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Abstract

We compare the iterative root-finding methods of Newton and Halley applied to cubic polynomials
in the complex plane. Of specific interest are those “bad” polynomials for which a given numerical
method contains an attracting cycle distinct from the roots. This implies the existence of an open set
of initial guesses whose iterates do not converge to one of the roots (ie. the numerical method fails).
Searching for a set of bad parameter values leads to Mandelbrot-like sets and interesting figures in
the parameter plane. We provide some analytic and geometric arguments to explain the contrasting
parameter plane pictures. In particular, we show that there exists a sequence of parameter values
A, for which the corresponding numerical method has a superattracting n cycle. The A,, lie at the
centers of a converging sequence of Mandelbrot-like sets.

1 Introduction

The numerical root-finding methods of Newton and Halley are investigated from a dynamical systems
perspective. Our primary focus is to determine when a given method fails, that is, when does there
exist an open set of initial seeds which fails to converge to a solution under iteration? Such a phe-
nomenon occurs whenever an attracting cycle exists other than the roots of the equation. In the case
of quadratic polynomials, both methods succeed perfectly well, with the only failure occurring along
the perpendicular bisector of the segment joining the two roots. However, when applied to cubics, the
methods become considerably more complicated and failure can occur on an open set of initial guesses.
By studying each method applied to the family of cubic complex polynomials

pa(z) = (2 = 1)(z +1)(z = A),

we numerically find the presence of Mandelbrot-like sets in the A-parameter plane corresponding to
polynomials for which the given method has an extraneous attracting cycle. Exploiting the symmetry
in this family, we offer some straight-forward analytical arguments for the existence and location of these
Mandelbrot-like sets. In particular, we prove that each numerical method contains parameter values A\,
for which there exists superattracting cycles of period n > 2. Each of these parameter values lies at the
center of the main cardioid of a Mandelbrot-like set M,,. As n — oo, the sets M,, coalesce along the
imaginary axis, shrinking in size as they converge towards A = v/34i (Newton) or A = i (Halley). We
also contrast the two methods from a geometric perspective, focusing on qualitative ideas to explain
the parameter plane structure in each case.

The discovery of Mandelbrot-like sets for Newton’s method began with the computer experiments
of Curry, Garnett and Sullivan [5]. By studying Newton’s method applied to a particular class of
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complex cubic polynomials, the authors surprisingly found the presence of Mandelbrot-like sets in the
parameter plane. The appearance of these sets was explained by Douady and Hubbard [7] in their crucial
development of the theory of polynomial-like mappings. In certain neighborhoods, Newton’s method
(although a rational map of degree 3 for the case of cubic polynomials) is conjugate to a polynomial
map of degree 2 (in the sense that points have two local pre-images). This explains why Julia sets
for Newton’s method have figures resembling certain Julia sets from the quadratic family z — 22 + c.
Moreover, Douady and Hubbard prove that branched covers of the Mandelbrot set will appear in the
parameter plane. Blanchard gives a nice exposition concerning these works in [3].

A typical geometric feature of both numerical methods is the nearest root principal, where initial
seeds iterate to the closest root. This principal precisely summarizes the dynamics when each method is
applied to a quadratic polynomial. The method succeeds when the initial guess is closest to one of the
roots and fails when the initial guess is equidistant between roots. Both methods leave the perpendicular
bisector between the two roots invariant, as if unable to choose between them. Although the nearest
root principal can break down in the case of cubic polynomials, it is still useful for predicting where
problems in the numerical method may arise. For example, in the case of Newton’s method, problems
can occur when the triangle formed by the roots is isosceles. In fact, the only place where Newton’s
method applied to cubics fails on an open set, is at or very near the isosceles case. It is these cases
where an attracting cycle exists other than those provided by the roots.

It is interesting to note that Schrider’s iteration formulas, another well-known numerical method,
do not obey the nearest root principal when applied to quadratic polynomials. Our primary reason for
choosing Halley’s method instead of other higher-order methods is that it shares this nice geometric
property with Newton’s method.

Acknowledgments: Much of the research for this paper was supported by NSF-VIGRE grant
DMS-9810751. The authors would like to thank James Curry for suggesting the topic and for many
interesting discussions regarding this subject. We would also like to thank Bruce Peckham for insightful
comments regarding the presentation of this work.

2 Newton’s and Halley’s Method

2.1 Preliminaries

Let p(z) be a polynomial from C to C. Throughout the paper we will assume that p(z) has distinct
roots. Both Newton’s and Halley’s root-finding methods applied to p(z) are equivalent to iterating a
rational function on C. The Julia set for a rational map is the closure of the set of repelling periodic
points [2]. This is an invariant and perfect set on which the map is chaotic. Any neighborhood of a
point in the Julia set is mapped under iteration to cover all of the extended complex plane except at
most two points. The complement of the Julia set, the Fatou set, is where the tame dynamics occurs
(eg. attracting cycles and their basins of attraction).

The roots of p(z) and their basins of attraction are in the Fatou set. These basins represent places
where the numerical method works. There are two ways in which the numerical method may fail.
First, any initial seed zy chosen in the Julia set will never converge to a root of p(z). However, any
neighborhood of such a z; contains points which converge to any of the roots, so a small perturbation of
2o will lead to convergence. A more dangerous phenomenon occurs when an attracting cycle exists other
than the roots. This cycle is necessarily in the Fatou set and more importantly, its basin of attraction is
an entire region in C for which initial seeds never converge to a root. In this case, a small perturbation
of a failing initial seed may not lead to convergence to a root.

