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Abstract

In this paper we investigate the relationship between the dynamics of the
polynomial maps Py,(z) = (1 4 2/d)? and the exponential family F\(z) =
Ae”. We show that the hyperbolic components of the parameter planes for
the polynomials converge to those for the exponential family as the degree
d tends to infinity. We also show that certain “hairs” in the parameter
plane for the exponential are limits of corresponding external rays for the
polynomial families. For parameter values on the hairs, the Julia sets for
the corresponding exponentials are the entire plane whereas, for polynomial
parameters on the external rays, the Julia sets are Cantor sets.

Keywords Julia set, complex exponential, external ray, hairs.

AMS Subject Classification: 58F23; 30D05.

1 Introduction

Our goal in this paper is to relate the dynamics of the family of complex
polynomial maps P;,(z) = (1 + z/d)? to the complex exponential family
Ex\(z) = Xe®. Of course, the polynomials P; ) converge uniformly on compact
sets to the exponential F\ as d — oco. We show in this paper that the
polynomials converge to the exponential in a dynamical sense as well.

The P, are the degree d analogues of the well-studied quadratic family
Q.(z) = 2* + ¢, since, like Q., each P;, has a unique critical point (at —d)
and a unique critical value (at 0). In complex dynamics, the orbit of the
critical value determines much of the dynamics. For example, for each P, ,,
the filled Julia set Ky is given by {z € C| lim, Pjy(2) / oo}. The Julia
set, J(Py), is the boundary of the filled Julia set. Just as in the quadratic



case, it is known that both the Julia set and the filled Julia set of Pj,
are connected if the orbit of the critical value is bounded, whereas the filled
Julia set is a Cantor set if the critical orbit is unbounded. Another important
property of the critical orbit is the fact that, if P;, has an attracting cycle,
then the orbit of 0 must tend to this cycle. As a consequence, P, can have
at most one attracting cycle.

For the exponential family, there is no critical point. However, 0 is an
asymptotic (omitted) value and its orbit plays a similar role to the orbit of
0 for the polynomial family. For example, if £\, admits an attracting cycle,
then the orbit of 0 must tend to this cycle just as in the polynomial case.
Consequently, there can be at most one attracting cycle for £y. While there
is no analogue of the dichotomy on the topology of the filled Julia sets based
on the fate of the orbit of 0 under K, it is known that the set of bounded
orbits under Ky, as well as the set of unbounded orbits, are both dense in the
plane when E7(0) tends to oo. If, on the other hand, F) has an attracting
cycle, then the basin of attraction of this cycle is open and dence in the plane,
so the set of unbounded orbits is nowhere dense.

In case K, is connected, there is a natural uniformization of the exterior
of the filled Julia set just as in the quadratic case. In the exterior of Ky,
Py, is conjugate to the map z + z? in the exterior of the unit disk. Hence
the dynamics of Py are completely understood outside K; 5. The images of
the straight rays preserved by z — z? under the above conjugacy are called
the external rays of Ky .

When the exponential map has an attracting cycle, the analogue of the
filled Julia set is the basin of attraction of this cycle. This basin is open
and dense in the plane. It is known that the complement [7] of this basin
consists of an uncountable set of curves or hairs homeomorphic to a closed
half-line. On these hairs, the orbits of all points with the possible exception
of the endpoint tend to oc.

It is natural to ask about the relation between the filled Julia sets of
the P;, and the basins of attraction of E) in cases where both admit an
attracting cycle. We will show below that the basins of the polynomial family
converge to that of the exponential as d — co. Moreover, we will show that
the external rays with a given symbolic dynamics converge as d — oo to
particular hairs for the exponential. Thus we have a type of “dynamical”
convergence of the polynomial family to the exponential inside and outside
the filled Julia sets.

We also consider in this paper the bifurcation sets for the polynomial and



Figure 1: Degree 4 bifurcation set.

exponential families. For each d > 2, the d""-bifurcation set B; = {\ € C|0 €
Kj.}. That is, the d bifurcation set for the polynomial family consists of
those parameter values A for which the orbit of 0 is bounded. Analogously,
the exponential bifurcation set consists of those parameter values A for which
E%(0) is bounded. The most important subset of these bifurcation sets con-
sists of the hyperbolic components wherein the corresponding maps have an
attracting cycle of some period. We will show below that the hyperbolic
components of the polynomial family converge to similar components for the
exponential family.

In Figures 1-3, we display several of these bifurcations sets.

In the quadratic case, the analogue of B, is the Mandelbrot set. It is well
known that the exterior of the Mandelbrot set may be uniformized. That
is, there is an analytic isomorphism from the exterior of the unit disk to
the exterior of the Mandelbrot set. The images of the straight rays under
this isomorphism are called the external rays of the Mandelbrot set, and the
symbolic dynamics associated to these rays gives much information regarding
the structure of the Mandelbrot set. We will show below that a similar
construction works for the By so that the external rays of B, are well-defined.



Figure 2: Degree 8 bifurcation set.
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Figure 3: Degree 100 bifurcation set.



Figure 4: More details of the degree 100 bifurcation set.

For the exponential family, the complement of the hyperbolic components
includes an uncountable collection of curves (also called hairs) on which the
orbit of 0 tends to infinity. As in the dynamical plane, we will show that
certain of the external rays for By tend to these hairs as d — oc. Thus we
have a similar type of convergence in both the interior and exterior of the By
as we found for the Kj .

2 The Parameter Plane for ;)

In this section we discuss some properties of the parameter planes for the
polynomial family P,y and their relation to the exponential parameter plane.
Recall that the filled Julia set K is the set of points with bounded orbits
under P;,. Also, the d”-bifurcation set, By, consists of the set of A-values

for which P}, (0) is bounded.

Lemma 2.1 If A € By, then K, is connecled. Otherwise, K ts homeo-
morphic to a Cantor set.



Proof: Each P, has a single critical value (at 0). Therefore the lemma is
a special case of Theorem 9.9 in [BI].

Definition 2.2 A polynomial or entire map is hyperbolic if every critical
point is altracted by an attracting periodic cycle.

