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Abstract

We show that the well-known figure-eight orbit of the three-body problem is linearly stable.
Building on the strong amount of symmetry present, the monodromy matrix for the figure-eight is
factored so that its stability can be determined from the first twelfth of the orbit. Using a clever
change of coordinates, the problem is then reduced to a 2 x 2 matrix whose entries depend on solutions
of the associated linear differential system. These entries are estimated rigorously using only a few
steps of a Runge-Kutta-Fehlberg algorithm. From this we conclude that the characteristic multipliers
are distinct and lie on the unit circle. The methods and results presented are applicable to a wide
range of Hamiltonian systems containing symmetric periodic solutions.
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1 Introduction

In December of 1999, at the International Conference on Celestial Mechanics dedicated to Don Saari,
Alain Chenciner and Richard Montgomery announced a wonderful variational proof of a fascinating
periodic solution in the classical Newtonian 3-body problem [9]. The figure-eight orbit consists of three
equal mass particles traveling around a fixed figure-eight curve in the plane, spaced apart by equal
time intervals. This special orbit was first discovered numerically by Cristopher Moore [17]. Chenciner
and Montgomery showed that the action minimizer ¢ over the class of curves traveling from an Euler
central configuration to an isosceles triangle does not contain any collisions. They construct the full
figure-eight orbit by gluing 12 copies of ¢ together smoothly via rotations and reflections (see Figure 1.)
The success of their approach launched a flurry of activity in the field leading to many more special
periodic solutions of the n-body problem (see [4, 5, 7, 8, 11, 21] for example, and their references.)

One such class of solutions, which includes the figure-eight, consists of orbits where all n bodies
follow each other around a closed curve with equally spaced time gaps. These special solutions have
become known as choreographies. In [21], Carles Simé numerically located hundreds of such orbits
but distinguishes the figure-eight, stating that, “All the choreographies found, except the eight, are
unstable.” Extensive numerical calculations claiming both linear and nonlinear stability of the figure-
eight were given by Simé at the same conference where Chenciner and Montgomery first described the
eight [20]. Similar but less detailed results were later announced in [12].
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Figure 1: The first twelfth of the figure-eight orbit (dotted), traveling from an Euler collinear central
configuration to an isosceles triangle. The entire figure-eight can be constructed by reflecting the first
twelfth about each coordinate axis.

In this paper we focus on an analytic argument for linear stability of the figure-eight orbit. This is
challenging since no closed form expression for the orbit exists. Moreover, the analytic calculation of
Floquet multipliers is difficult even when the coefficients of the corresponding linear system are known.
We use the extensive symmetries of the figure-eight solution to reduce the stability calculations down to
the behavior of the first twelfth of the orbit. These techniques are first described for generic Hamiltonian
systems possessing a certain type of symmetric periodic solutions. We then make a special change of
coordinates to reduce the problem further to a 2 x 2 matrix. At this point we are forced to do a minimal
amount of numerical work, using just four steps of a Runge-Kutta-Fehlberg method to rigorously place
the multipliers on the unit circle. The values obtained not only show the linear stability of the figure-
eight but also verify that it is nondegenerate and may be continued as a periodic solution with less
symmetry [10].

Further work has continued on this important problem since the current paper was submitted.
In [14], Kapela and Simé use multiple precision interval arithmetic to numerically prove linear stability
of the eight. Their work involves rigorous estimates of the full monodromy matrix although they do not
use shape sphere coordinates nor the available reductions due to symmetry utilized here.

1.1 The figure-eight orbit

The Newtonian n-body problem concerns the motion of n point masses interacting solely under their
gravitational attraction. Denote m; and q; € R? as the mass and position, respectively, of the ith
particle. The gravitational force is determined by the gradient of the self-potential

Ulq) =Y, L.

i<j Y



The equations of motion for the ¢th body are

ou > mim;(q; — q;)

mid; = - = 3
0q; o Ty

where r;; = ||q; — q;|| measures the distance between the ith and jth bodies. Without loss of generality
we assume that the center of mass q = % Yo, m4q; is always at the origin. The moment of inertia
I and kinetic energy K are given by

n 1 n

I(q) =Y millql® and K(q) = 52 mi||él|?,
i=1 i=1

while the Hamiltonian governing the equations of motion is H(q,q) = K(q) — U(q).

Definition 1.1 A choreography is a T-periodic solution of the n-body problem where all bodies follow
the same loop q(t) with equal time spacing. In other words,

v() = (q(t + 271 T), q(t + 22T), -+ ,q(t + ), (1)
is a solution to the n-body problem where q(t +T) = q(t).