Newton’s method for finding the roots of p(z) is equivalent to iterating the rational map

p(2)

Np(z) = 2z — ) (1)




The second-order method is based on approximating the polynomial p(z) by a linear approximation. If
p(z) is degree d and has distinct roots, then Ny (z) is a rational map of degree d. Tt is clear that roots of
p(z) correspond to fixed points of Nj(z). In fact, the only fixed point of Newton’s method other than
a root is the point at infinity. A short computation yields

Vi) = PO
[’ (2)]?
which shows that the roots are superattracting. It is important to note that inflection points of p(z)
are critical points of Nj(2).
Halley’s method, sometimes referred to as Bailey’s method or Lambert’s method (see [8]) is identical
to K3 of the Konig iteration family [9]. Applied to p(z), this method is equivalent to iterating the rational

map

(=

Hy(s) = 2— —L s, (2)
p(z) — P(Ql))lpizg )

Halley’s method is third-order, based on approximating p(z) by a quadratic function as opposed to a

linear one. This accounts for the improved rate of convergence. It can be derived using an osculating

hyperbola and is therefore often referred to as the method of tangent hyperbolas [1, 11, 13]. If p(2)

is degree d and has distinct roots, then Hy(z) is a rational map of degree 2d — 1. As in the case of

Newton’s method, the roots of p(z) are fixed points of Hp(z), although other fixed points exist as well.

Since we are assuming that the roots of p(z) are distinct, the critical points of p(z) are also fixed points

under Halley’s method (even if they are repeated roots of p'(z)).

The derivative of Halley’s method is

p(2)? S[p(2)

2(p'(2) — p(;})ﬁ!%ff) )2

HI')(z) = —

where S[p](z) is the Schwarzian derivative of p(z)

P () 3(ﬂ@»2

P 2\r()

(see [6]). From expression (3) we see that the roots are superattracting, but of one degree higher order
than for Newton’s method. If ¢ is a nondegenerate critical point of p(z), then H'(¢) = 3. If £ is a
degenerate critical point of p(z), then it is a pole for H'(z). Therefore, the additional fixed points of
Halley’s method at the critical points of p(z) are repelling. It can also be shown that the point at
infinity is a repelling fixed point for each method and that Halley’s method is more effective at repelling

Slpl(2) =

very large initial seeds towards roots.

The critical points of H,(z) which don’t correspond to roots of p(z) are places where the Schwarzian
derivative of p(z) vanishes. We will call z a free critical point if it is an inflection point of p(z) in
the case of Newton’s method or a place where the Schwarzian derivative S[p](z) vanishes in the case
of Halley’s method. In order to find polynomials containing extraneous attracting cycles, we follow the
orbit of the free critical point(s). Any such cycle must attract the orbit of a free critical point, since
the other critical points (those corresponding to the roots) are fixed. This is based on the important
theorem of Fatou and Julia [2]:

Theorem 2.1 Every attracting cycle of a rational map attracts at least one critical point.

Before undertaking this analysis, we mention some important facts which hold true for both numer-
ical methods. These facts will be used to reduce the dimension of the parameter space for cubics and
to deduce much of the symmetry found in the figures.



Lemma 2.2 Let A(z) = az+f with a # 0 be an affine map of the complez plane and let q(z) = p(A(2)).
Then N, (H,) is topologically conjugate to N, (Hy, respectively.) Specifically, Ao Nyo A=t = N, and
AquoA_1 = Hp.

Proof: This is a straight-forward calculation. We have

(L plAG) g PAG)
Ao, = o= DI ) 48 = A Ny o 4

A similar calculation works for Halley’s method. d

Lemma 2.3 Let n(z) = Z be the map which sends z to its complex conjugate Z. Suppose that p(z) =
[1(z —7i) and q(2) = [[(z — 7). Then N, (H,) is topologically conjugate to N, (Hy,, respectively) via
the conjugacy 7.

Proof: This is also a straight-forward calculation. We make use of the fact that p(z) = ¢(2). A similar

result holds for any of the derivatives, p()(z) = ¢\)(z), where pU)(z) represents the j-th derivative of
the polynomial p. We have

noN, = z_w _,_pl) . a®)

(2) 7(2) q(
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A similar calculation works for Halley’s method. O

2.2 Newton’s and Halley’s method applied to quadratics

As discussed in the introduction, the dynamics of Newton’s or Halley’s method applied to a quadratic
polynomial with distinct roots is easy to describe. Initial seeds converge to the closest root. The
dynamics on the line of points equidistant from the roots are chaotic, conjugate to angle doubling
(tripling) for Newton’s (Halley’s, respectively) method. The result on Newton’s method dates back to
Schroder’s work in 1871 [12] and Cayley’s paper in 1879 [4]. The result on Halley’s method can be found
in [14] where it is shown that the Konig iteration functions K, applied to p(z) = 22 — 1 are conjugate to
z — 2™. (Newton’s method is equivalent to K9 and Halley’s method is equivalent to K3.) Since it can
be proven that K, is conjugate under affine transformations, the result holds for the general quadratic
with distinct roots.

Theorem 2.4 Suppose that p(z) is a quadratic polynomial with distinct roots. Newton’s (Halley’s)
method for p(z) is topologically conjugate to z v~ 2% (z — 23, respectively). Moreover, the Julia set in
each case is all points lying on the perpendicular bisector of the segment joining the two roots.

Proof: We extend the proof for Newton’s method given in [3] to apply to Halley’s method. Let the
two distinct roots of p(z) be r1 and 2. The conjugacy for both methods is the map
h(z) = 214,
zZ—T2
Note that A maps r1 to 0, r2 to 0o, co to 1 and sends the perpendicular bisector [ defined by {z :
|z — r1| = |z — 2|} to the unit circle.
One way to prove the theorem is to directly calculate that

hONPOh_l(z) = 2?2 and hOHPOh_l(z) = 25.