Let Bj denote the interior of By. A component W of Bj is hyperbolic if
Py is hyperbolic for some, and therefore for all A € W. Let

Ci = {\ € BS| Py has an attracting cycle of period k}

and set
Cr = {X| E\ has an attracting cycle of period k}.

Recall that P; ) can have at most one finite attracting cycle. For a given
d and X € C{, the critical point —d must lie in a component of the basin of
attraction of the cycle that contains a single periodic point on the attracting
periodic cycle. Denote this point by zg = z9(A) and set z;(A) = P§7A(zo)
for i = 1,...,k — 1. Define the eigenvalue map yqs:C{ — D by ya(\) =
(Pcﬁ/\)/(zo()\)), where D is the open unit disk. The map x4 is analytic since
zo(A) is analytic in A.

We first describe the attracting fixed point regions C{.

Proposition 2.3 1. C{ is bounded by the curve ( — (/(1 + df—c)d_l,
where || = 1. This curve is cardiod-like. x;' : D — Ci is given by
Xz () =¢/(1+g5)"

2. limgseo X7 = X1 D — Oy where x™ () = (e™¢ and x is the eigen-
value map for the £ family.

Proof: The conditions A € C{, y4(\) = ¢ imply

Mi+2) ==
and p
A1+ 57 =
(145 = ¢
Therefore,




and it follows that ¢
A=) = e
¢ N
(1+ E)d 1
is an inverse for yg.
To prove the second statement, fix { = re € D and choose a branch of

the logarithm defined on C — {R~ U {0}}. Then if ¢ = re*

] C d—1 ) d
fimlog 1+ 2) = Jim(d - 1tog()

1
= lim(d—1)[Ind — 5 In(d* — 2rd cos 6 + r*)]

d—00
rsin 6

. . o _1
+ chlggo(d 1) tan (d— rcosﬂ)

= rcosf +irsiné
Therefore,

and the second statement follows immediately.

Next, we describe the sets Cf, for & > 1. Unlike the case k = 1, the
eigenvalue map is never an isomorphism in this case.

Proposition 2.4 Any connected component W of C¢ is simply connected.

Proof: Let F}(\) = P},(—d). The family of functions F} is a family of
entire functions. Let W be a connected component of C¢, and let v C W be
a simple closed curve bounding a region D. We will show that D C W.
Since W is open, we can choose a neighborhood U of v in W. Since
U C W, it follows that the functions F7* converge to some periodic point
z;(A) on U. Since the F7* are entire functions, they are a normal family of
functions on D and therefore must converge to the analytic function z;(A).
By the Maximum Principle, |xq()A)| will take its maximum value on v, the
boundary of D, which lies in CZ. Thus |x4(A)| < 1 on D and D C W as

desired.

We now consider the covering properties of the eigenvalue map x4. To
simplify the proof of the next lemma, we introduce the polynomials Q4 .(z) =
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22 4+¢,d> 2 z€C FEach (4. 1s afline conjugate to Py, where A = det=1
via the conjugacy z + < + ¢, provided ¢ # 0. In other words, the (d —1)-fold
covering map A = Il(c) = de?™! from c-space to A-space is affine conjugacy
class preserving.

Let Bd ={ce C|0 € K, .} where K;. is the filled Julia set of Q4.. The
map

H|Bd: Bd — {0} — By — {0}
is a (d — 1)-fold covering map.

Lemma 2.5 For a fired k > 2 and d, suppose that Pdk,,\o(_d) = —d. Then
Ao # 0 is a simple zero of the polynomial G(\) = PCﬁA(—d) +d.

Proof. This proof was shown to us by A. Gleason. We have that A\g is a
root of the equation PjA(—d) = —d if and only if the critical point —d is
periodic for Py, with period some multiple of k. Since each P, is affine
conjugate to (d — 1) distinct @Qq.’s, it is equivalent to show that each root
co of the polynomial R(¢) = QQC(O) is simple. This is easier since R(c) has
integer coefficients and thus R has a discriminant A which is an integer.
The discriminant of R = R mod d is A = A mod d. Thus, if A = 0, then
A =0, so R has a multiple root and a root in common with its derivative.
However,

?pie) - d( ’Ho)d_1 d(’“—lo) |
7 () = io (0) 7 ie (0)) +
= 1 modd

so the derivative of R has no roots and, in particular, none in common with

R.

Theorem 2.6 Let W be a connected component of C¢ with k > 2. Then the
eigenvalue map xqg: W — D is a (d — 1)-fold covering map ramified above 0.

Proof: Let \g € W. Then P, ), has an attracting cycle of period k. Let zg be
a point on this cycle and suppose that xq4(Ao) = (Pj/\o)’(zo) = a # 0. Then
we can find a neighborhood U of z; and an analytic conjugacy ® : U — D
such that

oo Pj/\o(z) =a-d(z).



Choose an ¢ > 0 such that the disk of radius € about «, B.(«a), is contained
in D—{0}. We will find a neighborhood N of Ag in W so that the eigenvalue
map x4 : N — B.(a) is a homeomorphism. This will show that y4|W —x;'(0)
s a covering map.

Let 8 € B.(a). We first produce a quasiconformal conjugacy between
z = az and z — (Bz. Let A denote the annulus {z : |a| < |z| < 1} and
let B denote the annulus {z : |B] < |z| < 1}. We define ¥ : A — B by

U(re'?) = riet?t where

r = 1+1:—||§I(T—1)
0y = 0+Iny(2zzese)

Note that W is the identity map on the boundary of D and takes r = |a|
to r = |B| with U(a) = . Also, ¥ maps the circles r = ¢ in A to circles
centered at the origin in B.

We now extend ¥ to D in the natural way. Given a nonzero z € D — A,
there is a smallest positive integer n for which o™z € A — {r = 1}. Define
U(z) = 8" U(a™"z). In other words, pull z back to A under the map z —
a~ 'z, apply ¥ : A — B, then push forward by the map z — 3z. Finally, set
U(0) = 0. By construction, ¥ is a conjugacy between the maps z — az and
z — [Bz. Note that VU is differentiable everywhere except for z = 0 and that
¥ is quasiconformal, but not in general conformal.

