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1 Introduction

Our goal in this paper is to describe the dynamics and the parameter plane
for the family of complex exponential functions

Ex(z) = Xé”

where A € Cis a parameter. This family has been discussed extensively when
A € R (see [11]). Our main goal is to prove the existence of “hairs” in both
the dynamical and parameter planes for this family.

1.1 The Quadratic Family

The hairs in the exponential family are the analogues of the external rays for
the family of quadratic polynomials

Q.(z) = 24

as introduced by Douady and Hubbard [9]. We first recall the definition of

these rays, and then describe their analogues in the exponential family.

For ()., the filled Julia set is defined as
K.={z€C|Q%2) isbounded, n=1,2,...}.

The boundary of the filled Julia set, .J., is called the Julia set of Q.. Equiv-
alently,

J.={z € C|{Q7} fails to be a normal family at z}.

It is known that all of the interesting dynamics of (). occurs on J.. In
particular, J. is the closure of the set of repelling periodic points for @)..
See [4], [8], and [9] for general background on the dynamics of the quadratic
family.

Near oo, the dynamics of Q. are equivalent to those of z — 2% More
precisely, we may find a neighborhood U. of co and an analytic conjugacy

¢.: U, — C

such that
(¢e(2))? = ¢:(Qc(2)).



Figure 1: The Mandelbrot set for Q.(z).

The preimage under ¢, of a straight ray of the form ¢ — te?™ for t > 1 is
called an external ray for ). and denoted ~4(¢). By the conjugacy, Q.(vs) =

Y26-

The filled Julia sets for the quadratic family exhibit a fundamental di-
chotomy as determined by the fate of the orbit of the critical point, 0. Either
K. is connected, in which case the orbit of 0 under (). is bounded, or K. is a
Cantor set, in which case @7(0) — co. When K. is connected, the conjugacy
¢. may be extended to C — K. In the case that lim;—; v4(?) exists, we call
this point the landing point of the ray ~y.

1.2 The Mandelbrot Set

The fundamental dichotomy above is also reflected in the parameter plane for
().. The picture in the parameter plane, the well known Mandelbrot set M,
consists of all e-values for which K. is connected or, equivalently, for which

@7(0) is bounded. See Figure 1.

C

According to Douady and Hubbard [9], there is a uniformization of the



exterior of M

¢: C—M—C—{z||z] > 1}.

As in the case of the dynamical plane, we define the external ray
Ro(t) = 671 (12"),

for ¢ > 1. Again as in the case of K., certain of these rays are known to
land at points of M. There is a beautiful relationship between the dynamics
of the landing points for certain of the external rays in M and the doubling
map # — 20 mod 1. For example, suppose the binary expansion of 8 is
either periodic or preperiodic under angle doubling, i.e., doubling modulo
one. Then it is known that the ray Ry lands at a point in M. Moreover, if
6 is periodic, Ry lands at a root point of a hyperbolic component of M (a
bifurcation point). If 8 is preperiodic, then Rj lands at a Misiurewicz point
in M, i.e., a c-value for which the orbit of 0 eventually cycles and K. = J, is
a dendrite. See [9] for details.

1.3 The Exponential Family

We now turn to the exponential family F\(z) = Ae* where A € C is a
parameter. The Julia set of F) is defined as before as

J(E)) ={z € C|{E}} (fails to be a normal family at z}.

It is known that J(F)) is also the closure of the set of repelling periodic
points of K\ [3]. It is also known that if £7(z) — oo, then z € J(F)). This
follows immediately from the fact that complex exponentials cannot have
wandering domains or domains at co. See [2], [14], and [17]. Recall that, for
the quadratic family, points whose orbits escape do not belong to the Julia
set.

This is one difference between the exponential and quadratic families, but
there are many others. Chief among them is the fact that oo is an attracting
fixed point for )., but oo is an essential singularity for E). As we show below,
J(FE,) contains oo in its closure. As a consequence, there is no analogue of
the conjugacies ¢. or ® in either the dynamical or parameter planes for F).

However, we may still identify certain curves in the dynamical plane that
play the role of the external rays v4. We will show that for each A € C' = C—
{non-positive reals} and K € Z* there is an invariant Cantor set contained



in the Julia set of Ky on which the dynamics of K\ are conjugate to the
one-sided shift map on 2K symbols. Attached to each point in this Cantor
set is a curve or “hair” that extends to oo. The point in the Cantor set is
called the endpoint of the hair. The orbit of any point on a hair (excluding
the endpoint) tends to co under iteration of F) and, moreover, £, permutes
these hairs as dictated by the shift map.

Because of this, the hairs are the analogues of the external rays v,. How-
ever, there are several differences. First, the hairs for E) lie in the Julia set
of F\ whereas the vy lie in the complement of .J. for @).. Secondly, the hairs
do not foliate an open neighborhood of co for £\ as they do for @)..

For the quadratic family, the orbit of the critical point plays a crucial
role in determining the dynamics. For F), there is no such critical point.
However, F\ has a unique asymptotic value (or omitted value) 0. This orbit
plays a somewhat similar role for £\. For example, it is known ([5], [15]) that
the Julia set of K is the entire plane if £7(0) — oo. Also, if £, admits an
attracting cycle, then the orbit of 0 must tend to this cycle, showing that £
may have at most one attracting cycle. In this case it is known that J(F))
is a nowhere dense subset of the plane.

1.4 The Parameter Plane for the Exponential Family

We do not have a fundamental dichotomy for E) based on the fate of the
orbit of 0 as we do for )., for there are many values of A for which the orbit
of 0 i1s bounded yet the Julia set of E) is the entire plane. Nevertheless, we
may begin to paint the picture of the parameter plane for K\ based on the
fate of the orbit of 0. In Figure 2, we show a picture of this plane. The visible
black regions are “hyperbolic components”, Cy, i.e., A-values for which K\
has an attracting cycle of period k. The cardioid-shaped region in the center
of the picture is the attracting fixed point region. The large black region to
the left is Cy. The large horizontal strips extending to the right comprise
C5. It is known that for each & > 2, C} consists of infinitely many distinct
components and each component extends to oo in the direction of the right

half plane [5].

