; and ¢y are integration constants. This equation appears in Jacobi’s famous “Vor-
lesungen tiber dynamik” [5]. If q(t) is a periodic solution, I(¢) must also be periodic, from
which it follows that H = ¢; = 0 and I(¢) is necessarily constant. Therefore, any periodic
solution for the inverse square potential mechanical system necessarily has constant moment
of inertia [3]. Any such solution which is not a relative equilibrium is a counterexample to the
generalized Saari’s conjecture.

Note that ¢; = I(O) If the initial positions and velocities are chosen so that H = ¢; = 0,
then the corresponding motion will have constant inertia. The constraints H = 0 and I = 0
generically define a codimension two manifold in the phase space of the n-body problem
(R* — X)) x R*" where ¥ is the set of collisions ¥ = {q € R*" : q; = q; for some 7 # j}. It is
not difficult to find initial conditions that satisfy these two constraints.

Theorem 3.1 Let n > 3. Suppose that n — 1 initial positions and velocities are arbitrarily
chosen for n — 1 bodies, with the minor requirement that

(a:(0) — q;(0)) - (di(0) — ¢;(0)) # 0 (14)

for some pair of distinct indices 1 and j. Then, it is possible to specify the location and
velocity of the n-th body so that H = I = 0. The solution satisfying these initial conditions
has constant moment of inertia but is not a relative equilibrium.

Proof: Note that in the case n = 2, the only periodic solutions possible are relative equilibria.
This is easily seen for the inverse square Kepler problem since a constant value of I implies a
constant length of the position and velocity vectors.

Fix the positions and velocities of the first n — 1 bodies. The two equations H = 0 and
I =0 can be written in terms of the unknowns q, and q, as

B+ HqTLHanHCOSHTL =0
Bo+ ldn|* = Ulaa) = 0
where 8; and B, are real constants depending on I and the energy of the n — 1 fixed bodies,
6, is the angle between the vectors q,, and q,, and U is an amended potential function

n—1

Oan) = 2> 7.

=1 v

3
S
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Choose the position of the n-th body q, # 0 such that

U(qn)_ﬂQ > 0

and ||qu|[ /U (an) — B2 > |5l

If 3, is large and positive this requires that q, be chosen to lie within some small neighborhood
of one of the first n — 1 bodies so as to make the amended potential U large enough. The
inequalities above in the variable q,, determine some closed region in space, disconnected if
B is sufficiently large and positive.

Now set
|dnl| = U(Qn) — By and 6, =cos™! —b

[1aal14/U (an) = B2

As a result of these choices, H = I = 0, so that the moment of inertia I is constant.

The condition (14) is needed to insure that the ensuing motion is not a relative equilibrium.
This condition does not depend on the center of mass, an important trait since apriori, q is
unknown until q,(0) is chosen. Suppose that q(t) is a relative equilibrium motion in R3".
Then each component can be described by q;(t) = PA(wt)PTx; + q(t) for some orthogonal

matrix P where @
R(t) O
A(t) = { () 0 }

and R(t) is the standard 2 x 2 rotation matrix (4). Using the fact that A(¢)x is orthogonal to
£ A(t)x for any vector x, it is straight-forward to compute that the vectors q;(t) — q;(t) and
di(t) — q;(t) are orthogonal for all pairs ¢, j at any time ¢. O

Remark: In the spirit of Saari’s conjecture, since the moment of inertia I is being measured
with respect to the origin, we should also require that the center of mass in any counterexample
be fixed at the origin. This is not necessarily the case for a solution q(t) satisfying H = I=o.
However, since the size of the system is constant, it follows that q is constant. Consider the
solution q(¢) — @ which has its center of mass at the origin. It is straight-forward to show that
both H and I vanish along this solution as well, due to the invariance of H under translation
and the fact that q = 0. Therefore, any solution with constant I can be translated into
another solution with constant / whose center of mass is at the origin.

3.1 An example with collisions

The previous theorem shows that, for any n > 3 and any choice of masses, there exists an
abundance of solutions for the n-body system of the inverse square potential with constant
I which are not relative equilibria. It proves that the generalized Saari’s conjecture fails

11



miserably when o = 2, but does not provide much insight into the types of motion available
as counterexamples.
For the inverse square system, the equations of motion for the i-th body are given by

. oUu mym;(q; — q; )

J

We consider the 4-body problem with equal masses m; = 1 and derive a one-parameter family
of solutions to the differential equation (15) having constant inertia and containing binary
collisions. Our parameter ¢ > 0 represents the square root of the value of the inertia as well
as the side length of the rhombus configuration of the 4 bodies.

Theorem 3.2 Let ¢ > 0 be any real constant and set w = 4/c®. The function q(t) with
components i (t) = (2/2,0), aa(t) = —a (1), as(t) = (0,/2), u(t) = —as(7) where

z(t) = ¢(2 + V5 sin(wt)) 2, y(t) = ¢(2 — V5sin(wt))/?

is a solution to the equal mass 4-body problem defined by equation (15) for m; = 1 Vi. The
moment of inertia for q(t) is constant with the value I = .