Next let vy = U*(0g) denote the pullback of the standard complex struc-
ture g on D via W. Note that the map z — az preserves vy. This follows
since ¥(az) = B¥(z) and the conformal map z — 3z preserves the standard
structure oy.

Remark: We can think of 1 as a function that assigns a “family” of ellipses,
or an infinitesimal ellipse, to each z by specifying the ratio of the major to
minor axis and the argument of the major axis.

Now we return to Pf,AO and U. We will define a new ellipse field v # oq
on C that is preserved by Py ,,. We define v on U by v(z) = ®*(1(®(2))). In
other words, pull back vy to U via ®. Note that Pf,AO preserves v since Pf,AO
is analytically conjugate to the map z — az via @, and 2 — az preserves vy.

Next, we extend v to all of the basin of the attracting cycle in the natural
way. If z € U, but in the basin of attraction, then let n be the smallest
positive integer such that P, (2) € U. Set u(z) = (Piy ) (v(P7,(2))).
For z ¢ basin of attraction, we set v(z) = o¢(z), the standard complex



structure. (This occurs on the boundary of the basin of attraction and the
basin of attraction of co.) Hence v is a complex structure on all of C which is
preserved under Py, . This is clear on the basin of attraction by construction
and follows outside the basin since Py, is analytic. Also, v has bounded
dilatation on C, since it’s given by the pullback of an analytic function.

We have constructed an ellipse field on C other than ¢ that is preserved
by Pi,- We now apply the Measurable Riemann Mapping Theorem to
produce a unique quasiconformal homeomorphism h that satisfies h(0) =
0,h(—d) = —d, and h(oo) = co and v = h*(0p). That is, h straightens the
ellipses of v. Let F = ho Py, o h™'. Since I preserves oy, F is an analytic
map that is quasiconformally conjugate to P, ,,. Moreover, I has degree d
and has only one critical point at z = —d. Therefore, I is a polynomial that
is affine conjugate to Py, and of the form pu(1 + z/d)".

It is clear by construction that F' has an attracting cycle of period &
containing the point h(zp). To show that this attracting cycle has eigenvalue
B, we use the fact that F*|h(U) is conjugate to Pj, |U which in turn is
conjugate to the map z — (z. Letting H : D — h(U) be given by H(z) =
ho(Wo®)"! we see that H is a conjugacy between F* and z — 3z which
preserves the standard complex structure oy and is therefore an analytic
conjugacy. It follows that F has eigenvalue 3 at the cycle containing h(zo).
See Figure 5.

By the uniqueness of the Measurable Riemann Mapping Theorem, this
construction yields a map p : B.(a) = W which produces a Py with a given
multiplier. (The map g is just a local inverse for x4.) Since the Measurable
Riemann Mapping Theorem depends continuously on parameters, it follows
that g is continuous. Clearly, p is one-to-one and onto its image. Thus,
letting N = u(B.(a)), we have shown that the eigenvalue map x4 : N —
B.(e) is a homeomorphism.

All that remains is to compute the ramification index above 0 € D.
Suppose that y4.(Xo) = 0 so that z = —d is on the attracting cycle of pe-
riod k for P;,,. The periodic points z;(A) are functions of A for A near
Ao and xg(A) = [T Pia(z(A) = TLA(1 + (2:(X))/d)*~t. The multiplic-
ity of the zero Ag for x4 is the sum of the multiplicities of the zeroes of
the Pj,(zi(A)). Clearly these are all zero except for the index j where
zj(Ao) = —d. To calculate this multiplicity, we apply the Implicit Function
Theorem to F(A,z) = Pcﬁ)\(z) — z about the point (Ag, —d). We have

FZ()\(), —d) = Xd()\o) — 1 = —1
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Figure 5: Construction of the ellipse field

z—fpz

and F # 0 by Lemma 2.5. Therefore z/(Ao) # 0 so that as a function of A,
zj(A) 4+ d has a simple root at A = Ag. Therefore, P} ,(z;(A)) has multiplicity
d — 1 at the zero A = Ag. This completes the proof.

Proposition 2.7 For each k > 2, there are (d*=' — 1)/(d — 1) hyperbolic
components in the interior of By whose period divides k.

Proof. By Theorem 2.6 each hyperbolic component W of the interior By
contains a unique Ay such that x4(Aw) = 0. In other words, the critical
point —d is periodic, and therefore, the number of hyperbolic components of
the interior of B; whose period divides k is equal to the number of distinct
roots of the polynomial Pcﬁ/\(—d) +din A

By induction, Pj/\(—d) has degree (d*~* —1)/(d — 1), and by Lemma 2.5
all the roots of Py\(—d) + d are simple.

Finally, we show that the hyperbolic components of By converge to the
corresponding hyperbolic components of the exponential family.

Theorem 2.8 1. If E\ has an attracting periodic point of period k, then
there exists a D such that Py has an atlracting periodic poinl of pe-

11



riod k for all d > D.

2. Suppose that for a fired X, Py has an altracling periodic poinl of pe-
riod k for infinitely many d. Then E\ has a periodic point of period k
which is either attracting or indifferent.

Proof: The first item follows since Pf, , converges to E¥ uniformly on com-
pact sets. For the second item, we need the following lemma.

Lemma 2.9 Suppose z1, ..., 2, is an altracling periodic orbil for Py . Then

there exists an i for which |z;| < 7%

Proof: We have Pas(2)
z

Pl (z) = 22220

inle) = L

Hence . 0
Zit1 Z;

Po(z) = | AEE | ‘—
gd,A( Hl_l_zz Hl—l—%‘

Since this term is less than 1, there exists ¢ for which

| 2]
-

2
d<
5l < 142

Hence |z;] < 4.

To complete the proof of Theorem 2.8, let zl(d)

lie on a periodic orbit
of period k for P;, and let 2 be an accumulation point of the zl(d). This
point exists by Lemma 2.9. Since P, converges to Iy uniformly on compact

sets, we have EY(2) = 2. If |[(E}) (%) , we may find a neighborhood
U of 2 such that |(E})(2)] > ¢ > 1 on U. But then, if Zl(d) € U, we have
|(P£7>\)/(Zl(d))| > 1 for d sufficiently large which is a contradiction.