Note that the entire solution is determined by the behavior of each mass over the time interval
[0,7/n]. This is the fundamental domain for a choreography. The simplest choreography, discovered
in 1772 by Lagrange [15], occurs when three equal masses are placed at the vertices of an equilateral
triangle and given initial velocities so that the ensuing motion is rigid rotation about the centroid of the
triangle. In this case, the curve swept out by the bodies is just a circle. Such a solution is an example of
a relative equilibrium, a solution that is fixed in a rotating frame. The relative equilibria that generate
circular choreographies are the regular n-gon solutions, that is, placing n equal masses at the vertices of
a regular n-gon. These are the trivial choreographies. Amazingly, there exist an abundance of examples
with non-trivial topology, the most famous of which is the figure-eight [9].

Theorem 1.2 (Chenciner, Montgomery 2000) Fiz a positive real number T'. There exists a figure-eight
shaped curve q : (R/TZ) + R? such that for all t

1. q(t) +q(t+T/3)+q(t+27/3) =0
2. q(t+7T/2) =—q(t), a(—t + T/2) = q(t) where q denotes reflection of q about the z-axis.

3. (q(t+27/3),q(t+7/3),q(t)) is a zero angular momentum, periodic solution to the planar 3-body
problem with equal masses.

The two symmetries described in the second item arise from the construction of the orbit on the
shape sphere and can be classified as a forward and time-reversing symmetry, respectively. Using the
fact that the figure-eight is a choreography, these symmetries can be rewritten as

Qt+%)=—q), @it+%)=—a), alt+%) =—al) (1)

and
qi(—t+ ) =ai(t), a(-t+F) =a), a(-t+ §) = q(t). (2)



For later use, the initial conditions for the figure-eight orbit with m; = mo = mg = 1 are given by
q2(0) = —a1(0),q3(0) = (0,0) and @:1(0) = q2(0) = —q3(0)/2, where

0.97000435669734 .
a0 = | _j 4308753153583 and  g3(0) =

—0.93240737144104
—0.86473146092102 |

The period of the orbit is T = 6.32591398292621 with the moment of inertia starting at I(0) = 2.
These values were obtained from the data given by Simé in [20] using an appropriate scaling and angle
of rotation.

1.2 Linear stability of periodic orbits

7|7l

be the standard symplectic matrix, where I is the appropriately sized identity matrix. Suppose that
¢(t) is a T-periodic solution to the Hamiltonian system z = JVH(z). Let X(¢) be the fundamental
matrix solution to

Throughout the paper, let

E=JD*H((()E  £(0) =1 (3)

X (t) is symplectic and satisfies X (¢t +7T') = X (¢) X (T) for all £. The matrix X (T') is commonly referred
to as the monodromy matriz, measuring the non-periodicity of solutions to the linearized equations.
Its eigenvalues, the characteristic multipliers, determine the stability of the periodic solution. Being
a symplectic matrix, the eigenvalues of X (7T') are symmetric with respect to the unit circle. Linear
stability therefore requires that all of the multipliers lie on the unit circle.

It is important to note that the characteristic multipliers may be obtained by solving equation (3)
with a different set of initial conditions. Suppose that Yj is an invertible matrix and that Y'(¢) is the
fundamental matrix solution to

{=JD*H(((t)¢,  £(0) =Y. (4)

By definition of X(t), we have that Y(t) = X (¢)Yy and consequently, X (T) = Y(T)Y, '. It follows
that the matrix Yy 'Y (T) is similar to the monodromy matrix so that the eigenvalues of Y; 'Y (T) are
identical to the characteristic multipliers. This will be useful for making a good change of coordinates
for the figure-eight orbit.

Every integral in the n-body problem yields a multiplier of +1. For a periodic orbit in the planar
problem there are always eight +1 multipliers, four arising from the center of mass and total linear
momentum integrals and four others due to the SO(2) symmetry, the angular momentum integral, the
Hamiltonian and the periodic orbit itself. Moreover, because of drift, the Jordan blocks may contain off
diagonal terms. In the classical sense, every periodic solution of the n-body problem is unstable due to
this drift. In light of these degeneracies, it is natural to define the linear stability of a periodic solution
by examining stability on the reduced quotient space.

Definition 1.3 A periodic solution of the planar n-body problem has 8 trivial characteristic multipliers
of +1. The solution is spectrally stable if the remaining multipliers lie on the unit circle and linearly
stable if in addition, the monodromy matriz X (T) restricted to the reduced space is diagonalizable.