Between these components sit the analogues of the external rays in the
parameter plane. See Figures 2-4. In these images, these rays appear to
occupy open sets. However, we will show that there are actually infinitely



Figure 2: The parameter plane for E,.

Figure 3: Detail of the parameter plane near A = 0.



Figure 4: More detail of the hairs of the parameter plane.

many distinct curves (or hairs) in the complement of the hyperbolic compo-
nents. These curves consist of A values for which £7(0) — oo and so the
Julia set of E) is C. As in the case of the dynamical plane, we will study the
arrangement of these hairs using symbolic dynamics.

2 The dynamical plane for E)(z).

In this section we discuss the dynamics of Fy(z) = Ae*. We assume through-
out that A € C'. The dynamics of F, when A € R~ are well understood; we
exclude this case merely to gain continuity of the Markov partitions discussed
below.

We will prove the existence of an invariant Cantor set in J(F)) for all
A € C'. A similar construction was obtained for real A in [1], [11], and [12].



2.1 A Markov partition for F)

For each integer k, we define horizontal strips R(k) = R\(k) by
Rk)={z€C|(2k—1)mr —arg A < Im z < (2k + 1)m — arg A}.

Here arg A is the principal branch of the argument, taking values between
+7. Note that F) maps the boundary of R(k) onto the negative real axis.
Consequently, F\ maps R(k) onto C for each k, and R~ U {0} C R(0) for

each A. In particular, Ex(R(k)) D R(j) provided j # 0. Hence the R(k)
provide a type of Markov partition for K, at least when k # 0.

Definition 2.1 For z € C, the ilinerary of z under E\ is the sequence of
integers s(z) = $os18g... where s, = k iff EY(z) € R(k). We do not define
the itinerary of z if K (z) € R~ for some n.

Definition 2.2 An itinerary sosiss ... ts called reqular if s; # 0 for all j.

Let ¥ consist of all one-sided sequences sgs1s3... where each s; €
Z, s; # 0, and |s;| < K, i.e., all regular sequences. The one-sided shift
o on Y (also called the shift on 2K symbols) is defined by

o(s0s182...) = (S15283...).

It is well known that ¢ has dense periodic points in ¥, has dense orbits,
and exhibits sensitive dependence on initial conditions.

2.2 Invariant Cantor sets for E)

In this section we will construct invariant Cantor sets for £y on which £, is
conjugate to the one-sided shift on ¥ for each integer K > 0.

For each A € C', we will construct an invariant Cantor set homeomorphic
to Y. Toward that end, we define L, ,; to be the inverse of ) defined on
C' and taking values in the strip Ri(s;). Note that

L)\75](Z) = —logA + log z + 2mis;
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where log is the principal branch of the logarithm.
Given A, define

Mg = {sup|lm z| |z € R\(£K)}
mg = {inf|Im z| |z € R\(£1)}

Mg and my, give the maximal and minimal vertical distances to the real line
in the union of the strips Ry(s;) when 0 < |s;| < K. Note that Mg > 2.
Define
VP (s;) ={z € R(s;)|a < Re z < g}.

Each VP(s;) is a closed rectangle whose interior lies in Ry(s;). Throughout
this section we fix a and 3 so that

0 <|Ale” < mg
INe” > Mg+ 8]+ |al.

With this choice of o and 3, the image of each V?(s;) under E) is an annular
region given by
e < |z| < |A|€°.
Our choice of a and 3 guarantees that F,(V/7(s;)) covers V/(s;) for each i
and j (assuming 0 < |s;], |s;| < K). See Figure 5.
Let
vi="U V0.

0<|il<K

Vf depends on K and A. Let Agx ), be the set of points whose orbits remain
for all time in V7.

Theorem 2.3 Suppose K > 0. For each A € C', Ag,\ is homeomorphic to
Yr and E\|Ak,\ is conjugate to the shift map on Y.

Proof. Let s = (s08183...) € ¥g. Let z € VP, Define
LKS(Z) = Lys0...0 Ly _,(2)

We claim that
lim L§7S(Z)

n—oo



Im(2)

Re(z)

Figure 5: E\(V/(s;)) D VP(sy) for all k.

exists and is independent of z.

To see this, note that £y (Int V?(s;)) is a simply connected region in C for
each j. Also, Ly ,, maps this region strictly inside itself and so each L), is
a strict contraction in the Poincaré metric on Ey(Int V?(s;)). In particular,
each L, ,, is a strict contraction in the Poincaré metric on the subset Vf. As
a consequence, the sets Lgs(Vaﬁ) are nested and decrease in diameter to 0 as
n — oo. Hence lim, ., L} ,(z) exists and is independent of 2.

We therefore define ®(s) = lim,_. L% ,(2) for any z € V7. Standard
arguments (see [4], Theorem 9.9) then show that @ is a homeomorphism
which gives the conjugacy between E) and the shift map. a

Given A, K, we define z,(s) to be the unique point in Ax ) whose itinerary
under £, is s.

Corollary 2.4 Suppose s = 3g5...5,_1 is a repealing sequence in Xg. Then
z)(s) is a repelling periodic point of period n for K.

Proof. Since L%, is a composition of analytic maps, it follows that L7 _ is
analytic. Also, L% (V/(so)) is contained in the interior of V(sq) . Since
% s 18 a strict contraction in the Poincaré metric on VB(sg), it follows that



% s has a unique fixed point in this rectangle and that this fixed point is
attracting for L%, hence repelling for E,. Since this point has itinerary s
for K, it must be z)(s) and the result follows.