3 The Dynamical Plane for P,

We now discuss the dynamical plane for P;y(2) = M1 + z/d)?. Much of
the material in this section is similar in spirit to that for the exponential
family described in [7]. Recall that P, has a unique critical point at —d
with critical value 0.

12



Figure 6: Construction of the wedges for Py )

3.1 A Markov partition for P )

Throughout this section we will exclude the case A € R’. This will allow
us to construct a continuously varying Markov partition for the polynomial
family.

The proof of the following proposition is straightforward.

Proposition 3.1 1. P;, maps rays emanating from —d lo rays emanat-
ing from 0.

2. Py maps the circle |z + d| = p to the circle |z| = |\ (p/d)?.

We first define a series of wedges as fundamental domains for the Markov
partition. Consider the preimages of R~ under P;,. By Proposition 3.1,
these are rays emanating from —d and there are exactly d of them. Denote
the d wedges bounded by these rays by R(j) where R(0) is the unique wedge
containing 0 and the remaining wedges are indexed consecutively in a coun-
terclockwise direction. We use negative indices for those wedges which are
completely contained in the lower half-plane Im z < 0. For simplicity, we will
not index any wedge which contains an infinite segment of R™ in its closure.
See Figure 6.

We define the itinerary of a point under iteration of Py, exactly as for
E,, replacing the strips with the wedges. An itinerary will be called regular

13



Figure 7: Construction of the V.2(s;)

if it does not contain a zero in any of its entries. Let ¥; denote the set of all
sequences of integers s = sps152... where 0 < |s;| < [(d — 1)/2]. While this
restriction may exclude one or two of the R(j)'s as a fundamental domain,
it will not affect the conclusions that follow.

3.2 Invariant Cantor Sets for P,

By Proposition 3.1, for a fixed d and X, we may choose a and 3 such that
the image of the circle |z + d| = « under Py is completely contained in
R(0) and the image of |z + d| = 8 contains the two circles |z + d| = 3 and
|z] = |A|(a/d)? in its interior. We let
VFA(s;)) ={z € R(s;)|a < |z +d| < B}
Our choice of a and 3 guarantees that P;,\(V?(s;)) covers VF(s;) for any i
and j (assuming 0 < |s;| < [(d — 1)/2]). See Figure refwedges-1.
We define
Vaﬁ = U Vﬁ(si).
0<[si|<[(d—1)/2]
Note that V? depends on d and X. Let A, 4 be the set of points whose orbits
under F; ) remain in Vf for all time. The inverse map

Pc;/‘},s] () = d|Z/)\|1/d exp!(Argz—Argdtins;)/d _ g

14



is analytic on V7 and takes values strictly inside the wedge V?(s;). Hence
PCZ/\l75J is a strict contraction in the Poincaré metricon V?. As a consequence,
for any z € V/?, the sequence Py, o...0 P\ (z) tends to a limit in V/
which is independent of z. This limit point has itinerary sgs;ss;.. ..

For any sequence s = $g$182... € Y4, we therefore can define ®(s) =
lim,, 00 PCZ/\{SO 0...0 PcZ/\l,sn(Z) for any z € VP, Standard arguments then
show that @ is a homeomorphism which gives a conjugacy between P; y and
the shift map on ¥4. Given d and A, we define z4,(s) to be the unique point
in Ay 4 whose itinerary under Py ) is s. The following proposition now follows
immediately.

Proposition 3.2 Let s = 508153 ... be a reqular sequence in 4. Then there
is a unique point zg\(s) in Ay g whose itinerary under Py is s. This point
lies in the Julia set J(Py). Moreover, if s is a repeating sequence, then
za\(8) is a repelling periodic point.

The dynamics of Py, on its Julia set increasingly resembles that of )
(see [7] as d becomes large in the sense that we can take the bound on the
s; larger and thus obtain larger classes of regular itineraries corresponding
to repelling periodic points.

3.3 Existence of Hairs

In this section we will prove the existence of invariant hairs for P;,(z). These
invariant hairs are defined in a similar way to those for the exponential family
of maps [7], with endpoints zq\(s).

Definition 3.3 A continuous curve hgy s : [ﬁ,oo) — Raa(s0) is called a
hair attached to zq)(s) if

1 haps(325) = zap(s).
2. For each t > ﬁ, the itinerary of hq (1) under Py, is s.

3. Ift > -4 then
nh—>I£10 | Pia(haas(t))] = oo

4. 1imt_>oo |hd7)\7s(t)| = OC.

15



Clearly the endpoint of each hair lies in the filled Julia set of P;.(z),
whereas the other points on the hair do not. Later in this paper the hairs
will be shown to be equivalent to the familiar external rays for the family of
polynomial maps.

We make use of the “model map” Pj.(t), where % = (d?Tl)d_l. This
parameter value corresponds to a saddle-node bifurcation for the real-valued
polynomial.

For any value of A\ € € and itinerary s, we define the functions hy,

C' x [%,oo) — C by
ds(A1) = Qanse 00 Pr(t).

where Qg s,(2) = d((z/)\)l/dewsﬂ/d — 1) is the s;th branch of the inverse
of Py That is, the function A} is obtained by iterating the model map
forward n times, and then taking n appropriate branches of the inverse of
the polynomial.

Theorem 3.4 For each t € (;%,00), the function

hao(At) = Tim R7 (X, 0)

n—oo

exists and is a non-trivial function of t.

To prove this theorem we will need four lemmas.

Lemma 3.5

1
an

d
lim (P}, (1))" istsforall  t > ——.
nl_)rgo( e )) existsfora > T

Proof of Lemma 3.5. Since the graph of ¢,11 = Py.(t,) is tangent to the

line t,,11 =1, at the point ¢,, = ﬁ, it follows easily that ¢ > Pyi.(t) > 1 for

> ﬁ. If we now iterate the functions, we can extend the inequality to:
"> PrL(t) > 1.