A more elegant and generalizable approach is to consider the map S = ho H,oh ™! which is rational of
degree 3 because H, is degree 3. We compute that S(0) = 0,.5'(0) = 0,5"(0) =0, S(c0) = 00,5 (00) =
0,5"(00) = 0 and S(1) = 1. This makes use of the fact that H, has superattracting fixed points of order
2 at r1 and re. Therefore, S is a rational map of degree 3 which has superattracting fixed points of
order 2 at 0 and oo, and fixes z = 1. It follows that S(z) = z3. A similar argument works for Newton’s
method. Since the Julia set for the maps z — 22 and z +— 23 is the unit circle, and since the Julia set is
preserved under conjugacy, it follows that the perpendicular bisector [ is the Julia set for each method.
a

Remark:

The previous argument is easy to generalize. Suppose that p(z) is a quadratic polynomial with distinct
roots and that ® is a rational iterative method of order k. If ® applied to p(z) is a degree k rational

map which fixes co, then ®, is conjugate to z — 2k,

3 Newton’s Method Applied to Cubics

3.1 Geometry and reducing the parameter space

Let p(z) = (z—a)(z—b)(z—c) be a complex cubic polynomial. The inflection point of p (the free critical
point for Np) is p = (a + b+ ¢)/3. Assuming that a,b and ¢ are non-collinear, p lies at the centroid of
the triangle formed by the roots, that is, the point at which all three medians of the triangle intersect.
Based on the side-lengths of the triangle, it is possible to determine which root is closest to p. For
example, if |a — ¢| < |a — b|, then any point z on the median emanating from a satisfies |z —c| < |z —b|.
In particular, this means that |[p — ¢| < |p — b|. It follows that p is closest to the vertex (or vertices if
the triangle is isosceles) between the two shortest sides.

Does p converge to its closest root? We explore this question by examining a particular set of
polynomials whose roots form a triangle with longest side between —1 and 1. A similar family is
studied in [3]. The advantage of our family is its symmetry about the imaginary axis, a very useful
feature for investigating the important isosceles case.

Given any triangle in the complex plane, there is an affine map which takes the longest side to the
real interval [—1,1] and the remaining vertex into the upper half-plane. Throughout the paper, our
parameter region will be given by

A={AeC:|A-1<2,|]A+1] <2,Im(A\) >0, # £1}.
Also, let py denote the family of cubic polynomials
paz)=(z—1D(z+1)(z—A)

where the third root A is treated as a complex parameter. By Lemma 2.2, we can explore Newton’s
method on all cubic polynomials with distinct roots, by studying it applied to the one-parameter family
{px : A € A}. For any cubic polynomial ¢(z) with distinct roots, there is a parameter value A € A such
that N, is topologically conjugate to Np, .

Note that a further reduction of the parameter space is possible using Lemma 2.3. Consider ((z) =
—Z as the composition of complex conjugation and an affine transformation. Given a parameter value A,
Newton’s method applied to p, is topologically conjugate to Newton’s method applied to the polynomial
p_5(2) = (2 +1)(z — 1)(z + ) with { serving as the conjugacy. This implies a symmetry about the
imaginary axis. Although we could restrict A to exclude the second quadrant, we wish to preserve the
symmetry in our figures by defining it as above.

On the boundary of A the triangle formed by the roots is isosceles. This boundary is super-imposed
onto the parameter plane for Newton’s method applied to py in Figure 1. The picture is created by



Figure 1: The parameter plane for Newton’s method colored according to the convergence of the free
critical point p = A/3. The boundary of the region A is shown in white. The plot range for the figure
s [—2,2] x [0, 3.5]:.

following the orbit of the free critical point p = A/3 under N,,. If p converges to a root A,1 or —1,
then the parameter value A is colored blue, green or red, respectively. Since N, is conjugate to N;_,
green and red colors are symmetric with respect to the imaginary axis, as indicated in the figure. Blue
regions also display this vertical symmetry. If p does not converge to within 10~ of any root after 60
iterations, the parameter value is colored black.

Note that Figure 1 confirms our geometric intuition. Frequently, the free critical point finds the root
closest to it. For example, most of the interior of A is colored blue since A is the closest root to the
free critical point p. To the left of the boundary of A, —1 becomes the closest root to p and thus most
of this region is colored red. Separating these regions is the crucial isosceles case, where p has a choice
between two or more roots.

The isosceles case occurs for three specific regimes, the left circular boundary of A (|]\ —1| = 2), the
right circular boundary of A (|]A 4 1| = 2) and the imaginary axis (A = 84,8 > /3). In each case, the
congruent legs are longer than the base. The intersection of the three cases (when A = v/34) represents
the equilateral triangle configuration. It is easy to check that the three configurations can be mapped
to each other via an affine transformation. This fact is crucial as it allows us to study those parameter
values on the boundary of A by restricting to those A-values on the imaginary axis with Im()\) > /3.

A more detailed picture of the parameter plane for N,, is shown in Figure 2. Here we are only
interested in whether p converges to a root or not. The lighter shaded values correspond to faster
convergence. The black regions represent values where the free critical point does not converge to one
of the roots. In most of these cases (the interior of the black regions), the free critical point finds a
different attracting cycle other than the roots. For any such parameter value A, N, fails on an open
set of initial guesses. As in the papers [3, 5] and [7], we see the existence of Mandelbrot-like sets in the
parameter plane (see Figure 3 for enlargements.) We investigate the periods of the main cardioids of
these Mandelbrot-like sets in the next section.