Corollary 2.5 Let s € ¥i. Then z)\(s) lies in the Julia set of E.

Proof. By the previous corollary, z,(s) is a limit of repelling periodic points
given by the conjugacy with the shift map. By a result of Baker [3], J(F))
is the closure of the set of repelling periodic points. Hence z)(s) € J(F)).

Remarks.

1. The hypothesis that the s; # 0 cannot be dropped in the theorem
or its corollaries. For example, if A € R and A > 1/e, then K, has
two repelling fixed points in the strip R)(0). See [11]. However, when
0 < A < 1/e, we may allow sequences with 0’s, as we show in the next
section.

2. It is important to note that z)(s) is not the only point in the strip
Ry (s0) that has itinerary s. In fact, there are infinitely many points in
this strip that share the itinerary s. These are the hairs that we deal
with in the next chapter.

3. It is possible to give a more complete symbolic description of the
dynamics of F), using both unbounded and non-regular itineraries.
See [11], where this is shown for ¢*. However, we will not make use
of this fact in this paper.

2.3 Thecase 0 <A< 1/e

The case where 0 < A < 1/e will play a special role in the remainder of this
paper. In this case we do not need to restrict to regular sequences. All of
the results below appear elsewhere ([1], [12]), but we include them here for
completeness.

Let X% denote the set of all one-sided sequences (sgs152...) where each
sj € Zand |s;| < K. We specifically allow 0 as an entry for sequences in Y.

When A = 1/e, E) has a fixed point at 1 and F{(1) = 1. If A € (0,1/e)
then F\ has two fixed points in R*. We denote them by a, and r, where
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A=1/e

A<1/e

Figure 6: The graphs of F) for A = 1/e and X < 1/e.

0 < a) <1 < ry. One checks easily that a) is attracting while r, is repelling.
Also, E\(1) < 1. See Figure 6.

Since A is real, the horizontal strips R(k) are bounded above and below
by Im z = (2k + 1)x for each k. The quantity Mg is therefore given by
Mg = (2K + 1)m.

For any 7 > 1, we define the collection of rectangles \N/f by

\N/f:{z| 1 <Rez<r7, [Imz| < Mg}

The only difference between V;” and V; is that we now include V77 (0), the
rectangle in the O-strip Ry(0), in V.

Note also that if 7 = 7(A) is chosen so that Ae™ > 7+ Mk, then K, maps
the vertical line Re z = 7 to a circle of radius Ae™ centered at 0. This circle
contains all of ‘N/f in its interior. Also, F)\ maps the vertical line Re z =1 to
a circle of radius smaller than 1. It follows that L/\ﬁi(f/f) is contained in the
interior of ‘N/IT for each 1. See Figure 7.

Let vy = —log A so that E\(v\) = 1. Note that 1 < v\ < ry. Hence E)
maps the strip 1 < Re z < v, to the annular region Ae < |z| < 1 which lies
in the exterior of ‘N/f. Therefore, if z € ‘N/f, then Re Ly, (z) > vy for each
i. Also, if Rez > vy, then 0 < |L} | (2)| < wy for some constant wy < 1. In
fact, wy = 1/vy. It follows that for any sequence sgs1sg. .. with |s;| < K and

11
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Figure 7: Image of ‘N/IT under F).

any z € V{7, we have

n—1

< W,

506

since it takes at most one iteration of L, ,, to guarantee that Re Ly ,(z) > 2%
Let A% , denote the set of points whose orbit remains for all time in V}".
Using the above facts, we may mimic the proof of Theorem 2.3 to prove:

Theorem 2.6 Suppose 7 is chosen so that e > 7 + M. Then Ay, is
homeomorphic to Xy and Ex|Nj , is conjugate to the shift map on Y.

3 Hairs in the Dynamical Plane

Our goal for this section is to show that each point in Ag .\ (or Ak, if
0 < A < 1/e) actually lies at the endpoint of a continuous curve, all points
of which share the same itinerary.

Definition 3.1 A continuous curve hys:[1,00) — R\(so) is called a hair
attached to z)(s) if

1. h/\\75(1) = Z/\(S).

12



Figure 8: The graph of F(z) = (1/e)e”.

2. For each t > 1, the itinerary of hy s(1) under E\ is s.
3. Ift > 1, then lim, o, Re E¥(h) (1)) = oo.

4. limieo Re by (1) = oo

Roughly speaking, a hair attached to z)(s) is a continuous curve stretching
from z)(s) to infinity in the right half plane. Any point z on this hair with
z # z)(s) shares the same itinerary as z,(s) and has orbit which tends to
infinity in the right half plane. Thus each hair lies in the Julia set of £,. On
the other hand, the orbit of the endpoint z)(s) remains bounded.

We will show that each point z)(s) € Ak, has a hair attached to it, and
that, up to parametrization, this hair is unique.

We will often encounter the case where A = 1/e in the sequel, so we
choose a simplified notation in this case. Define F(z) = (1/e)e*. Note that
F has a fixed point at 1 and E’(1) = 1. Also, F*(t) = cc asn — oo if t > 1.
See Figure 8.

For any sequence s = sps153 ... we define the functions G7: C' x [1,00) —
C by

Gi(At) =LY o E"(1).

13



Note that G is well defined provided that L% jo E™(1) does not liein R~U{0}
for each j. This is one of the reasons for our assumption in Section 3.2 that
each s; # 0, as this implies that L), (2) never meets R~ U {0}. Our goal
is to show that, for each ¢ > 1, the G} converge uniformly as a function of
A to an analytic function. For each fixed A, this limit function will give a
parametrization of the hair k) ; as a function of {.

3.1 The case 0 < X < 1/e.

In this section, we will consider hairs for the special case where A € [, 1/¢)
for some 0 < a < 1/e. In the next section we will consider the general case.
Fix a sequence s = (sgs182...) € ¥l.