Taking the dth roots of each side, we see that P () is bounded above by ¢
and below by 1. Next, we notice that P}, () is a decreasing sequence:

. PN\ T (Pr 1
(P ()™ :(*(HL;( ))) < w7 (7) < (PR,

16



(The last inequality follows from the fact that /¢ < d). Since (Pc}f*)d% is a
decreasing sequence bounded below, it must converge.

1
an

Lemma 3.6 lim,_, (PCZ*(t)) " is a non-trivial function of t.

Proof of Lemma 3.6. We first claim that 7, ¢ < (P;f*(t))d% for each n > 1,
where L X ) -

] )d Tt Tar KTT K\ Dier T

T e d (‘) '

d

This is proved by induction: for n = 1, we have (Pd7*(t))§ = *%(1 + 5 >

*de t = 71 t. Assuming the result holds for n,

(PR Oy = ( (1—|—P£:i(t))d)d"l+l

Pr) ™
— n+1 1 ’
*d ( + p
% antl1 Lﬂ
2 ddLﬂ (Pd,*(t) ‘

Also, from the proof of Lemma 3.5, we know that (ij*(t))d% <tVn>1.

These two inequalities bound (ij*(t))d%; taking the limits of each as n — oo,
we get: )
lim j, t < lim (Pj*(t))d_" <t

n=oco n=0co ’

1
which means that 5 (3) < limnﬁoo(ij*(t))dLn < t. Thus we have that

limnﬁoo(Pc}f*(t))dL" is a non-trivial function of ¢.

Lemma 3.7 There exists a conjugacy, ®4,(z), near infinity such that

(I)d)\ o] Pd,A o] CI)d_j\(z) = Zd,

17



where

@(Z)zCZ—I—O(é) {Z?g .

Proof of Lemma 3.7. This is a well known fact in complex dynamics, see
for example [9].

Lemma 3.8 For fized t, if lim,—o |Pa(t)| = oo, where Py(t) is any polyno-
mial of degree d, and if ®(z) is any function of the form

q)(z):cz—l-()(é){ zég ,

lim (® o PP(1))# = lim (P}(1))7.

n—oo n—oo

then

Proof of Lemma 3.8. Since lim,, o, |Pi(t)| = oo, we can write
O(Pr(1)) =c Pi(t) + ®(PF(L)) —c P7(1).

But |®(P}(t))—c P2(t)] = O <%), which is certainly bounded as n — oc.

Suppose for all sufficiently large n this quantity is bounded by K. Then
lim (®(P}(1))7 = lim (e PA(t) + K)7

n—oo

= lim e (P}(t) + K)"

= lim ¢ lim (P}(1))7

n—00 n—o0
. " L
= lim (P/(1))7",

) ) 1
since lim, ., c#™ = 1.

With the help of these lemmas we now proceed to prove the existence of
hairs for the family of polynomial maps.
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Proof of Theorem 3.4. We know from Lemma 3.5 that limnﬁoo(Pc}f*(t))dL“

exists for all ¢ > ﬁ. Also, from Lemma 3.7, we know there exists a con-
jugacy ®,.(z) near infinity such that &4, 0 Py, o q)gi(z) = 2% Then we

have

27s ¢

Qaps, (2) = @78 (e7T (yn(2))

By extension, we have

=

).

o
Qd,A,SO o] deAvsl 0---0 Qd,k,sn_l (Z) — Qi}\(e W?nl(éd)\(z))d%)’
where m,, = 3" 5
Then
nh_g)lo HC?,S()\7t) = nh—g)lo Qd,/\,so 0 Qd7/\\751 0---0 de\ﬁn_l o Pz*(t)
. _ 2mmpt 1
= 7}1_>r(r)10 (I)dj(e i (q)d,/\ o Pz*(t))dn)

2mwmpt

= 0 Jim e Jim (@45 0 PJL(1)7)

mm 1

= (I)—ld7/\(€2 dSi h_>m (P,;?ll,*(t))dn)’

using Lemma 3.8, and where my = lim,,—,o, m,,. Each hair hy (), 1) is a non-
trivial function of ¢ by an easy application of Lemma 3.6. This completes
the proof of the theorem.

Theorem 3.9 The hairs hy (X, t) are continuous in t and analytic in .

Proof of Theorem 3.9. To prove continuity in ¢, we first show that
limn%oo(Pj*(t))dL" is continuous in ¢. We define
gatgteta

- 1 1 .
ettt

n

For n =1 and ¢,y on the hair, we have:

1 1 1 t t
(Pac(®)F = (Paetta)¥] = ¥|(14+5) = (14 5)]
*%t t
= —lt—1o
— Rl|t—t0|



Under the induction hypothesis that |(P£*(t))d% —(P7, (to))dL“| < Rt —tol,
we find that:

(PR )T = (P (1)) 77| <
| PR Py (to)\ ™
< it 1 1 _ ST 7 _ 1 et ol B
(1 RO (1 2
1 P (1 Pr_(to)\ |
T (1_|_L()) — <1+M)
d
* T n n BN
= —|Pp.(1) — Pi.(t)]|™
dam
*d'nl-l-l
S 1 Rn|t_t0|
- Rn+1|t - t0|
Hence we have
Tim (P, (1) = (Pp(to)) @] < lim Ryt = tof
= R|t_t0|7
where R = lim,_,o R, = (g)dlTl Clearly limnﬁoo(Pj*(t))dL“ is continuous

in ¢. Finally, from the proof of Theorem 3.4 we see that hgs(X,t) is the
composition of functions which are continuous in ¢, hence itself continuous
in t.

To show that hgs(A,t) is analytic in A, we use a normal families argu-
ment: for each n and all valid ¢ , H} (A1) is an analytic function in A and
takes values in Uy B(so) , thus missing at least three values in C. By
Montel’s Theorem, the H}} (A, t) must then be a normal family on C'. Hence
limy, o0 H7 (A, 1) = hgs(A, 1) is an analytic function in A.

This completes the proof of the theorem.

3.4 Convergence of Polynomial Hairs to Exponential
Hairs

In this section we will prove that the hairs defined for the polynomial maps
Py(z) in the dynamical plane converge pointwise to the corresponding hairs
defined for the exponential map F)(z) as d tends to infinity.