2 Stability reductions using symmetry

The monodromy matrix for a periodic solution with special types of symmetry can be factored using
some linear algebra and standard techniques in differential equations. For example, it is only necessary
to study the linearized equations for a choreography over its fundamental domain [0,7"/n]. Our goal is
to make use of the forward and time-reversing symmetries of the figure-eight orbit in order to reduce the
stability calculations down to the first twelfth of the orbit. We begin by stating some useful reductions
applicable to a wide range of symmetric periodic orbits commonly found in Hamiltonian systems.

Lemma 2.1 Suppose that y(t) is a a symmetric T-periodic solution of a Hamiltonian system with
Hamiltonian H and symmetry matriz S such that

1. For some N €N, y(t+T/N) = Sv(t) Vt
2. H(Sz) = H(z)

3. 8J=1JS

4. S is orthogonal.

Then, the fundamental matriz solution X (t) to the linearization problem & = JD2H(y(t))€, £(0) = I
satisfies
Xt+L)=5sx)8Tx(%).

Proof: Let A= X(T/N), Y(t) = X(t+ T/N) and Z(t) = SX(t)STX(T/N). Consider the differential
equation _
§=SID?H(y(t)S ¢, £(0) = A. (5)

We compute Y = X (t+T/N) = JD2H (y(t+T/N))X (t+T/N) = SJD2H (~y(t))STY (t) using Properties
1,2 and 3 of S. On the other hand, Z = SJD?H(y(t))X (t)STA = STD?H(~(t))ST Z(t) using the fact
that S is orthogonal. Thus, both Y (¢) and Z(t) satisfy equation (5) with the same initial condition
Y (0) = Z(0) = A. By the uniqueness theorem for differential equations, Y (¢t) = Z(¢) as required. = O

Corollary 2.2 Given the hypotheses of Lemma 2.1, the fundamental matriz solution X (t) satisfies
X (5 = SH(STX ()
for any k € N.
Proof: The formula for X (kT /N) follows from Lemma 2.1 by induction on k. O

Remarks:

1. Here, the symmetry S is a constant square matrix of appropriate size. In the planar n-body
problem, S is of dimension 4n X 4n. S is typically block diagonal with two equivalent blocks, one
for the position variables and one for the momenta, that is,

=15 2]

where R is orthogonal. A matrix of this form is both orthogonal and commutes with J.



2. A matrix satisfying properties (3) and (4) of Lemma 2.1 is always symplectic since STJS =
STSJ = J. Such a matrix is called unitary in the language of symplectic geometry.

3. If SV = I, then the monodromy matrix for ¢ factors as (ST X (T//N))". This is particularly useful
for choreographies (see Corollary 2.3).

4. In the case n = 1, when S is a symmetry over the entire periodic orbit, Lemma 2.1 shows that S
commutes with X (t) V.

5. If Y (¢) is the fundamental matrix solution to equation (4), where £(0) = Yp, then a similar
argument shows that Y (t +T/N) = SY (t)Y; 'STY(T/N) and consequently
k
Y(4) = 5% (5 STV (R)) (6)

Lemma 2.1 and Corollary 2.2 are easily applied to any equal-mass choreography. Let o be the
permutation matrix such that o(qi,qg,--- ,qn)T = (an,q1,92," ,qn,1)T and consider the block
diagonal matrix P given by

c 0
P= :
0]

Corollary 2.3 Suppose that v(t) is an equal-mass choreography and let X (t) be the fundamental matriz
solution to the linearized equations about y(t). Then the monodromy matriz for -y factors as

X(T) = (PTX(E)™
Consequently, the linear stability of v is determined by the eigenvalues of PTX(T/n).

Proof: The matrix P is orthogonal, symplectic and commutes with J. Since the masses are equal, it
is also an invariant for the Hamiltonian H of the n-body problem. By definition of a choreography, we
have y(t + T'/n) = oy(t) Vt. The same equation is true if vy is replaced by 4. Thus the hypotheses
of Lemma 2.1 are satisfied with § = P and N = n. Using the fact that P® = I, setting k = n in
Corollary 2.2 yields the result. O

Lemma 2.4 Suppose that v(t) is a T-periodic solution of a Hamiltonian system with Hamiltonian H
and time-reversing symmetry S such that

1. For some N € N, v(—t+T/N) = Sv(t) Vi
2. H(Sz) = H(z)

3. 8J=-JS

4. S is orthogonal.

Then the fundamental matriz solution X (t) to the linearization problem & = JD2H (y(t)) €, £(0) =1
satisfies
X(-t+ L) =5xt)sTx(%). (7)



Proof: The proof is similar to that of Lemma 2.1. Let A = X(T/N), Y(t) = X(-t + T/N) and
Z(t) = SX(t)STX(T/N). Consider the differential equation

§=SID’H(y(1)S" ¢, £(0) = A, (8)

We compute Y = —X(—t+T/N) = —JD*H(y(—t+T/N))X (—t+T/N) = STD?H(v(t))STY (t) using
Properties 1,2 and 3 of S. On the other hand, Z = SJD2H(y(t))X (t)STA = SJD?H (~(t))ST Z(t)
using the fact that S is orthogonal. Thus, both Y (¢) and Z(t) satisfy equation (8) with the same initial
conditions. By the uniqueness theorem for differential equations, Y () = Z(t) as required. O

Corollary 2.5 Given the hypotheses of Lemma 2.4,

X(L)=85B"'STB, where B = X(k).