Proof: One can simply check the solution directly by substituting it back into the differential
equation. However, to illustrate the importance of the degree of the potential function, we
derive the solution from scratch. Begin by looking for a special rhombus-shaped solution q(t)
to (15) of the form qi(t) = (z(¢)/2,0), q2(t) = —au(t), as(t) = (0,y(?)/2), aa(t) = —qs(¢). In
this setup, with m; = 1 Vi, the value of the inertia is

I = — (z(t)”+y(t)?).

A~ =

We seek expressions for the unknown functions z(¢) and y(¢) which satisfy the differential
equation while simultaneously being constrained to the circle z? + y? = 4¢2. The distances
between pairs of bodies are rjo = x,r3, = y and 113 = 114 = ro3 = roqg = /22 +y%/2 =c.

Note that the parameter ¢ has two meanings. It represents the distance between any two
bodies not on the same coordinate axis as well as the square root of the moment of inertia.
By fixing the moment of inertia, we force the configuration into a rhombus whose side length
remains constant. This decouples the resulting differential equations nicely. Without equal
masses, the equations of motion would not decouple. (Holding I constant in general does not
force so many mutual distances to be constant.) The advantage of the equal mass case is that
the mass dependence in the moment of inertia I becomes trivial and the resulting expression
is immediately apparent in the differential equation.

Due to symmetry, the differential equations for the first and second bodies differ only by
a sign, as do the equations for the third and fourth bodies. The differential equations for the

12



first and third bodies are

(V) = =2l (0) =5 (k) (8]
i) = =2l (0)+a () =2 (02 )]

It is clear that the second component of the equation for the first body is satisfied as is the
first component of the third body. We are left with two decoupled second-order differential
equations

. 1 Y
V= ‘4(57)'

Multiplying both sides of the above equations by  and g, respectively, and integrating once
yields

1 y?
.9

where k; and ks are integration constants to be chosen later.
Next, we change variables by letting x = \/u and y = y/v. This leads to

o u?
uw = 16 1——4 + 4ku
&

,U2
¥ = 16 (1— —) + 4kov .

ct

In our new variables, holding the inertia constant results in the constraint u + v = 4¢? which
forces 42 = ¥%. Therefore, a necessary condition on the integration constants k; and ky is

u? v?
16 (1 — —4> +4kyu = 16 (1 — —4> + 4kov. (16)
c c
This is equivalent to
4
C—4(u —v)(u+v) = kiu — kv

which is satisfied if and only if &y = ks = 16/c®. The important feature of equation (16)
is that the constant terms cancel. This only occurs with the inverse square potential, as is
shown in the argument following the proof.

13



It remains to solve the differential equation

for u(t), after which setting v(t) = 4c*—u(t) will satisfy both the constraint and the differential
equation for v(¢). By making a final change of variables u = z + 2¢? to eliminate the linear
term in the previous differential equation, we obtain

16

2 = 80— 2%

c
This last equation has solution z(t) = v/5¢?sin(wt + k) with w = 4/c? and k an integration
constant. Since varying k only results in a shift of the time variable, we choose to set k = 0.
Returning to our original variables z and y gives the expression in the theorem. U

The rhombus solution described above is defined for all time ¢ with —3 < t < (3, where
B = (c?/4)sin"*(2/+/5). The solution has a binary collision at ¢+ = 43, where the potential
function is infinite. At ¢ = 0 the configuration becomes a square and the potential function is
at a global minimum of 5/c¢2. As t approaches 3, z(t) — 2c and y(t) — 0 with the two bodies
on the y-axis approaching collision. As ¢ approaches —f, z(¢) — 0 and y(t) — 2¢, so the two
bodies on the z-axis have come from collision. One can check that the value of the energy
H and I vanish along this orbit as well. The fact that this solution is clearly not a relative
equilibrium gives

Corollary 3.3 In the equal mass 4-body problem with the inverse square potential, there exists
a family of constant inertia, collision solutions that are not relative equilibria.

For completeness, we show explicitly why the rhombus counterexample requires the inverse
square potential. Suppose we try to find a special rhombus solution q(¢) as above but for a
Hamiltonian system determined by the general potential function

where o > 0 is a real parameter. Since the potential function is homogeneous of degree
—a and is also strictly positive, VU(q) # 0 and there can be no equilibrium points for the
corresponding Hamiltonian system.

As before, the symmetries of our guess reduce the system to two decoupled second-order
equations in the unknowns z and y

s _ o 1 T
r = - xa+1+ca—|—2

.. 1 Y
y = —204 (ya—l—l + Ca+2)
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Multiplying both sides of the above equations by & and g, respectively, integrating once, and
changing variables to z = \/u and y = /v leads to

2 l—a/2 @ 9
u = 16 (u —20a+2u ) + 4ku

2 l—a/2 _ @ 9
vt = 16(1} @ 26a+2v)+4k2v.