Figure 2: The parameter plane for Newton’s method applied to p) (plot range [—1.1,1.1] x [0,1.9]7).

Figure 3: To the left is an enlargement around the imaginary axis of the parameter plane for Np,
(plot range [—.55,.55] x [1.5,5.7]7). To the right is a magnification of the period 2 Mandelbrot-like set

(plot range [—0.13,0.13] x [4.41,4.69]¢). Yellow shading represents values where the critical point took
between 25 and 60 iterations to converge to a root.



3.2 Restricting to A-values on the imaginary axis

We now restrict our study to the case when A\ = 34,8 € R™, where the roots form an isosceles triangle.
A similar approach, although less rigorous, was undertaken in [15]. We provide some evidence for the
existence of Mandelbrot-like sets in the parameter plane by showing that superattracting periodic cycles
are born in the regime § > /3. By affine conjugacy, the same events take place on the left and right
circular boundaries of A. The geometry of Newton’s method leaves the axis of symmetry of the isosceles
triangle invariant. This mimics the behavior in the quadratic case. The orbit does not know which
of the two outer roots to choose from and consequently remains equidistant from each. The difference
here, of course, is that a third root exists on the axis as a point of possible convergence.

Setting A = B4, we have p)(z) = (22 — 1)(z — B1i) and p)(2) = 322 — 1 — 2B4iz. It follows that
p(y i) is pure imaginary and p/\ (y i) is real. Consequently, Re(Np, (yi)) = 0 so that the imaginary axis
is invariant. Since the free critical point p = A/3 = i/3 is also pure imaginary, we can restrict our
study to a rational map of one variable. This map is determined by computing the imaginary part of
Npﬁi(y i) and is given by \ ,

Ry(y) = —§y2 Py 17

y*—28y+1
where 3 is our new real parameter and y is a real variable. Note that Rg(8) = /8 as to be expected
since 1 is fixed under Newton’s method as one of the roots. Also, we have

sy 20— B)By — B> +1)
BoW) = "G —apy 12

which confirms that S is a superattracting fixed point and that (/3 is the free critical point.

Lemma 3.1 For 0 < 3 < /3, all orbits under Rg converge to 3.

Proof: First, we notice that the poles of Rg, y+ = (8 + /% — 3)/3, are real only for g > V3. At
B = /3, corresponding to the equilateral triangle case, there is a unique pole at the free critical point

p = +/3/3. Thus the denominator of Rg is strictly positive in the regime 0 < 8 < v/3. From this it is
straight-forward to compute that Rg(y) > y when y < 8 and Rg(y) < y when y > 3 (see Figure 4).

4

Figure 4: A typical graph of Rg for 0 < 8 < /3. A sample web diagram (dashed) shows the convergence
to S.

Next, the formula for Rj(y) reveals that Rp(y) > 0 for y < 3/3 and for y > 8 and that Rj(y) <0
whenever /3 < y < (. It follows that Rz maps the interval [, 0o) into itself. Because Rg(y) < y when



y > 3, the sequence Rg(yo) is strictly decreasing and bounded below by § for any yo > 3. Since [ is
the only fixed point of the map, the decreasing sequence Rg(yo) must converge to 8 as n — 00.
For initial seeds yy < B, calculation shows that

_ BB —27)

Ry (
which is larger than 8 for 0 < 8 < /3. Because Rg(y) > y when y < 3 and since 3 is the only fixed
point, it follows that any point yy < 8 eventually iterates into the region y > £, from which it must
then converge to 5. O

From Lemma 3.1 we can conclude three interesting facts for the regime 0 < § < /3. First, initial
seeds on the negative imaginary axis far from the root §i still converge to 84 even though the other
two roots at —1 and 1 are closer. Second, unlike the quadratic case, it is not the case that the point
equidistant from all three roots is in the Julia set of Np,. For the regime 0 < 8 < V3, the point
equidistant from —1,1 and §¢ lies on the imaginary axis and consequently, its orbit converges to 31,
placing it in the Fatou set. Third, no interesting dynamical behavior occurs in the parameter plane for
this regime because the free critical point always converges to 4. This is indicated in the parameter
plane picture in Figure 1 as the imaginary axis is colored blue for § < v/3. As we shall see, the same
result occurs for Halley’s method but on the interval g € [0,1). For Newton’s method, the interesting
behavior (eg. the birth of extraneous attracting cycles) occurs for § > /3 and consequently, around
the left and right circular boundaries of A.

Proposition 3.2 For each integer n > 2, there exists a parameter value B, < 3v/3 such that the free
critical point p, = Pn/3 is on a superattracting n cycle. Moreover, the sequence 3, can be chosen so
that it is strictly decreasing, converging to v/3.

Proof: Figure 5 shows the graph for Rg for 8 = 2.39638545. Note the difference from the previous
case. For 8 > \/5, Rg has two poles y and y; symmetric about the free critical point 3 /3. As before,
the formula for Rj(y) reveals that where the derivative exists, it is positive for y < 5/3 and y > B,
and is negative whenever 3/3 < y < B. However, for v/3 < < 3+/3, expression (4) shows that
Rs(8/3) = Ra(p) < 0. Consequently, the graph of Rg takes on negative values between the two poles
when /3 < 8 < 3v/3. Note that 0 < y_ < yy < B. It is straight-forward to see that Rs(y) > y on
the intervals (—oo,y_) and (y4, ) while Rg(y) <y on (y—,y+) and (8, 00). Thus the generic graph for
Rg(y) when V3 < B < 3/3 is as shown in Figure 5.
To show the existence of a superattracting n cycle, we compute

d (B2 +9)?
a8 (Rp(B/3)) = 932 —3)2 > 0.