Proposition 3.2 Suppose A € [a,1/e) with o > 0. Let s = s98182... € Xl
There is a constant M = M(X) such that, for alln >0 and t > 1,

t<ReG*(\1) <L+ M.

Proof. Recall that the constant Mg = (2K + 1)7 satisfies
|Tm G:i(s)(/\,t” < My

for all 7+ and n since the itinerary s is bounded. Here, o'(s) = (8;8:118i42 - )

Choose M = M(X) > Mg so that, in addition,
M > log(2M) — log A + log 2.
Now we use induction. We have
Ly s (2) = —log A + log |z| 4+ 2misg + targ z.
Therefore

Re Ly, ((1/e)e’) = —logA + log((1/e)e")
—logA —1+1¢
t

v
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since A < 1/e. Also,

Re L ((1/)€)

—logA —1+1¢
—log A +log2+t
t+ M —log(2M)
t+ M

IN A A

by our assumption on M. This gives the result when n = 1. Now let us
assume that
t<Re G '\t <t+ M
for any sequence u with |u;| < K for all j. We write GZ(S()\, E(t) =p+w.
By induction we have

El)<B<El)+M

Hence 1 +log 3 > t. Also |v| < Mg < M by hypothesis.
Thus
Re G77(A\,1) = Re LA7SOG:@§(/\, E(t))
—log A +log |3 + |
—log A + log 3
1+ log 3
L.

AVARAVARIV]

For the other inequality, we have
Re G:@%(A,E(t)) =0 < E(t)+ M.
Then
Re G7(X\,1) = Re Ll\ﬁoGZ(j(/\, E(t))
= —log\+log|3+ v
< —logA+log(E(t)+ M+ M).

This follows since # < F(t)+ M and |v| < Mg < M. Recall that log(a+b) <
log a + log b if both a,b > 2. Using this we have, provided E(t) > 2,

Re G7(At) < —logA—1+1t+log(2M)
< —logA+log2+log(2M) +1
< t+ M.

15



If £(t) <2, then we have

Re G (A1) —log A +log(E(t) + M + M)
—log A + log(2(M + 1))
—log A + log 2 + log(M + 1)
—log A + log 2 + log(2M)

t+ M.

VAN VAN VAN VAN VAN

O

This proposition shows that G7(), ) lies in a bounded region in the plane,
since [Im G2 (A, t)| < Mg by our assumption that |s;| < K for each j.

Proposition 3.3 Let A € [a,1/e) with o > 0. For any sequence s € Y
and any t > 1, the family of functions

A= GE (M)
converges uniformly in A on compact subintervals of [, 1]e) for fixed t €

[a,1/e) as n — oo.

Proof. Choose (3 such that a < 3 < 1/e and let ¢ > 0. We will demonstrate
the uniform convergence of the G7 on the interval [a, 3] for each ¢ > 1. Let
M* = max M()) for A € [a, ], where M()) is as in Proposition 3.2.

Since we have |s;| < K, it follows that |Im z| < Mg for any z lying in
one of the strips Ry(s;). By Proposition 3.2, we have, for each A € [a, 3],

t <Re GJ(At)<t+ M~
for any s and all ¢t > 1. Thus we have, for any n,m > 0
|Gh(A 1) — G (A )] < M™ + 2Mg

for any sequence u = uguquz ... with |u;| < K.
Now recall that we may choose 7' large enough so that for any 7 > 7/

(1.) Ly, (V7) C interior V; for each A € [a, (], and

16



(2.) There exists w = maxyg[s,gjw(A) < 1 so that
(L3,) ()] < ™!
for all z € ‘N/f.

Suppose ¢ > 1. We first choose N so that (M* 4+ 2Mg )N~ < e. We
then choose 7 > 7' so that EN(¢) + M* < 7. Then for any n,m > 0, we have

[GYH ) = GEF O] = [LY Gy (N BN (1) = LY G (A, EN (1))
WG (N BN (1) = Gy (N BN ()]

<
< wN_l(M* +2Mk) < e.

For the case t = 1, we set

* A
Rt i
(in fact, choosing 7* such that log(7*/a) < 7* will suffice).
Since Ly, (V") C V77, by induction we have L} (V") C V{. This allows
us to infer that

[L3,:(1) = L3, (1)] < 2(7" + Mk)
for each n,m > 0. Now choose N > 0 to satisfy

QwN_l(T* + Mg) < e.

Then the proof follows as above.
O

Since the functions G?(\,t) converge uniformly on compact subintervals
of [a,1/e) for each fixed ¢, we define h) 5(t) = lim,—0 GZ(A, ). In the next
section we will prove that %, ; has the properties of a hair as listed in Defi-
nition 3.1. In the next section we will also use this result to prove uniform
convergence for all A € C'.

17



3.2 Hairs in the dynamical plane: the general case

Our goal in this section is to prove that if s = sgsy1s3 ... 1s a regular, bounded
sequence, then there is a unique hair attached to z)(s) for each A € C'. We
define G (A, 1) exactly as in the previous section. Since we can no longer
guarantee that L, (z) does not meet 0 or the negative real axis, we suppose
that s; # 0 for each j, i.e., that our sequence is regular.

We first prove

Proposition 3.4 Suppose s = s508183... € Ni. For each fired 1 > 1 Lhe
family of functions {\ — G7(X, 1)} is a normal family of functions on C'.
Moreover, this family converges uniformly as n — oo to an analytic function

A — hys(t) for each t.

Proof. Since each s; # 0, we have that G7 (), t) is well defined. For each n,
G2 (A, t) takes values in the sg-strip for ). The union of these strips as A
varies over C' forms an open horizontal strip of width 47. Hence A — G7(\, )
omits many more than 3 values in C. By Montel’s theorem, it follows that
{G7 (A, 1)} is a normal family of functions.