Proof: Evaluating formula (7) at ¢t = T/2N gives B = SBSTX(T/N). Solving this equation for
X(T/N) gives the desired formula. O

Remarks:

1. In the case of time-reversal symmetry, S is typically block diagonal with two blocks of opposite
sign, one for the position variables and one for the momenta, that is,

=[5 -z]

where R is orthogonal. A matrix of this form is orthogonal and anti-commutes with J.

2. A matrix satisfying properties (3) and (4) of Lemma 2.4 is symplectic with a multiplier of —1
since STJS = —8T§J = —J.

3. In the case n = 1, Lemma 2.4 yields SX (t) = X(—t)S Vt.

4. If Y (t) is the fundamental matrix solution to equation (4), where £(0) = Yj, then a similar
argument shows that Y (—t +T/N) = SY (t)Y; *STY(T/N) and consequently

V(L) =5Y,B~'STB, where B =Y (). (9)

r
N

3 Changing coordinates

To eliminate the trivial +1 multipliers of the figure-eight orbit, we use shape sphere coordinates, fol-
lowing the construction of the figure-eight by Chenciner and Montgomery in [9]. This sphere is the
space of oriented similarity classes of triangles, that is, the space of triangles quotiented out by scaling,
translation and rotation. After projection onto the sphere, twelve copies of the fundamental piece of
the figure-eight are glued together smoothly to form the full orbit. The symmetries of the orbit are thus
naturally described in these coordinates.



3.1 Shape sphere coordinates

We begin with scaled Jacobi coordinates. Set m; = 1 Vi and denote p; = ; as the momentum
coordinates. Then let

u = %(q?, —q2) Vi = \%(Ps - p2)
u = \/g(m - %(Q2 +q3)) vy = \/%(Pl - %(P2 + p3))
uz = %((h +q2 +q3) vy = P1+Pp2+Pps3

The new Hamiltonian H (uy, uz,vi,ve) = (||v1]|? + ||v2||?)/2 — U(uy, us) is independent of uz and
vs, the center of mass and total linear momentum, respectively. In these coordinates the inertia becomes
I = ||uy||? + ||uz||?>. We also have 715 = ||1/(3/2) us ++/(1/2) u1]|, 13 = |[\/(3/2) uz — /(1/2) uy|| and
r93 = v/2||u1||. This reduces the dimension by 4 from 12 to 8.

To obtain coordinates on the shape sphere, we use the Hopf map to generate a point transformation
w = ¢(u). For notational purposes, u - v refers to the usual dot product in R?. We treat u x v as a
scalar obtained by taking the nonzero component of the cross product of two vectors in R?. Coordinates
on the full phase space are derived by extending ¢ to a symplectic transformation in the natural way,

= (0¢/ Bw)_Tv where —T denotes the inverse of the transpose. Our new variables are the eight
one-dimensional variables w;, z; given by

wi = [|lw]]? = [|u[]? 71 = gr(w-vi—uz-vy)

we = 2(up-ug) 7 = %(u u; Vi —Vug X Vg + Uj - Vo)
wy = 2(u; X ug) z3 = 5p(Vu1-Vi+pus X Vo + Uy X V)
wy = arg(uy) Z4a = Ul XV]+uyXvy

where g = up - ug/||u1||? and v = uy x ug/|juy|[?

The new Hamiltonian is independent of w4 so that z4 = ¢ is a constant of motion. One can check
that 24 = Zg’zl q; X p; is the usual angular momentum. Letting w = (w1, ws,ws) and z = (21, 29, 23),
the new Hamiltonian is H(w,z) = 2K(z)I(w) — U(w) + c(c + 2wsze — 2wezs)/(I(w) + wy) where
K(2) = 22 4+ 23 + 23, I(w) = (w} + w? + w?)/? and

1 1
\/I+w1 \/I 2w1+—w2 \/I 2’[1}1——’!1)2

We have reduced the problem to three degrees of freedom, the usual dimension of the planar three-
body problem. From these coordinates it is not difficult to understand the shape sphere I = 1. The
cross product u; X ue vanishes if and only if the three bodies are collinear. Therefore, the collinear
configurations correspond to the equator w3 = 0. The two oppositely oriented equilateral triangles are
located at the North and South poles (0,0,+1). There are three meridians M;, each passing through
the North and South poles, that correspond to an isosceles triangle with mass m; at the apex. For later
use, the meridian M; is the great circle wy = 0.