Taken with the fact that lim PNV~ Rg(B/3) = —oo0, it follows that the image of the critical point p is

decreasing towards —oo as 3 decreases towards v/3. This is the key fact behind the proposition.

Let n be some period with n > 2. Consider gn(8) = R3(8/3) — B/3 as a function of the parameter
B. A root of g,(B) gives a period n cycle for Rg and this cycle is superattracting because it contains
the critical point p in its orbit. We claim that there exists a value &, with v/3 < &, < 3v/3 such that
gn(B) is a continuous function in B on the open interval (v/3,¢,) and that

, liyﬁ gn(B) = —c0 and ﬂlirzl_ gn(B) = oo. (5)
— n

The intermediate value theorem then gives the existence of a root for g, (8) in the interval (v/3,&,).
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Figure 5: The graph of Rg for f = 2.39638545 and the web diagram (dashed) demonstrating the
superattracting period 4 cycle.

The first limit in (5) follows from lim, , 5, Rg(8/3) = —oo. Polynomial division then yields

282 _ 2 8
o) = 2y g WD

3y2 — 2By +1

(6)

which implies that for y values large in magnitude, Rg(y) can be approximated by the linear function
2y/3 + /9. Thus, as B decreases towards V/3, the orbit of the critical point p takes more and more
iterates to return back near itself. As § increases away from /3, the image of p increases away from
—oo and consequently, g,(3) is also increasing. The first place where g,(8) may lose continuity is if
gn-1(B) = y_, the left most pole. Since the image of the critical point p is strictly increasing and since
R’;ﬁ(ﬁ) = B for any k > 2, there will be a value &, < 3v/3 where g,_;(&,) lands on the left-most
pole. This verifies the second limit in (5) and proves the existence of the superattracting n cycle.

The last statement of the proposition follows from the fact that the image of the critical point p is
strictly increasing in 8 and from equation (6). Alternatively, the larger the period of the superattracting
n cycle, the more negative the image of the critical point p and the closer 8 must be to v/3. O

Table 1 shows the values §,, which yield a superattracting n cycle for Newton’s method applied to
Pg,i- Bach parameter value lies at the center of the main cardioid of a period n Mandelbrot-like set
shown on the left in Figure 3. As n — oo, these sets coalesce along the imaginary axis, converging to

A =31

Table 1: The (approximate) parameter values A, = [, ¢ for which Newton’s method applied to p,, has
a superattracting n cycle.

n Bn n Bn n Bn

2 4.50016263 6 1.98209864 10 1.77722708
3 2.93806914 7 1.89245943 20 1.73281876
4 2.39638545 8 1.83640072 25 1.7321519067
5 2.13108922 9 1.80052219 50 1.7320508116

It is important to note that the values given in Table 1 are not unique. For instance, there is a
superattracting period 4 cycle at 8 ~ 4.58784584 which arises from period-doubling off of the main

10



cardioid about 82 = 4.50016263. There are also smaller rogue Mandelbrot-like sets containing superat-
tracting cycles such as a period 5 cycle at 5 =~ 3.8891390787 and a period 6 cycle at 8 =~ 3.667823184.
These parameter values correspond to places where the orbit of the free critical point passes close to
itself once before returning to complete the cycle.

4 Halley’s Method Applied to Cubics

In this section, we explore the dynamics of Halley’s method applied to cubic polynomials with distinct
roots. Due to Lemma 2.2, the problem is reduced to studying the same region A in the parameter
plane as for Newton’s method. One important difference for this case is that there are two free critical
points rather than one. This complicates the parameter plane picture considerably. A second important
difference is that the presence of attracting cycles other than roots does not occur on the boundary of A
as it did for Newton’s method. Although Halley’s method can fail in the isosceles case, there are other
configurations which can cause difficulty as well.

4.1 Parameter plane

As before, let py(z) = (z—1)(z+1)(z — A\) denote the one-parameter family of cubic polynomials whose
roots we search for under Halley’s method. The Schwarzian derivative of p) vanishes at the roots of the
quadratic 622 — 4\z + 1 + \? yielding two free critical points

pr = %(m + —2)\2—6).

Here we take the principle branch of the square root (real part non-negative). Note that the free critical
points for Halley’s method are symmetric around the free critical point for Newton’s method A/3. We
also have that Re(p;) > Re(p_) with equality holding only when ) is real or for A = 34 with |3| < V/3.
Specific places of interest include

e \¢cR = pr=p,

e A\ =i with |3| <V3 = p. are pure imaginary,

e A=V3i = p,=p_=+/3i/3 and

e A= (i with |3| > V3 = p. are truly complex and symmetric about the imaginary axis.

Figure 6 captures the behavior of the orbit of the free critical points p4+ under H,, for varying
parameter values A. Since there are two critical orbits to follow and three possible roots for convergence,
there are nine possible convergence schemes. However, one of these cases never occurs, perhaps due to
the fact that Halley’s method often respects the nearest root principal. The case which never occurs
is when the orbits of the critical points p_ and py cross over each other to converge to 1 and —1,
respectively. Thus, we require 8 colors to distinguish the different regions in parameter space, as
indicated in Table 2.

Note that the behavior along the imaginary axis between i and v/3 i mimics that of Newton’s method
along the imaginary axis from v/3i to 3v/3 revealing the importance of the isosceles case for Halley’s
method. However, there is also a new branch traveling from i to 1 (and its symmetric sister from 7 to
—1) which increases the complexity of the parameter plane picture. This extra branch arises from the
addition of a free critical point, as the following qualitative argument indicates.