Thus, any sequence of the G7 contains a subsequence that converges
uniformly to an analytic function or to co. However, by the results in the
previous section, the sequence G%(A,t) converges uniformly for A in compact
subintervals of the form [, 1/e) with 0 < o < 1/e. Since an analytic function
is completely determined by its values along any arc in an open region, it
follows that the G7(A,t) for general A converge uniformly to an analytic
function on all of C'.

O

For each s € ¥ and ¢t > 1, we now have defined a function

has(t) = lim GZ(A1)

which is analytic as a function of A for A € C'. Note that, when ¢ = 1,
we have G7(A, 1) = L} (1). Tt follows from the results in Section 3.1 that
h,\7s(1) = Z,\(S).

We claim now that ¢ — k) s(¢) is continuous on [1,00) and parametrizes
the hair attached to z)(s). To prove this we need a preliminary result, which
generalizes Proposition 3.2 in the last section.

18



Proposition 3.5 Suppose s = 508182... € Y. Given A € C', there exisls
7, M > 0 such that, for allt > 7 and n > 1, we have

I—M<ReG (M) <t+M

Proof. Since |s;| < K, there exists Mg > 27 such that |Im L), (2)| < Mg
for each s; and all z € C'.
Given A, let us choose M > 2 so that the following inequalities hold:

M > Re (logA) + 1 +log M (%)
M > Re (—logA) — 1 + log M + log M. ()
Suppose T satisfies
1 M?
E(r)=—¢€ 1> M+2.
(1) ¢ >M—1+ > M +

If t > 7, we have E(t) > E(7), so
2

M -1

E(t) > +1>M+2.

Now let us use induction to prove that, for any sequence s with |s;| < K,
t — M < Re G7(\1)

for all n and all £ > 7.
We have

Re GL(M\, 1) = Re Ly, (E(t))
= Re (—logA) + Re (log(E(1))
= Re(—logh)—1+1
> t— M +logM
by equation (). Hence Re GL(A,t) > ¢t — M, which gives the result when

n=1.
Now let us assume that

Re GT(\ 1) >t — M

19



for any bounded sequence u = ugujusy ... with |u;| < K and all ¢ > 7. We
thus have

Re G2y (A E(1)) = E(t) — M

SO

Re G\ 1) Re Ly (Gh (A, E(1)))
Re (—log A) + Re (log G7 (A, E(1)))
Re (—log A) + log |G” ( L E(1))]

)
)
Re (—log M) + log|Re G” oA E(1))
)
(

Y

|
Re (—log M) + log (Re G” oA E(1))).

This last equality follows since Re G7(A, E(t) > E(t)— M > 2.

Therefore

Re G™'(\,1) > Re (—log \) + log (E(t) — M)

>
> Re (—log ) + log E(t) —log M.

This inequality follows from the fact that
log (a —b) >log a —log b

provided @ > b > 1 and a > b?/(b — 1). In our case, we have E(t) > F(7) >
M > 1 and E(t) > M?*/(M — 1) by assumption.
Thus

Re G™'(\, 1) > Re (—logA\) — 1+t —logM >t — M

because of assumption (*).
Now we turn to the proof that

Re G'(\ 1) <t+ M

forall n > 1 and all £ > 7.
We have

Re GL(A\t) = Re Ly (E(t))

= Re (—logA) +log (E(t))
Re (—logA) —1+1¢
t+ M —log M — log Mg
t+ M

IA A
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by (#*). (Recall both M, Mg > 1.) This proves the case n = 1.
Now suppose that
Re GZ(M\ 1) <t+ M

for any bounded sequence u = uguqus ... with |u;| < K.
Then we have

Re G7 (A, E(1) < E(t) + M.

Now

Re G™ (), 1)

Re (L (G (X, E(1))))
Re (—log A) + Re (log GZ(S)(/\, E(t)))
Re (—logA) + log |G, (X, E(1))]

< Re(—log)) +log (|Re G7 (N, E(1))]
+|Im G7 5 (A, E(1))])
< Re(—log)) +log (Re G7(,y(A, E(1))) + log Mk.

This last inequality follows from the fact that log(a + b) < loga + logb
provided both a,b > 2 and the fact that

Re G2y (A, E(1) > B(l) = M > E(r) — M > 2.

This uses the previous induction.

We thus have
Re GI*' (X, 1) < Re (—logA) +log (E(l) + M) + log M.
Now, as above, E(t) > M > 2, so
log (E(t) + M) < log E(t) +log M.
Thus
Re G7t' (A1) <Re (—log)X) — 1+t +log M +log Mg <1+ M

by ().
|

Remark. For later use, note that the previous proposition holds for all
sequences in Y, not just regular sequences. Indeed, for ¢ large enough, the
Ly,s, in the proof are bounded away from the half plane Re 2 < 0, and hence
these inverse maps are well-defined. With this result in hand, we can now
prove continuity with respect to t.
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Proposition 3.6 Let s € Y. Then for each A € C, hy () is conlinuous
as a function of t € (1,00).

Proof. Let € > 0 and choose w with 0 < w < 1. Let 7 and M be as given in
Proposition 3.5. Choose T' > 7+ 2M so that, if Re z > T and |Im z| < Mk,
then

|1L),5: (2)] < w.

By the previous proposition, if ¢ > 7', then
ER(1) =M < Re GP(\, E*(1)) < EF() + M

for all n, k > 0. Now choose k so that wk(3M +271) <€
Case 1: Given to > T, choose § such that, if [t —to| < J, then |E*(t) —
E*(t5)] < M. We claim that, if |t — to| < &, then |hy s(t) — hys(to)| < e To

see this, we note that for each n > 0 we have
|Gy (X, BR (1) = Gl (A, EF(t0))] < 3M + 2.
This follows since
[Re Gl oy (A, BF(1)) = Re Gl (A, E*(10))] < [E*(1) — E*(to)| +2M < 3M
and

[Tm G (A, E*(t)) — Im Gor sy (A, ER1))| < 2.