U(w) =

3.2 Instability of the Lagrange solution

In these new coordinates, the Lagrange relative equilibrium solution 7(¢) is rather simple. Given a
fixed a > 0 representing the size of the equilateral triangle, choose the angular momentum ¢ > 0 such



that ¢ = 3y/a. The periodic solution reduces to the fixed point v = (0,0, «,0, —c/(2a),0) and it is
straight-forward to calculate the characteristic multipliers. The actual motion (rigid rotation) is hidden
in the cyclic coordinate wy = wt where w = ¢/a. The linearized equation f = JD?H ()¢ is no longer
time dependent. A short computation gives

[0 0 0 4a 0 0 ]
—2w 0 2w 0 4a O
D2 0 —2w 0 0 0 4o
TDPH() = | _s2 g w2 g 9y o
2
0 -2 0 0 0 2w
< 0 % 0 2 0

The abundance of zeroes in this matrix is a result of the symmetry of the orbit. Using the calculations
of the previous section, the matrix S = diag {1,—1,1,—1,1,—1} anti-commutes with JD?H (vy). Any
such matrix A must contain zeroes on every “even” entry, that is, a;; = 0 whenever i + j = 0 mod 2.

By writing the matrix JD2H (7) as a block diagonal matrix, a short calculation gives the character-
istic polynomial of JD2H (v) as p(A) = (A2 + w?)(A* + w?A? + §w*). This agrees with previous stability
analyses of the equilateral triangle relative equilibrium (see [16, 19] for example). If A is a root of p, then
e2™/w@ ig g characteristic multiplier for the Lagrange solution. The first factor of p yields the eigenvalues
+w i and the two remaining trivial +1 multipliers. The second factor of p has four roots of the form

S TR E

yielding two equal pairs of characteristic multipliers etV2T Note that eV2™ ~ 85.02 so these multipliers
are well off the unit circle.

Theorem 3.1 The nontrivial characteristic multipliers of the Lagrange equilateral triangle solution with
equal masses are eiﬁ“, etV2T,

3.3 Stability reductions for the figure-eight

In stark contrast to the circular choreography for three bodies, the multipliers for the figure-eight orbit
lie on the unit circle. For the remainder of this work, let y(¢) be the figure-eight periodic solution and let
X (t) be the fundamental matrix solution for the linearized equations. Setting the angular momentum
¢ = 0, the Hamiltonian reduces nicely to H = 2KI — U. We will use the two special symmetries Sy
and S;, the forward and time-reversing symmetries of the figure-eight, respectively, and Corollaries 2.2
and 2.5 to factor the monodromy matrix.

The symmetry Sy is obtained by rotating the first sixth of the figure-eight 120° around the shape
sphere followed by a reflection about the equator. This can be derived by writing equation (1) in our
new coordinates. Note that I is preserved under this transformation. Using the equations of motion,
we have z; = w; /41, so that the same transformation is applied to the momenta. This gives

Y+ F) = Spat) vt (10)

where



The matrix Sy is orthogonal, commutes with J and satisfies S? = I. Moreover, one can check that
H(Rjw,Ryz) = H(w, z). Using Corollary 2.2, the monodromy matrix factors as

x(r) = (sFx(D)".

For completeness, we note that the permutation symmetry arising from -y as a choreography is contained
in Sy. The identity y(t+7T/3) = SJ% v(t) leads to a cube root rather than a sixth root of the monodromy
matrix. The matrix Rfc is a 240° rotation of the shape sphere, which is equivalent to the permutation
o in our new coordinates.

The time-reversal symmetry S, is obtained by a reflection about the meridian M; given by wy = 0.
This symmetry is particularly simple on the shape sphere and can be checked by writing equation (2)
in our new coordinates. The inertia I is also preserved under this transformation. Since this is a
time-reversing symmetry, the negative of the reflection is applied to the momenta. Specifically, we have

Y(=t+F)=S(t) Wt
where

1 00
srz[% _2%] and R,=|0 -1 0
" 0 01

The matrix S, is symmetric, orthogonal, anti-commutes with J and satisfies S> = I. Moreover, it is
easy to see that H(R,w,—R,z) = H(w, z). Using Corollary 2.5, we obtain

X(E)=5A7"84, A=X(L)

6
and thus the monodromy matrix factors into X (7T') = (S}TSTA_lS,«A) . Letting @ = S}FST, we have
proven:

Theorem 3.2 The monodromy matriz for the figure-eight orbit is (QA™1S, A)® where A = X(T/12), S, =
diag {1,-1,1,-1,1, -1},

1 _V¥3 0
p) 2
R 0
Q:{O —R] and R=| _¥3 1 9
0 0 -1

4 Linear stability analysis

We will call a symplectic matrix stable if its eigenvalues lie on the unit circle. We have factored the
monodromy matrix for the eight, showing precisely how the dynamics of the first twelfth of the orbit
determine its linear stability. This factorization has some special properties.