Consider the convergence of the two free critical points as a function of A and look for bifurcations.
Beginning in the blue region in Figure 6, both critical points converge to the root A\. Draw an arc
moving right to left into the red region, where both critical points converge to the root —1. Somewhere
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Figure 6: The parameter plane for Halley’s method colored according to the convergence of the two free
critical points p4 as indicated in Table 2. The boundary of the region A, shown in white, is superimposed
on the figure.

Table 2: The coloring scheme for the parameter plane in Figure 6. For example, A is colored purple
whenever the critical point p_ converges to the root —1 and the critical point p; converges to the root

A

color (p—p+) = color (p—,p+) = color (p—>p+) =
red (-1,-1) yellow (-1,1)

blue (A A) purple (=1, pink (A, —1)

green (1,1) hazel (A1) light blue (1,2)

in between we should expect two bifurcations. The first occurs as we enter the purple region, where
the critical point p_ (farthest to the left) switches to converge to —1, while the other critical point’s
convergence remains unchanged. The second occurs as we enter the red region where the critical point
p+ switches to converge to —1 while the other critical point’s convergence remains unchanged. By
symmetry, a similar phenomenon happens moving from the blue to green region.

Note that along the real axis, both critical points converge to the same root (green, red or blue
colors only). If A = A, then Lemma 2.3 implies that H,, (z) = Hp, (). Since p1 = p_, if p; converges
to a root r, then p_ converges to ¥ = r. Hence both critical points converge to the same root.

Just as in the case of Newton’s method, there is symmetry in Figure 6 about the imaginary axis.
The key fact here is that the map ((z) = —Zz sends the free critical points p4 for Halley’s method applied
to py to the free critical points p+ for Halley’s method applied to p_5. In other words, if p converges
to the root r under Hy,, then —p, which is the new critical point p_ for Hy, ;, converges to the root
—7 under Halley’s method applied to p_5. Thus, if (p_, p;) converge to the roots (—1,A) under H,,,
then the new free critical points (p_, p;) converge to (—\,1) under H,_ ;- In terms of color, this means
that red and green are symmetric with respect to the imaginary axis, as are the pairs purple and hazel,
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Figure 7: The parameter plane for Halley’s method applied to py (plot range [—1.9,1.9] x [0, 3]3).

and pink and light blue. Both the blue and yellow regions are symmetric with respect to themselves.
These symmetries are clearly indicated in Figure 6.

Figure 7 shows the parameter plane for Halley’s method without the color coding for convergence.
Here, X is colored black if one of the two free critical points does not converge to a root. Bifurcations
occur along three “wishbones”, one inside A and two located in the exterior of A, on either side of the
imaginary axis. These wishbones are conjugate under an affine map. For example, the map

—2z4+A+1
S/\(Z):ﬁ

is an affine conjugacy between H,,, for A-values on the main wishbone in A and Hj, for A-values on
the right exterior wishbone. This map conjugates the “stem” of the main wishbone on the imaginary
axis to the stem of the right exterior wishbone on the circle |z — 1| = 2. Geometrically, this conjugacy
is visualized by rotating the main wishbone inside A counterclockwise to line up with the outer right
wishbone. The value ¢ at the center of the main wishbone is identified with the value 1 + 2¢ at the
center of the right wishbone. Similar arguments work for the left exterior wishbone using the map
Th(z) =(—2z+A-1)/(1+ ).

As with Newton’s method, we see the existence of Mandelbrot-like sets in the parameter plane for
Halley’s method (see Figure 8). However, the sets for Halley’s method are considerably smaller than
the corresponding ones found in Figure 3. For example, the period 2 Mandelbrot-like set shown for
Newton’s method is roughly 0.25 units of width while the corresponding set for Halley’s method is only
about 0.02 units of width. This is probably due to the higher rate of convergence for Halley’s method.

In Figure 9, we show the dynamical plane for Halley’s method applied to p) with A = 1.34853 1.
This parameter value was taken from the circular bulb just above the main cardioid shown to the right
in Figure 8. As before, a point z is colored blue (respectively, red or green) if the orbit of z converges
to A (respectively, —1 or 1). If z fails to converge to within 107® of any root after 60 iterations, it is
colored black. In this example the critical point p; converges to the root A while the critical point p_
limits on an attracting period 4 cycle. Part of the filled in Julia set for H),, is shown on the right. This
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Figure 8: To the left is an enlargement around the imaginary axis of Figure 7 (plot range [—0.1,0.1] X
[0.95,1.8]i.) To the right is a magnification of the period 2 Mandelbrot-like set in the parameter plane
for Halley’s method (plot range [—0.01,0.01] x [1.335,1.357]i.)

Figure 9: To the left is the dynamical plane for Halley’s method applied to py for A = 1.34853 7 (plot
range [—3,3] x [-3,3]i). To the right is an enlargement about the free critical point p_ (plot range
[—0.065,0.065] x [0.1,0.282]%).
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set bears a striking resemblance to the filled in Julia set for the quadratic map z + 22 — 1, where the
critical point z = 0 is on a super-attracting period 2 cycle. For the family z — 22 + ¢, ¢ = —1 is a
parameter value in the circular period 2 bulb directly to the left of the main cardioid of the Mandelbrot
set. This is the analogous bulb to the one in Figure 8 from which A was chosen.

4.2 Restricting to A\-values on the imaginary axis

We now discuss the behavior of Halley’s method applied to p) for pure imaginary A-values, obtaining
similar results to those we found for Newton’s method in Section 3.2. The only difference here is that the
parameter values where superattracting cycles occur are in the regime (1,+/3) and the parameter values
found decrease towards 8 = 1 as opposed to 8 = v/3. This puts the interesting dynamical behavior in
the interior of A rather than the exterior, as was the case in Newton’s method.