Therefore
|G = G (M to)| =
= |5, 0 Gl (X, EF (1)) = L5, 0 Gy (X, E¥(10))]
<wk|G” (/\ E*(t)) — Gor( (/\ E*(t))| < w*(3M + 27) < e.

It follows that the function ¢ — h,\75( ) is continuous for any s € Y and
L>T.

Note that we did not use the assumption that s; # 0 in this part of the
proof.
Case 2: To prove continuity for 1 < ¢ < T, we will assume from now on

that |s;| > 0 for all i. Observe that, if 1 < ¢ < T, then there exists k such
that E¥(¢) > T. Then we have

L — LI;,S o h)\,ak(s)(Ek(t))
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is continuous provided that each inverse is well defined and continuous. This
is true by the assumption that s; # 0 so that

Lf{’S 0 Ry gk(s) © E(t)
never meets 0 or R~ for each 7. But this map is given by
t— lim L3 0 Ghegy 0 BM(1) = ha(1).

Hence we have continuity for all ¢ > 1.
O

Corollary 3.7 Let s be any sequence in Xy. For each X € C, hy (1) exists
and is continuous as a function of t € (T,00) for T sufficiently large.

Proof. Choose 7 as in Proposition 3.5 so that in addition, 7 > M. This
assures that the family of functions G7(A,t) is well defined for any ¢ > 7.
Then Proposition 3.4 goes through exactly as before and the value

h/\,s(t) = nh_glo GZ(/\v t)

exists for each ¢ > 7. For continuity, we proceed exactly as in Proposition
3.6, choosing T' as indicated and then following the proof in case 1 to obtain
continuity when ¢ > T'.
O
The case of continuity at ¢t = 1 is more delicate.

Proposition 3.8 Let s = (s¢s152...) € Xg. Then for each A € C, h) s is
continuous att = 1.

Proof. Recall from Section 2.2 that for any ( sufficiently large, L, (2)
maps the set V7 strictly inside itself. As in the proof of Theorem 2.3, each
Ly, is a strict contraction on V. For a given ¢ value sufficiently close to
one, there exists a first integer N such that EV(¢) is larger than the 7 given
to us in Proposition 3.5. For any n > N, we can invoke the inequality of
Proposition 3.5 so that GZN(S)()\,EN(t)) € VP (provided 3 is sufficiently
large). Then we can use the Poincaré metric to show that the distance

between h (1) = z5(A) and

h/\,s(t) = ]\P_r)r;o L{‘Xs © G:N(s)(/\v EN(t))
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can be made arbitrarily small.
O

Propositions 3.6 and 3.8 combine to show that the function k) 4(t) is con-
tinuous for ¢ € [1,00). We now prove that this function actually parametrizes
a hair.

Theorem 3.9 Suppose s € Xi is a reqular sequence. Then there is a unique
hair attached to z)(s) and, moreover, t — h) s(t) is a parametrization of this
hair.

Proof. We first verify that A s is in fact a hair. We claim that h) s(¢) has
itinerary s. Note that
Exohys(t) = lim EyoGE(At)

n—o0

_ : n—1
- nh_}f{)lo Ga(s)()\vE(t))
= To(s) (E(1))-

It follows that
E/T\L o] h)\75(t) = hA,a“(s) o] En(t)

Hence EY(h)s(t)) € Ry(sy) as required. Also,
E™(t)— M < Re E{ohy,(t) < E*"(t)+ M

for n sufficiently large, where M is as given in Proposition 3.5. Therefore,
Re EThys(t) — o0 as n — oo as long as ¢t > 1. Finally, since t — M < Re
has(t) <t + M for t > 7, it follows that Re hy () — oo as ¢ — oco. This
proves that h, , parametrizes a hair.

We finally show that this hair is unique. Suppose this is not true. Then
there are two hairs attached to z)(s). Let U be the open set contained in
R (s0) bounded by these two hairs. The images of U under E} are contained
within the images of the hairs attached to E7(z(s)), which themselves are
contained strictly between the lines Imz = (2s; £ 1)m — arg A for each s,.
Moreover, if z € UN{Re z > v} for large v, then Re F)(z) >> Re z, and so
the orbit of z tends to oo. This yields a wandering domain or domain at oo
for E\, neither of which can occur (see [2], [13], and [17]).
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Remarks.

4

1. The hypothesis that s is regular cannot be removed, as it is known that

there may be more than one hair attached to a point with bounded orbit
if not all of the s; are non-zero. A classification of which hairs attach to
which points in the case where X is a Misiurewicz point may be found
in [10]. A similar program has been carried out for A values for which
F\ has an attracting cycle in [6].

. In certain cases (e.g., 0 < A < 1/e, A = 1) the existence of hairs

with regular, unbounded itineraries has been demonstrated using other
methods (see [1], [11]). The proof above does not extend to itineraries
that grow too quickly. However, the parametrizations given above are
necessary for our proof of existence of hairs in the parameter plane, to
which we turn in the next section.

Hairs in the Parameter Plane

Our goal in this section is to show that there also exist hairs in the parameter
plane for the exponential family. These hairs consist of A-values for which
the orbit of 0 under K\ has a specified itinerary in ¥x. The hairs have an

endpoint which determines a A-value for which the orbit of 0 is bounded, since
FE\(0) = A. All other A-values on the hair have the property that the orbit
of 0 tends to oo with the specified itinerary. As a consequence, J(E)) = C
for these A-values.

Definition 4.1 Let s = s¢s182.... A continuous curve Hy:[l,00) — C is
called a hair with itinerary s if Hy satisfies:

. Af AN = Hy(t) and t > 1, then Re F}(0) — oo and the itinerary of A

under I is s.

. Af X = Hy(1), then Ex(0) = X = z)\(s), and so the orbit of X under F)

is bounded and has itinerary s.