Next, holding the inertia I constant results in the constraint v +v = 4¢? and the requirement
that %2 = ©2. This leads to the necessary condition

16 (ulfa/Q - u2> +dku = 16 (UHW - %qﬂ) + dky. (17)

2cot2
The problem with satisfying this equation is that if o # 2, the terms u'~*/2 and v*~%/2 do not
cancel out. Requiring that u + v = 4¢?, equation (17) reduces to

8«

4 (ulfa/Z . ,01704/2) -

(u—v)+ kyu — kv = 0.

If o # 2, the only possible solution to this equation subject to the constraint u + v = 4¢? is
for u(t) = v(t) = 2¢* and k; = ky. But this results in an equilibrium solution, contradicting
the fact that the system has no equilibria.

3.2 Periodic orbits

The special rhombus solution described above has zero angular momentum. It is not possible
to incorporate rotations into this solution to create a periodic orbit (presumably with nonzero
angular momentum) that still has constant moment of inertia. Indeed, attempts at general-
izing this solution while maintaining a constant value of I lead only to relative equilibrium
solutions. However, non-relative equilibrium periodic solutions to the inverse square potential
mechanical system are readily found using standard variational techniques dating back to the
work of Poincaré [12].

Consider the configuration space of the planar n-body system R?" — ¥ where ¥ is the set
of collisions ¥ = {q € R* : q; = q; for some 7 # j}. Periodic solutions can be located by
minimizing the action

A0 = [ 130+ Uew)

over a given class A of paths v in R?*® — X. For our purposes, A will be some well-chosen
homotopy class of absolutely continuous loops of period 7.

There are two compactness issues which must be addressed in order to apply this varia-
tional technique successfully. One of these, coercivity, can be achieved by imposing certain
constraints on the space of loops. For example, Gordon imposes homotopical constraints by
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tying the loops to ¥. A cycle is said to be tied to ¥ if it cannot be continuously moved off to
infinity without crossing ¥ or having its length become infinite [4]. The second compactness
issue is insuring that the minimizer is free of collisions. Fortunately, the inverse square po-
tential function is of the strong force type (a > 2) so that the action becomes infinite along
any path containing a collision. This was first proved by Poincaré [12] and later elaborated
upon by Gordon (see [2], p. 78). Thus, any minimizer of A(7y) for the inverse square poten-
tial is collision free. Since periodic solutions for the inverse square potential necessarily have
constant inertia, the following theorem is an easy consequence of Gordon’s work [4].

Theorem 3.4 FEvery homotopy class A consisting of absolutely continuous T-periodic loops
tied to 2 contains a minimizer of the action A(vy) which is collision free. Each such minimizer
15 a periodic solution to the inverse square potential mechanical system with constant moment
of inertia.

To apply this theorem for our purposes, we need to insure that minimizers for a given
homotopy class are not relative equilibria. This is handled by the following lemma whose
elementary proof was pointed out to the author by Rick Moeckel at the Equadiff conference
in Hasselt, Belgium, July 22-26, 2003.

Lemma 3.5 Suppose that v, and s are two loops in configuration space obtained by rigid
rotation, completing k rotations in time T'. Then vy, and 7, are homotopic.

Proof: The configuration space R?" — ¥ is path-connected so we can find a path 7(t) connect-
ing 1 (0) with 72(0) which avoids the singularity set ¥. Without loss of generality, assume
that 7(0) = 7,(0) and 7n(1) = 12(0). Since the ~; are rigid rotations, we can simply rotate the
configurations determined by the connecting path 7(t) to create a map between the two loops
which avoids collisions. The continuous map
F:0,T] x [0,1] — R** — %, F(s,t) = R(ZEs)n(t)

is a homotopy between 7; and 7,, where R(t) is the standard 2 x 2 rotation matrix (4). Note
that we do not need to assume that the loops «; actually correspond to relative equilibria (the

position does not need to be a planar central configuration), just that the motion is a rigid
rotation. 0

In general, to understand which homotopy classes are tied to X, we can associate each
class with its representative from the fundamental group of R?*® —¥. This group is the colored
braid group on n strands [11]. As long as the braid type is sufficiently complicated, the
corresponding homotopy class will be tied to X. Since relative equilibria are rigid rotations,
Lemma 3.5 guarantees that any two such solutions completing & rotations in time 7" belong
to the same homotopy class. Presumably, minimizing over this homotopy class will yield the
relative equilibrium with the smallest action.
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It follows that for n > 3, there are an infinite number of homotopy classes A tied to X
which do not contain relative equilibria. (This is an important distinction to make because,
except for a few cases, we do not know if the number of relative equilibria equivalence classes is
finite.) Each such class contains a non-relative equilibrium periodic solution having constant
moment of inertia.
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