By choosing A = 34,8 € RT, Halley’s method applied to p) leaves the imaginary axis invariant.
This is easy to see by examining equation (2), as px(y1) is pure imaginary, p)(y) is real and p5(y3) is
pure imaginary. Moreover, for the regime 0 < < v/3, both free critical points p+ are pure imaginary.
Thus, as with Newton’s method, we can reduce Halley’s method to studying a one-parameter family of
rational maps.

We compute the imaginary part of Hy, (y4) for 0 < 8 < v/3 and obtain the rational map

3yS — 3Byt + (B2 — 1)y + 68y? — 3%y + 8

) = TGy ka8 R 1 2

where 3 is our new real parameter and ¥y is a real variable. We are interested in studying the orbit of

two real free critical points
1
pr = (25 + 46— 2ﬁ2)

as 3 varies. As expected, Sg(f8) = 8 because (1 is fixed under Halley’s method. We compute

3(y — B)2(y* +1)%(6y* — 4By + 2 — 1)

(6y* — 8By3 +3(1 + B%)y? + 1 — B?)? (7)

Sp(y) =

which confirms that 31 is a superattracting fixed point of order two and that pL are the two free critical
points. Finally, solving S3(y) = y yields the quintic equation

(y—B)y* +1)(3y* — 28y + 1) = 0. (8)

The roots of the quadratic term 3y?> — 28y + 1 in the above expression represent the two extra fixed
points for Halley’s method located at the critical points of the polynomial p). However, these roots are
complex since 3y? — 28y + 1 is strictly positive for 0 < 8 < /3. Thus, y =  is the only fixed point of
Sg when 0 < 8 < V3. For 8 = /3, (equilateral case) p, = p_ = +/3/3 is a double root of 3y — 28y + 1
because v/3/3 is a degenerate critical point for pj.

Lemma 4.1 For 0 < 8 < 1, all orbits under Sg converge to (3.

Proof: First, note that the denominator of Sz can be factored into

2 1 1
6y ((y— 55)2+ 7t E52> +1-p2

which is always positive for 0 < 8 < 1. Thus, Sg has no poles for 0 < 3 < 1. When 3 = 1, Sg has a
unique pole of order 2 at the free critical point p_ = 0. We found the same traits with Rg in Newton’s
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Figure 10: A typical graph of Sg for 0 < 8 < 1 and the web diagram (dashed) demonstrating convergence
to y = .

method at the parameter value 8 = /3. Using equation (8), it is easy to compute that Sg(y) >y when
y < f and Sg(y) <y when y > S (see Figure 10).

Next, the formula for S/'B(y) reveals that the derivative can only change sign at the two free critical
points p. It follows that S’ﬂ(y) >0 fory < p_and y > p,, and that S'ﬂ(y) < 0 whenever p_ < y < py.
There are two cases determined by whether the critical point p4 is larger or smaller than 5. Note that

p+ = B when 8 = v/3/3.

Case 1: V3/3<p<1

We do the easier case first, where the argument is the same as in the case of Newton’s method. In
this regime, we have p; < § and therefore Sg(y) < y and S’ﬂ(y) > 0 for y > B. It follows that Sg
maps the interval [, 00) into itself. Since S is the only fixed point of the map, the decreasing sequence
Si (yo) must converge to S for yg € [3,00). The interval [p,, (] is also invariant for this case and similar
arguments give that the increasing sequence Sj(yo) must converge to 3 for initial seeds yo € [p+, B].
Finally, the orbit of any initial seed yo < p+ will increase until reaching the region [p, c0) from which
it must then converge to 5.

Case 2: 0 < < +/3/3

In this case, we have p; > [ which means that the interval [3,00) is no longer invariant since
Sg(p+) < B. We must estimate the derivative on a sufficiently large neighborhood of 5 to obtain global
convergence. Let ug = Sg(p4) < B be the image of the larger critical point. We claim that Sg is a
contraction on the interval [ug,p4] containing the attracting fixed point . Since the orbit of every
initial seed eventually must fall into this interval, it follows that 8 is globally attracting.

We first find an upper-bound for |Si(y)| on the interval [8,p1]. The denominator of $'8(y) is an
increasing function in y and therefore attains its minimum at y = S on [, p+]. The quadratic term
6y% — 4By + B? — 1 is negative for 8 < y < p4 so this term is largest in absolute value at y = 3. This
yields the estimate
3d2((B+d)*+1)2(1-3p%)

(82 +1)*

where d = d(B) = —28/3 + /6 —2(2/6 is the distance between § and p,. Using the rather crude
estimate d < v/6/6 and the fact that the denominator is always greater than or equal to 1, we obtain

g+ T - 3p0).

1S(W)| <

5wl < 205 +
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This function is concave down for 0 < 8 < v/3/3 and has a maximum of approximately 0.834572 at
8 ~ 0.249055. This shows that for any 8 such that 0 < 8 < v/3/3, the magnitude of the derivative is
less than 0.85 on the interval y € [8, p4].