. limy00 Re Hy(1) = o0.
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Remark. We use the term “hair” for curves in both the dynamical plane
and parameter plane. When necessary, we use the terms dynamical hair and
parameter hair to distinguish between them.

Our goal in this section is to prove the following result.

Theorem 4.2 Suppose s is a bounded, regular sequence. Then there exists
a hair in parameter space with itinerary s. Moreover, if s is periodic or
preperiodic, then 0 is preperiodic under E for A = Hs(1).

The proof of the theorem depends upon several lemmas in which we will
jump back and forth from dynamical to parameter plane, so we first sketch
the main idea.

Given the regular itinerary s, we will construct a simply connected region
(s in parameter space. Consider the map Fi(A) = hy 5(¢). Note that F} is a
function of A and assigns to A the point on the dynamical hair with itinerary
s and time parameter {. According to Proposition 3.4, F; is an analytic
function of A. We will show that F; maps the closure of () strictly into its
interior so therefore F; has a unique fixed point in ;. This fixed point is a
A-value that satisfies A = h) 4(¢), so A = E,(0) lies on the hair in dynamical
plane that is attached to z)(s). We therefore define the point H,(t) on the
hair in the parameter plane as the unique fixed point of F} for each ¢ > 1. If
t > 1 it follows that E%(0) — oo, whereas, if t = 1, 0 maps after one iteration
of K\ onto z)(s) and so this orbit is bounded. As we vary ¢, the fixed point
of F; varies, and this curve of fixed points produces the hair in parameter
plane.

We define )5 to be the union of the horizontal strips Ry(so) for A € C'.
() 1s an open horizontal strip in C with height 47 bounded by horizontal
lines Imz = (2s9 — 2)m and Imz = (2s9 + 2)m. For each ¢, the dynamical
hair k) s(t) lies in Ry (s0) C Q.

We now think of (), as a subset of the parameter plane. Given A € (),
Fi(X) = hys(t) is a point in @5, and so F; maps @ into itself. Now this map
either has a unique fixed point in the interior of )5 or else the Fj-orbits of
all points tend to a fixed point on the boundary or to co. We will show that
the latter cases are impossible.

Lemma 4.3 The map F; has no fixed points on the horizontal boundaries of

QS‘
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Proof. Suppose A, is a fixed point for F; on a horizontal boundary of @);.
Then Im A = (259 + 2)m. However, R),(so) is given by {z|(2s¢ — )7 —
arg A, < Imz < (259 + )7 —arg A}, If 59 # £1, we have |arg \,| < 7.
It follows that A. lies outside Ry, (so), and so A, cannot lie on a hair lying
in this strip. If s = £1, we have arg A, = +7 along one of the horizontal
boundaries of ¢);. But this boundary is the negative real axis, and it is easy
to check that all such points lie in the basin of attraction of a real attracting
fixed point or two-cycle. Consequently, none of these points lie on a hair.

O

For each v < 0, > 0, define
Zyy ={A € C|ReX <y, |[ImA| < n}.
Z,, 1s a closed half strip in the parameter plane.

Lemma 4.4 For each n € RY, there is v = v(n) < 0 such that if X\ € Z,,,
then

1. Ey has an atlracting two-cycle, and

2. Wy ={z | Re z < Re(A/2)} is contained in the basin of altraction of
the two-cycle.

Proof. Fix n > 0 and suppose that |[Im A| <. Define
c=c(A) = |Mexp(Re (A/2)).

Note that |Ale(A) — 0 and |Re A¢(A) — 0 as ReA — —oo since |Im A| is
bounded.
We may choose v = v(n) such that, if A € Z,,, then

|A|ce® < (JRe Al + n)ce® < |Re A|/4

since (|Re A| + n)ce® tends to 0 as Re A — —oc.
We claim that E} maps W, inside itself. To see this, first note that
E\(W)) is a punctured disk of radius ¢ centered at 0. On this disk

|EA(2)] = [Ex(2)] = [Aexp(Re 2)
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I
/

Re z =Re A/2

Figure 9: E3(W,) C W,.

which is at most |A]e®. Clearly, E\(0) = A, so points z € F)(W)) are mapped
a maximum distance of

E - Al < E! -lz—0

[Ex(z) = Al = max [E3(2)]- |2 = 0]
|Ae - ¢

<
< |Re A|/4

away from X under F), and thus well to the left of the line Rez = Re A/2
(see Figure 9).
As a consequence, E}(W,) is contained in the interior of W, provided
A € Z,,. By the Schwarz lemma, F% has an attracting fixed point in W,
and, moreover, each point in Wy tends to this point under iteration of E}.
This fixed point gives an attracting 2-cycle for E).
O

Corollary 4.5 Let s € Y. Let n = sup{|lmz||z € Qs}. Then, if A €
Zy(n)m, we have

Re Fi(X) = Re hy s(t) > Re A

28



for all t.

Proof. By the previous lemma, any point in the Julia set lies in the half
plane Rez > Re\/2. Since A € Z,(;),, we have ReA < ReA/2 < 0. It
follows that Rez > Re A for all points in the Julia set of F). Since h) s(t)
lies on a hair in the Julia set, it follows that this point lies to the right of the
line Rez = Re A as well.

O

Recall from Section 2.2 that

Vi(si) ={z € R(s;)|a <Re z <z}

and that VI = Ugc|jj<x V(7). Recall also from Section 2.2 that my is the
smaller of the vertical distances from 0 to R(+1) and that M is the largest.
Note that (2K + 2)m > Mg. Let a = a()) = log(mg/(2|A])). Finally, we
write F(z) = (1/e)e” as before.