Denote B = A~1S, A. Both Q and B are symplectic with multiplier —1 and consequently the matrix
@B is symplectic with multiplier +1. The eigenvalues of both ) and B are +1,+1,£1. The matrix
Q@ is orthogonal and symmetric and both matrices are involutions, Q?> = B? = I. However, very little
is known about the eigenvalues of the product of two matrices. In general, stability is not preserved

10



under multiplication. Even in the 2 x 2 case, there is no direct correlation between the stability of
QB = S, A~'S, A and the stability of A.

On the other hand, it does appear that the time-reversal symmetry and hence the inclusion of A1
in the factorization give the figure-eight a chance at being stable. Support for this notion comes from
a family of orbits in the equal mass 3-body problem discovered by Hénon which are linearly stable and
exhibit a time-reversal symmetry similar to the figure-eight [13]. Another family of symmetric orbits,
not necessarily with equal masses, has been recently announced by Chen, et al. which also contains
linearly stable members [6]. We conjecture that the only stable equal mass periodic solutions are those
that exhibit some type of time-reversing symmetry.

4.1 A good basis

There is an important reduction that can be achieved by choosing a good basis over which to solve the
linearized equations. Let Y (¢) be the fundamental matrix solution to the linearized equations about the
figure-eight with arbitrary initial conditions Y. As stated in Section 1.2, the characteristic multipliers
are unchanged by a shift in initial conditions and are given by the eigenvalues of Yo_lY(T), which is
essentially the new monodromy matrix. Equation (6) gives us Y; 'Y (T) = W® where

W = Y, STy (E). (11)

Then, equation (9) yields W = Yo_leTSrYOC_lSrC, C =Y (T'/12). Thus the stability problem reduces
to showing that the eigenvalues of
W =Y;'QY,C7S,.C

are on the unit circle.

Lemma 4.1 Suppose that the symplectic matric W satisfies the property that

KTO]

1 Ty
§(W+W ) = 0 K

Then W is stable if and only if all of the eigenvalues of K are real and between —1 and 1.

Proof: Suppose that v is an eigenvector for W with eigenvalue A. Then (1/2)(W +W~1)v = (1/2)(A+
1/A)v from which it follows that (1/2)(A 4+ 1/)) is an eigenvalue of K. The map f : C — C given by
f(A) = (1/2)(A + 1/X) takes the unit circle onto the real interval [—1, 1] while mapping the exterior of
the unit disk homeomorphically onto C — [—1, 1].

First, suppose that all of the eigenvalues of K lie in the real interval [—1,1]. If W were not stable,
then W would have an eigenvalue A with modulus greater than one. But this implies that K has an
eigenvalue f(X) outside [—1,1], a contradiction. Therefore, W must be stable.

Conversely, suppose that W is stable. This means that the eigenvalues of (1/2)(W + W™1) lie in
the real interval [—1,1]. Let x be an eigenvalue of K. Then Ku = pu implies that

o [2] 2]

Therefore, i is an eigenvalue of (1/2)(W + W ~!) and must be real and between —1 and 1. O

11



We claim it is possible to put W into the special form of Lemma 4.1 by choosing Y, appropri-
ately. Specifically, we take Yy to be orthogonal, symplectic, containing the eigenvectors of () and
such that the fourth column of Yy is 4(0)/||7(0)|]. We also diagonalize @ so that Y, 'QYy = A =
diag {1,1,1,-1,—1, —1}.

In wz-coordinates, the figure-eight begins at w(0) = (—1,4/3,0) and 2(0) = (a,a/V/3,3) where
a = (3/8)q1(0) - q3(0) and B = (—v/3/4)q1(0) x G3(0). Using the equations of motion, we have
5(0) = [V3a,a,b,c,—V/3c, O]T where

8 3/|d3(0)[]* +5
75 86 an c 16

Next, define vectors uy = [v/3b,b, —4a,O,O,O]T and uz = [v3a,a,b,d,—/3d, ()]T where d = —(4a® +
b?)/4c. Setting vi = 4(0)/||7(0)|], va = uz/||uz|| and v3 = us/||us|| yields an orthonormal set of vectors
in the eigenspace of —1 for ). The standard symplectic matrix J takes the eigenspace of —1 for @)
into the +1 eigenspace for ). We then take the 6 columns of Yy to be Yy = [Jv1, Jva, Jvs, vi,va, V3]
yielding an orthogonal, symplectic matrix which diagonalizes @ into A = diag {1,1,1,—-1,—1,—-1}. The
matrix Yy is of the form

a =

_ P P
= 5 %]

where PlT P+ P2T Py, =1 and PlT P, = 0. A matrix of this form is both symplectic and orthogonal.