20



Recall that for the exponential family there is defined a Markov family
of rectangles,

Rk)y={2€C|(2k —1)m —Arg A <Imz < (2k + 1)m — Arg A}

where the hairs live. See [7]. For the polynomial family, we have defined a
similar Markov family of wedges R4(k) where the hairs for P, live. Note that
the wedges converge to the rectangles as d — oc.

We now prove that the hairs converge pointwise.

Theorem 3.10 For each fired 0 < XA < 1/e, t € [1,0), s € Y,

lim lim Hj, (t) = lim lim HJ, ().

d— 00 N—00 n—00 d—oo

This theorem is proven by mimicking estimates produced for the expo-
nential hairs in [7] for the polynomial hairs. However, these estimates cannot
be used in general to prove existence of the polynomial hairs. Geometrically,
this is because the polynomial hairs are contained in wedges around z = —d,
with unbounded imaginary part, whereas the exponential hairs which are
contained in strips of width 2 parallel to the real axis.

Lemma 3.11 Suppose 0 < A < *, t € [l,00), and s € ¥g. if d > K s
sufficiently large so that 2n(K +1))/d < 7/2 and

1/d 2n(K +1

s, (1

and r satisfies 1 <r < (%) cos MJH), then

*
A

Re H£A7s(t) > rit.

Remark. Condition (1) is always satisfied for sufficiently large d as long as
0 < A < *. This can be seen by a expanding (i)l/d and cos m%l as power
series in 1/d.

Proof of Lemma 3.11. The proof is by induction on n. When n = 1,
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Hence

Hixs(t) = Qanse 0 Pax(t)

P * t l/d 2mwsqgt
*k l/d t 2mwsqt
- d((x) (1+3)¢ ‘1)'

1/d 2 1/d 9
Re Hyy (1) = <§) cos 7;80 t+d ((;) cos 7;50 - 1)

> rt.

For the induction step, we assume the lemma holds in the nth case. Then,

v

v

Y

v

>

Re Hgils(t) =
Re de\,SO o Hg,)\,a(s) o Pd7*(t)

Hn ] P * t l/d 2mwsqe
Re d (( d’A’g(s))\ i )) e~ d- _ 1)

; ( (|H§A7g(s) 0 Pd,*(m)l/d 2mso + Arg(Hy o1 © Pas(t) 1)

\ COS d

1/d
d((2)" (14 1) cosZllEni2 )
ra 14 t 2r(K +1)
d((x) (1+3)C“‘—i7———1

1/d 1/d -
<%) t+d ( —*) CoS 727T(Ad+ D) — 1)

A
e\ 1/d A\ on(K 4+ 1)
5) t+d((i> cos g 1

rt.

This completes the proof of Lemma 3.11.
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Lemma 3.12 Suppose 0 < A < *,

€ [1,00), and s € Y. Suppose also

that d > K is sufficiently large so thal there exist constants (with respect to

t) A, B and R, S which satisfy:

2r(K +1)

*

(A+ R)(B+5)

A

(

d

B

«(A+ R)(B+5)

A

2n(K + 1) (

*(A+ R)(B

Y

)l/d
A

+5)

(

A

«(A+ R)(B +9)

?

)l/d
)l/d

v

dl

Re Hj, (1)
[T Hs (1))

Then

Proof of Lemma 3.12. The proof is

A

1/d
) _1).
Rt+ S

At + B.

again by induction on n. When n =1,

%\ 1/d t\ . 2ms
Im Hyp (1) = |d<x) (1+3) sin |
*\ 1/d L\ [ 27]so]
< d| = 14+ -
< a0+ (7
2r K /x\1/d *\ 1/d
z - < _
< BE Vo () < e s
Similarly,
1/d 2 1/d 9
Re Hypy (1) = <;) cos Zsot—kd((;) cos 7;80—1)
< Rt+S.
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Hence the lemma holds for n = 1. For the inductive step, if we assume
the lemma holds in the nth case, we have:

IA

IN

IN

IN

<

H?’L o] P * t l/d 2mwsqt
[Im Hﬁls(tﬂ = |[Im d (( d’A’U(S))\ - )) e a — 1) |

2msy + Arg(H:i/\J(s) o Pd7*(t))|
d
d 2n(K +1
A Re Ho oo Pan)] 4 [l Hyy o (Pan() 1t 2TE D)

d
d g 2m(K+1)
)\1/d(RPd*( t)+ S+ APy.(t) + B)" — g

(R ()
27r<fil+ ) (*(A + Ri(B + s))”dt
MA+RMB+$)W
A

)\1/d|H§/\U (s) o Pdv*(t)|1/d| sin

+2m(K 4+ 1) (
Al + B.

Similarly, for the real part,

IA

IA

IN

IA

IN

Re H;ngs(t) =

H’ﬂ o] P * t l/d 2mwsqt
d Re (( d,/\,a(s)/\ d, ( )) e d — 1)

1 1/d
d <X> (|Re Hd”\vg(s)(Pdv*(t)” + |Im Hd,,\,U(S)(Pd,*(t))Dl/d - 1)

(
d (G) Y RPL) + S+ APL(1) + BV — 1)

; <*(A+R))\(B+S)>l/d <1 .\ é) - 1)
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Hence, by induction on n, the lemma holds for all n > 1, completing the
proof of the lemma.

We need to show that such choices of r, A, B and R, S are possible for
each XA and for sufficiently large d.

Lemma 3.13 For each fized 0 < X < 1/e, t € [1,00) and s € X, the choice
of constants

(*)1/d 2n(K + 1)
T = — cCOS ——
4 ) d

A, = 2n(K + 1) (*4#([&" +1) (1 N 2n(K + 1)))1/(d—1) |

d A2 d
B - 27T(K—|—1)’
)
sdm(K + 1) o (K + 1))/
Bo = \——\+—5 ’
¢ QW([&:\—I—l)

satisfy the conditions of Lemmas 3.11 and 3.12 for sufficiently large d.