For a given ¢t > 1, we may choose A\; = A1(¢) so that the following three
properties hold:

LM >t>1,
2. for each x > ¢, we have A\e” > E(z) + (2K + 2)7, and
3. if Re A > Ay, then |A] > log2 + log |A| 4+ (2K + 2)7.
Then, if A € Q,, ReX > A, and Rez > ¢, it follows that
|Ex(2)| = |Alexp(Rez) > (Re A) exp(Re z) > A exp(Rez)

> F(Re z) + (2K + 2)m > E(Re z) + Mk.

Lemma 4.6 Given t > 1, let A € Qs satisfy Re X > A(t). Then for any n
we have

a <Re G7(\t) <t
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Proof. Consider V7 for any x > {. We claim that
E\(VT) D VEWD),

To see this, we first note that the horizontal boundaries of V.7 are mapped
to R™, hence into the exterior of V.P(®), The left hand boundary of V. is
mapped to the circle of radius mg /2 centered at 0, which also lies in the
exterior of V), The right hand boundary of V* is mapped to the circle of

radius [A|e” centered at 0. Since
|Ale” > (ReX)e” > A\e” > F(z) + Mk,

this circle is outside the furthermost right corner of VF(*), We need to check
that the furthermost left corners of V.#) are also within the circle of radius
|Ale®. If @ > 0, then clearly [A|e®” > E(z) + Mg > a + Mg since z > 1 > .
If @ < 0, then since Re A > Ay > 1, we have |arg A| < 7/2, so mg > 7/2 and
logmg > 0. Hence by condition 3 above,

|Ale” > |A| log 2 + log |A| + Mk
log 2 + log |A| — log(mg) + Mk

= —a+ M.

>
>

This implies that the circle of radius |A|e” contains the furthermost left corner
of V@) Combining these results, we see that V% is mapped to an annular
region that contains V() in its interior.

Recall that L, ,, is the inverse of K\ that takes values in R(s;). Using
the above fact, we have Ly ,,VF® C V® for any > { and any 4, provided
Re A > A, Also

Ly (VEehy cve
Now recall that
Go(A 1) = L5 (E™(1)).
Therefore we have

a <ReGZ(\t) <t

for each n.
O

Now we complete the proof of Theorem 4.2. It follows from Lemma 4.6

that Re Fy(A) < ¢ for all A € @ with ReX > Ay > t. Thus we see that F;
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(25, + 2)x

Rez=»

Figure 10: The rectangle ;.

moves A-values in the far right portion of @ to the left (see Figure 10). From
Corollary 4.5, F; maps A-values in the far left region of ()5 to the right. And
from Lemma 4.3, F} has no fixed points on the horizontal boundaries of ).
Therefore it follows that F} has a unique attracting fixed point in ()5. This
fixed point is the A-value for which A = E,(0) = h)s(¢), and so A lies on
the appropriate hair. We therefore define H,(t) to be this A-value. Clearly,
the itinerary of this A-value is s. Now F; depends continuously on ¢. Since
the fixed point for F} is attracting, it follows that these fixed points move
continuously with ¢. Hence Hj is continuous in ¢.

When ¢t > 1, Re E{(h) (1)) — o0 as n — oo. Whent = 1, h) 4(1) = 2(s)
lies at the endpoint of a hair in the dynamical plane. This verifies conditions
1 and 2 in Definition 4.1.

Thus all that remains to prove is condition 3: H,(t) extends to oo in the
right half plane as ¢ — oo. To show this, suppose lim;., Re Hs(t) # oo.
This means that there exist sequences {; — oo and A; — A* in @), with
|Re X*| < oo, where A\; = H(1;) for each i. From Proposition 3.5, given A,
there exists 7, M such that, for ¢ > 7, we have

(4) t— M < Re G*(\1) <t + M.

where M = M(X) was chosen to satisfy (*) and (#*) as given in the proof
of the Proposition and 7(\) was chosen so that E(7) > M + 2. In our case,

31



since the \; are bounded, so are Re (log A;) and Re (—log };), which implies
that M(A;) and 7();) are bounded too. Letting ¢; — oo, we see from (1)
that ReG7()A;i,t;) — oo for any n. This implies that hy, 4(t;) = A — oo,
contradicting our assumption that the A; are bounded. This completes the

proof of Theorem 4.2.
O

Remark. As before, it is possible to relax the assumption that all the s; be
non-zero. In this case we get the existence of hairs in the parameter plane,
but they are only defined in the far right half plane, that is, for ¢ sufficiently
large. In particular, these hairs do not terminate at A-values for which 0 is
preperiodic.

5 Conclusion

In this paper we have shown the existence of hairs in both the dynamical
and parameter planes for the exponential family Fy(z) = Ae*. We emphasize
that we have not obtained the complete picture for these hairs. First of all,
we have proved the existence of hairs only for bounded, regular itineraries.
For these itineraries we showed that each hair was attached to a unique point
in either the dynamical or parameter plane.

When the itinerary is not regular, we have only shown that there is a tail
for each hair. The existence of the full hairs for these types of itineraries
remains a problem. In the dynamical plane, this question has been partially
addressed in the case where A is a Misiurewicz point ([10]) or F) admits
an attracting cycle ([6]). However, the situation in the parameter plane is
completely open.

It is also known that there are hairs in the dynamical plane corresponding
to unbounded itineraries for certain A-values ([1], [11]). We do not have a
general proof of the existence of hairs in either plane in this case.

As is well known, the family of polynomials

z

Pux(z) = A1 + 5)°

converges uniformly on compact subsets to ). Moreover, this family has
unique critical point at —d and critical value at 0. Using techniques developed
by Douady and Hubbard, one can uniformize the exterior of (connected) filled
Julia sets for these polynomials, just as in the case of the quadratic maps
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discussed in the Introduction. Hence one gets a theory of external rays for
these maps. In a subsequent paper [7], we plan to use the results in this paper
to discuss the convergence of these external rays as d — oo to the hairs for

the exponential family. These results depend heavily on the parametrizations
of the hairs discussed herein.
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