With this choice of Yp, the stability matrix W has been reduced to the special form AC~1S,C where
C is symplectic and C = Y (T/12). Letting D = C~'S,C, a short computation using the formula for
the inverse of a symplectic matrix shows that D has the form

D KT 1,
—Ly -K

where L; and Ly are 3 x 3 symmetric matrices. Note that A> = D? = T so that DA is the inverse
of AD = W. It follows that W has the special property given by equation (12). By Lemma 4.1, the
figure-eight is spectrally stable if and only if the eigenvalues of K are real and between —1 and 1.

By construction, K has the form

1 * *
0 Co - STJC5 Co - STJCG
0 C3 S,-JC{, C3 STJCG

where ¢; is the ith column of C = Y (7'/12) and “” is the standard dot product. To see this note that
differentiating ¥ = JVH(vy) yields 4 = JD?H(y(t))7. This implies that +(¢) satisfies the associated
linear system

£=JD’H(y(t)) €, &(0) = +(0).

Since Y (t) satisfies the linearized differential equations as well, we have
Y ()Y 4(0) = A(t) V. (13)
Let v = Y; '4(0). Using the symmetry (10) and equations (11) and (13), we see that

(
Wv =Y STy (L) v =Y STH(L) = V' 8T S4(0) = v.
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Thus, v is an eigenvector of W with eigenvalue +1. This +1 multiplier arises from the perturbation
in the direction of the periodic orbit. The above calculation shows that v is an eigenvector of the
monodromy matrix as well.

Finally, since Y} is orthogonal, the vector

v =Yy 14(0) = Y5 4(0) =17(0)]| es

is a multiple of the fourth column of the 6 x 6 identity matrix. Hence We4 = e4 and the first column of
K is [1,0, O]T. The rest of the form of K comes from the formula for the inverse of a symplectic matrix
and D = C~1S,.C. We have reduced the stability calculations for the figure-eight orbit down to a 2 x 2
matrix whose entries only depend on the first twelfth of the orbit.

Theorem 4.2 Let ¢; be the ith column of C =Y (T/12), where Y (t) is the fundamental matriz solution
to the linearized equations for the figure-eight with special initial conditions Yy. Then the figure-eight is
spectrally stable if and only if the eigenvalues of the 2 X 2 matriz

CQ‘STJCE, CQ‘STJCG (14)
C3-STJC5 C3-S7«JCG
lie in the real interval [—1,1].

4.2 Numerical calculations

Using MATLAB version 6.5.1 and its built-in differential equation solver ode45, we compute the matrix
C = Y(T/12) with an absolute error tolerance of 1 x 10~!4. From this we compute K easily and
calculate its eigenvalues to be

A1 =1, A2 =0.20986512354505, A3 = —0.50761901821201.

Since these values are distinct, Theorem 4.2 then shows that the figure-eight is linearly stable. Returning
to the full monodromy matrix, the values for Ay and A3 lead to the same non-trivial eigenvalues computed
by Simé in [20]. Note that Ag3 # +1/2 and consequently, the characteristic multipliers are not +1,
providing a nondegeneracy argument for the figure-eight orbit.

To obtain rigorous numerical estimates using as few steps as possible, a MATLAB routine was
written using a Runge-Kutta-Fehlberg method with local truncation error of order four (see [3] pp.
286). The goal is to do as few iterations as possible but still be able to conclude stability within
rigorous error estimates.

The eigenvalues of K are determined by the trace 7 and determinant A of (14). Necessary and
sufficient conditions for the eigenvalues to be real and lie in the interval [—1, 1] are given by the four
conditions A < 72/4,A > —7—1,A > 7 —1and —2 < 7 < 2. This determines a compact region of the
7A-plane shown in Figure 2. Note the similarity of this region with the stability region in the ab-plane
of a reciprocal quartic polynomial p(z) = z* + az3 + bz? + az + 1, shown in Figure 1 of [19] for example.

Define the three quantities s1, s9, s3 by

Ss1 = A+7’+1
s = A—7+1
83 = iTQ—A.