Proof of Lemma 3.13. The choice of ry easily holds, since * < 1/e for all
d. By noticing that Ay = 27 Ry(K + 1)/d, and substituting the choices of B
and S, we can check that indeed

y 27 (K +1) (*(Ad+Rd)(B+S))1/d
¢ d ) ’

(*(Ad + Ry)(B+ S))l/d’

Ry = )

the maximum possible values for A and R. For S, we see that

S ((*(Ad + Ry)(B+ S))l/d ) 1)

d—y00 A
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= Jim d(Rq—1)

. . 1/(d-1)
o ((*M(A +1) (1 2K+ 1))) - 1)
d—oo A2 d

dn(K +1) <

e? <5

= log

with a tedious application of L’Hopital’s rule required - the details are left
to the reader. Finally,

4@+RMB+$)W

— 1 9 4
) dliglo 2n(K 4+ 1)Ry

lim 27(K + 1) (
d—00
= 2n(K+1) < B,

confirms the validity of the B estimate, via another application of L’Hopital’s
rule to show that limy_,., By = 1. This completes the proof of the lemma.

It can easily be seen from Lemma 3.13 that limy_. rq = limd_ﬂzo Ry =1,
and limg., Aq = 1. We now compare the relative positions of the Hy(\,t) =
limgeo Has(A, 1) and Hy(A, 1) = lim, o HY ().

Lemma 3.14 For each firved 0 < X < 1/e, t € [1,00) and s € Xk, there
exists a constant W = W(X) such that, for all sufficiently large d,

|[N{S()‘7t) - HS()‘vt)| S Ww.

Proof of Lemma 3.14. We use the bounds on H,(\,t) given in [7], namely,
for fixed 0 < A < 1/e, t € [1,00), s € Y,

t < ReH,(\1) < L+ M, 2)
ImH,(\1)| < (2K + ), (3)

where M = M()). From Lemmas 3.11, 3.12 and 3.13, we also have:

Rit+ S
Aqt + B.

rqat < Re H£A7S(t)

<
[Im Hy, (D] <
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Taking the limits of the above bounds as n — oo, we find the following
estimates:

Tdt § Re Hd7s(/\,t)
IIm Hy (A1)

Rgt + S (4)

<
< Agd+B. (5)
Combining bounds (2) and (4) and bounds (3) and (5), we have:

-M S Re Hd7s()\,t) — Tdt — (Re HS(/\,t) — t) § (Rd — Td)t + S
ITm Hy,(A\ 1) —Im Hy(M\ 1) < |Agt+ B — (2K + 1)x|.

Taking the limit as d — oo in the above bounds, we obtain bounds indepen-
dent of ¢:

—M < Re H,(\t) — Re H,(\,1)
ITm H,(\, 1) — Im H, (1))

S

<
< |B—- (2K + )a).

A simple application of the triangle inequality gives the required bounds.
This completes the proof of the lemma.
We are now in a position to prove the main result of this section:

Proof of Theorem 3.10. We need some invariance properties of [:[s()\,t)
and H(A,t). For any m >0,

HELT (1) = Qg Hiy iy PEL(D).
Taking first the limit as n — oo then as d — oo, we have
.00 = L7, 0 Homgo (A E™ (1),
Reversing the order of the limits we find

Hs()\,t) = LT’S o Hgm(s)()\, Em(t))

For each fixed 0 < A < 1/e, and fixed ¢ > 1, take any ¢ > 0. Recall
from [7] that [(L7\(2))'] < w, for some w = w(A) < 1. We choose m such
that Ww™ ! < €. Then,

|]N{S(/\,t) — Hy(\ )| = |LT75 0 ]:L,m(s)()\, E™(t)) — LT’s o Hgm(s)(/\, E™(1))]
< W [Hom(g) (A, E™ (1) = Hom(s) (A, E™(1))]
< WTIW < e,
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using Lemma 3.14. This completes the proof of the theorem.

Using a normal families argument, we can extend this result to all A € C'.
The fact is crucial to proving the convergence of hairs in the parameter plane.

Corollary 3.15 For a fized t and fired reqular sequence s, the family of
functions Hys:(X) converges uniformly as functions in X to Hy4(X) asd — oo

for X e C'.

Proof: We use a normal families argument. The Hy,:(A) are analytic
functions in A, and A — Hy:(\) misses many more than three values in C
(since each Hys:(A) only takes values in the soth wedge around —d). By
Montel’s Theorem, it follows that Hy () is a normal family of functions.
Every subsequence converges uniformally on C’ to either an analytic function
or to infinity. Since Hys:(A) converges for 0 < A < 1/e to the analytic
function H:()), the family cannot converge to oo and so it follows that it
must converge uniformally on C’ to the analytic function H:(X) — uniquely
determined by its values on the arc 0 < A < 1/e.

4 Hairs in the Parameter Plane

4.1 Existence of Hairs

Our goal in this section is to show that there also exist hairs in the parameter
plane for the polynomial family. Except for the endpoints, these hairs consist
of A-values for which the orbit of —d (the critical point) under P, tends to
infinity with a specified itinerary and hence the Julia set for P, (which
equals the filled Julia set) is a Cantor set. For the exponential family, the
A-values on the hairs in the parameter plane correspond to Julia sets which
are the entire plane. We will show that the polynomial hairs converge as
d — oo to the exponential hair with the appropriate itinerary.

d

Definition 4.1 Lel s = s5183.... A continuous curve H,4:[775,00) = C

is called a hair with itinerary s if H,q satisfies:

1. If X\ = Hs4(t) and t > ﬁ, then P}y\(—d) — oo and the itinerary of A

under Py is s.
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2. If A = H&d(ﬁ), then the orbit of A under P, is bounded and has

itinerary s.
3. limyoo Re Hs q(t) = o0.

Remark: We use the term “hair” for curves in both the dynamical plane
and parameter plane. When necessary, we use the terms dynamical hair and
parameter hair to distinguish between them.

Theorem 4.2 Suppose s is a bounded, regular sequence. Then there exists
a hair in parameter space with itinerary s. Moreover, if s is periodic or
preperiodic, then —d is preperiodic under Py for A = H&d(ﬁ).