Next, we find an upper-bound for |S;(y)| on the interval [ug, 8]. First, a tedious but straight-forward
calculation shows that

(3 —B%)(19v/6 — 282(3 — %) + 40B(8* +9))
Hg = pP- = 2 2 2 2 >0
24(5(8% — 3)* + B(B* + 9)v/6 — 257)
which means that the image of p, is between p_ and 8. Knowing this, the quadratic term 6y? — 48y +

% — 1 will be negative and thus can be bounded in magnitude using the value at its vertex y = 3/3,
yielding |32/3 — 1|. We then estimate the magnitude of the derivative as

3(8 — pp)*(B* +1)°(1 - %/3)

!
<
|S,B(y)| = (1 —,32)2
on the interval [ug, 8]. Further calculation shows that
(1-3p%)"

B—pug = 9)

44/6 — 2032(B? + 5)(B* + 1852 + 1) + 88(1186 — 4754 + 11352 + 43).
The numerator in expression (9) is decreasing in § while the denominator is positive and an increasing

function of 8. Therefore, the expression in (9) is bounded above by its value at § = 0, yielding
B — pg < 1/(20v/6). Using this estimate, we obtain

3(1/2400)(4/3)%(1)
(2/3)?

so that the magnitude of the derivative on [ug, 8] is quite small. This is not surprising because pug and
B are very close and f is a double root of S/g (y). This shows that Sg is a contraction on the interval

[N‘/J”p-k]' O

1S5(y)| <

= 1/200

Proposition 4.2 For each integer n > 2, there exists a parameter value B, < /3 such that the free
critical point p_ is on a superattracting n cycle. Moreover, the sequence B, can be chosen as strictly
decreasing, converging to 1.

Proof: The argument is similar to that for Newton’s method in Proposition 3.2. The graph of Sg
displays the same properties as Rg did for Newton’s method. There are two poles y_ and y; which
contain the free critical point p_ between them and as 8 — 17, the image of p_ approaches —oo. See
Figure 11 for a sample graph demonstrating a superattracting period 3 cycle.

Denote the denominator of Sz as fs(y) = 6y* —8By3 +3(1+ B2)y? + 1 — 2. In the regime 8 > 1, f3
has exactly two roots. This follows from f4(y) = 24y((y — B8/ 2)? +1/4) which means fz(y) is decreasing
for y < 0 and increasing for y > 0. Since fg(0) =1 — $% < 0, we know that Sp has exactly two poles y+
when 3 > 1 and we have y = < 0 < y4. In the case 8 = 1, Sg has a single pole at y = 0 of order 2.

Next we claim that for 1 < 8 < v/3, we have

y- < 0 < p- <yp < B3 < pp < B (10)

That p_ > 0 and p; < 3 follow by direct calculation. To show y; < /3 we compute that fg(5/3) =
(1 — %/3)? > 0 which means that the roots of fz are less than 3/3. Next we compute that

Folo-) = 5= (53— 22— BV6— 282 (52 +9)) .

27
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(B.8)

Figure 11: The graph of Sg for 8 = 1.15838303 and the web diagram demonstrating a superattracting
period 3 cycle containing the free critical point p_.

We see that fi(p-) = f 5(p-) = 0. In other words, p_ is a pole of Sg at the extremes 8 = 1 and
B = /3. Solving the inequality fg(p—) < 0 leads to the expression

(3 B%)(8 = 1)((B* —3)* +16) > 0

which is satisfied for the regime 1 < 8 < v/3. This shows that p_ < y, and verifies expression (10).
Using expression (7), we see that Sp is decreasing on the intervals (p_,y4) and (y;4, p+) and increas-
ing on the intervals (—oo,y_), (y—, p—), (p+, 8) and (8, 00). We compute that

—8p(51 — B)(3 — %) + /6 — 267 (78" + 785% — 9)

~648/5(0_) -

Sp(p-) =

The denominator of this expression is positive for 1 < 8 < v/3 and vanishes when 8 = 1. Moreover,
solving for when the numerator is negative yields the inequality

(3 — 82)(8° — 288° + 122258* — 310082 + 1) < 0

which, using Mathematica, is satisfied for 1 < 8 < 1.5. This shows that the image of the critical point
p— is negative for g € (1,1.5), and that

Jim,_Sp(p-) = —oo.
Furthermore, using expression (8) and the results about fg(y), we have that for g € (1,1.5), Sg(y) >y
for y in the intervals (—oo,y_) and (y4, (), and Sg(y) < y for the intervals (y_,y4) and (5, 00).

The above arguments show that the qualitative properties of Sz(y) are as indicated in Figure 11.
They also show that it is the orbit of p_ which is interesting to follow. The larger free critical point p,
is always attracted to the root at y = .

In Figure 12, we graph the image of the free critical point p_ as a function of 8, for 1 < 8 < /3. Tt
is clear from the graph that the image of p_ decreases as 8 decreases. Moreover, polynomial division
yields

_ oy, B 0@
Sply) = §+E+O(y4)



Figure 12: The graph of Sg(p—) (the image of the smaller free critical point) as a function of 3.

which means that for y large in magnitude, S3 can be approximated by a linear function. The theorem
now follows using the same arguments as with Newton’s method in Proposition 3.2, where g,(3) is
replaced with the function S%(p—) — p— and the open interval of continuity is (1,£,) with &, < V3. As
with Newton’s method, to obtain a large period n, the image of p_ needs to be very negative which
forces B to be very close to 1. O

Table 3 shows the parameter values A\, = (,¢ which yield a superattracting period n cycle for
Halley’s method applied to py,. These parameter values correspond to polynomials with open sets of
initial guesses whose orbits converge to the attracting n cycle rather than to any of the roots of the
polynomial. Each parameter value lies at the center of the main cardioid of a period n Mandelbrot-like
set and as n — oo, these sets converge to A = i (see Figure 8).

Table 3: The (approximate) parameter values A\, = 3,4 for which Halley’s method applied to p,, has
a superattracting n cycle.

n Bn n Bn n Bn

2 1.34223206 6 1.01865616 10 1.0011575040
3 1.15838303 7 1.00929155 20 1.0000011298
4 1.07647075 8 1.0046367455 25 1.0000000353
5 1.03761109 9 1.0023161274 30 1.0000000011
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