13



unstable

Figure 2: The stability region for a 2 X 2 matrix with trace 7 and determinant A to have real eigenvalues
in the interval [-1,1]. An X marks the location of the eigenvalues of (14) for the figure-eight orbit.

It follows that the eigenvalues of (14) are real and lie in the interval [—1,1] if and only if s; > 0 Vi and
—2 < 1 < 2. We find rigorous estimates for these four crucial quantities as follows.
Let ¢;; be the entry on the ith row, jth column of C. Using the fact that C is symplectic, matrix (14)
reduces to
2(c12c45 + c32665 — C52¢25) — 1 2(c12¢46 + C32C66 — C52C26) (15)
2(c13¢45 + €33C65 — €53C25) 2(c13¢46 + €33C66 — C53C26) — 1

Of the 36 entries in C =Y (T'/12), only 12 are needed to calculate stability.

Assuming that the local truncation error € used in the Runge-Kutta-Fehlberg method is a bound
for the error on the entries of C, we can use the formulas above to obtain rigorous error bounds for 7, A
and sq, s9,83. For example, the estimated value for 7 will be within E, of the actual value, where

B, =2 (Z lexs| + 66)

and the sum is over all 12 indices included on the diagonal of matrix (15). A similar, but slightly more
involved expression exists to find the error Ea for the determinant A. It then follows that the stability
quantities s; and sy will be accurate to within F,,, = E;+ Ea while the quantity s3 is accurate to within
E,, = E;(2|7|+ E;)/4+ Ea. Using these estimates, a local truncation error of ¢ = 0.004 is just accurate
enough to yield nonnegative values for the s; as well as 7 € [—2,2] within the given error tolerances. In
this case, a maximum of only 4 steps of the Runge-Kutta-Fehlberg algorithm were used. See Table 1
for the numerical results of other tolerances. It is clear that our reductions from symmetry and choice
of coordinates significantly decreases the amount of numerical calculations needed to conclude linear
stability of the figure-eight orbit.
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€ m T S1 S9 S3 E, B, E,,
0.01 3 | -0.277803 | 0.591567 | 1.147174 | 0.149923 | 0.271322 | 0.570118 0.354887
0.004 4 |-0.295251 | 0.591559 | 1.182061 | 0.134984 | 0.108209 | 0.219422 0.130114
0.001 5 | -0.296765 | 0.596736 | 1.190266 | 0.128517 | 0.027022 | 0.053820 0.030990

0.0001 9 |-0.297646 | 0.595943 | 1.191234 | 0.128559 | 0.002701 | 0.005352 0.003055
0.000001 | 27 | -0.297753 | 0.595716 | 1.191223 | 0.128694 | 2.7 e-05 | 5.35 e-05 3.05 e-05
actual -0.297754 | 0.595715 | 1.191222 | 0.128696

Table 1: The stability quantities 7 and s; and their errors E;, E,, and E,, for different values of local
truncation error e. The maximum number of steps required to keep the entries of C' within € of their
actual values is denoted by m.

5 Concluding remarks

Using symmetry reductions, we have shown how the stability of the figure-eight depends on the first
twelfth of its orbit, the piece for which the action is minimized. It seems clear that these reductions
should be applicable to other types of symmetric periodic solutions in the n-body problem including
choreographies, solutions generated via variational methods with symmetry constraints and symmetric
relative equilibria (for example, the kite central configurations of the four-body problem). What is not
clear is whether there exists a connection between being a minimizer over a portion of the solution and
the linear stability of the full orbit. This analysis is challenging for systems with more than two degrees
of freedom (compare with Birkhoff’s seminal work in [2] showing that minimizing orbits in Hamiltonian
systems with two degrees of freedom are always unstable).

In general, periodic solutions which arise as minimizers of the action may be hyperbolic or elliptic.
In [18], Offin shows the existence of minimizing periodic orbits in the isosceles three-body problem
(two degrees of freedom) which are hyperbolic. These solutions are minimizers over a portion of their
orbit. In contrast, Arnaud has shown that for any homotopy class of T™, there exists an open set of
Lagrangians on T'T" for which the minimizing periodic solution has hyperbolic dimension (the number
of eigenvalues off the unit circle) at most two [1]. If n is odd, these solutions are linearly stable. Thus
it appears that only for systems with two degrees of freedom is being a minimizer an obstruction to
stability. However, the question is far from settled.

Moreover, it would be interesting to have results linking variational techniques with classical stability
calculations. For example, is it possible to use variational methods to derive the well-known stability
inequality

mimsg + myimsg + maoms 1
(m1 + ma + m3)? 27

for the Lagrange equilateral triangle solution? We hope to explore some of these interesting questions
in future work.
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