Proof: The last statement of the theorem follows from the fact that if s is
periodic or preperiodic, then so is the endpoint of the hair hd7A7s(%) =A=
Pi(~d).

For a given bounded, regular sequence s, a fixed d and ¢, we will construct
a wedge ()5 4 in the parameter plane which is mapped strictly inside itself by
the map F; 4(A) = han (). We will show that this map has a unique fixed
point Ag. In other words, Ag = hqg, ), s(1), so that Ag sits on its own hair kg ), s
at time ¢. If ¢ > ﬁ, it follows that P}, (—d) — oo, whereas, if t = ﬁ, the
orbit of z = —d is bounded under Py ,,.

Let s = sp$152... be a bounded, regular sequence and let Z; denote the
union of the wedges Ry \(sg) for A € C — R~ = C’. We will assume that
—d is contained in Z;. The map F;4()), which is analytic in A, takes C' to
Zs since the hair hy ) s lies in the wedge Ry\(so0). So in particular, F} 4 is
an analytic map of Z; to itself. This map either has a unique fixed point in
Zs or else all points tend to a fixed point on the boundary. However, if F} 4
had a fixed point on the boundary, say Ag, then g, s(t) = Ao and the hair
ha s intersects a ray which is mapped to R under Py ,,. But then s; = 0,
contradicting the assumption that s is a regular sequence. Thus, F;  has a
unique fixed point and it remains to be shown that this fixed point is finite.

We do this by finding a number r; such that

A+ d| > r; implies that | F;q4(X) + d| < ry. (6)

It follows that the fixed point will be contained in Zs N {A: |A+d| < r}.
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Choose r; such that

t d T
1 Y - 1 TiNd
el < 1)
d+1 dd

where * = (,:1771),;1—1 from Section 3. Fix A € Z; with |A + d| > r; and denote
its corresponding d wedges by R(k). Recall that

VA(s)) ={z € R(s;)|a < |z +d| < B}.

We will need to alter the definition of V/#(0) slightly. In Section 3.2, we chose
a small enough so that the circle |z| = [X|(a/d)? = C, was entirely contained
in R(0). Here we choose a so that in addition, [A|(a/d)? < -4 Then set

VA0)={2 € R(0) : a<|z4d <B and z ¢ C,}.

Now let
Vaﬁ = U Vﬁ(si).
0<s;|<[(d—1)/2]

We claim that for any = > ¢,
Van’*(w) C PdA(V;). (8)

The only thing which needs to be checked is that the circle |z| = |A|(z/d)?
contains the circle |z 4+ d| = Py .(z) in its interior.
We have by the triangle inequality that |A 4+ d| > r; implies

|/\| Z Tt—d
it d
> — iy + )
dd-|—1 d p
> o+

which yields

X Xz
M(Z) > d 14+ 2)¢
A > d 51+ )

as desired.

30



Relation (8) means that Py ( an’*(r)) C V7 for any z > t and any 1.

Moreover, repeated iteration of this relation gives

n

Prl o Pl oo Pl (Vi cvr (9)

for all > t. By our choice of r; in (8), it is clear that r; > ¢ so relation (9)
holds for # = r; as well. Finally, (8) also implies that P} (t) +d < P7,(r)

which means that P7, () € VQPQ*(H). Therefore, h} , ((t) € V] for all n, and
in particular

|Fra(A) +d] <1y
which verifies (6).

We have shown that F}; has a unique fixed point Ag in the parameter
plane which is contained in Z; N {A : |XA 4+ d| < r}. Consequently, we can
define a map to the parameter plane H; 4(1) : [ﬁ, o) — C' as the unique
fixed point Ag of F;4. This fixed point satisfies \g = hg, () and thus the
itinerary of Ag under Py, is s. To show this yields a hair in the parameter
plane, we need to verify that it is continuous and that lim;,., Re H;4(t) = oo.
For continuity, choose a ty € [%, oo] and fix € > 0. We have shown that
Fy, 4 has a unique fixed point Ag and moreover, that Fj 4 is a contraction
near A\g. Let A be the disc of radius € about A\g in the parameter plane and
assume that € was chosen small enough so that Fy 4 contracts A. If we fix A
and vary 1, Fy 4 then parameterizes the hair b, ) ; in the dynamical plane. We
know that Fj 4 varies continuously in ¢, as the hairs in the dynamical plane
are continuous. Therefore, we can find a § such that if |t —tg| < §, then Fi4
also contracts A. This implies that the fixed point for F}, is also in A and
in particular, less than ¢ away from Aq.

To complete the proof on the existence of hairs in the parameter plane we
need to show the real part of the hairs heads off to infinity. But these hairs
are identical to the external rays of Douady and Hubbard [9], since they have
the correct itinerary, and these rays are known to extend to infinity.

Remark. As before, it is possible to relax the assumption that all the s; be
non-zero. In this case we get the existence of hairs in the parameter plane,
but they are only defined in the far right half plane, that is, for ¢ sufficiently
large. In particular, these hairs do not necessarily terminate at A-values for
which —d is preperiodic.
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4.2 Convergence of Polynomial Hairs to Exponential
Hairs

Fix s to be some regular sequence. Let Fj+(A) be the t-point on the hair in
the dynamical plane for Py, and let Fi(A) be the t-point on the hair in the
dynamical plane for E,. Both F}; and F} are analytic functions in A on C'.
More importantly, Corollary 3.15 that F; ; — F} uniformly on all of C'.

We have shown that F}; has a unique attracting fixed point for each d.
Similar results in [7] show that F}; also has a unique attracting fixed point.
Since Fy 4 converges to Fy uniformly, it follows that the fixed points of Fj 4
converge to the corresponding fixed point for F;. But these fixed points are
exactly the A values on the associated hairs in the parameter plane. We have
proven the following:

Theorem 4.3 Let s be a reqular sequence. For each t,

lim H, g (t) = Hg(t).

lim H,a(t) = Hy(1)
In other words, the hairs in the parameter plane with itinerary s for the
polynomial family converge pointwise to the hair in the parameter plane with
itinerary s for the exponential famaily.
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