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Abstract

For a class of potential functions including those used for the planar n-body and n-vortex
problems, we investigate co-circular central configurations whose center of mass coincides with
the center of the circle containing the bodies. Useful equations are derived that completely
describe the problem. Using a topological approach, it is shown that for any choice of positive
masses (or circulations), if such a central configuration exists, then it is unique. It quickly
follows that if the masses are all equal, then the only solution is the regular n-gon. For the
planar n-vortex problem and any choice of the vorticities, we show that the only possible co-
circular central configuration with center of vorticity at the center of the circle is the regular
n-gon with equal vorticities.

Key Words: Central configuration, n-body problem, n-vortex problem, co-circular central
configuration

1 Introduction

Central configurations are important solutions in the Newtonian n-body problem. They arise nat-
urally when searching for homographic solutions, where the overall shape of the configuration is
preserved throughout the motion. In the planar n-body problem, they help identify bifurcations
in the topology of the integral manifolds since those changes occur only for energy levels where a
central configuration is present [14]. They also play a significant role in astronomy and spacecraft
mission design by providing useful information on nearby orbits, information that has been cleverly
exploited by scientists to design inexpensive space missions [11].

This work focuses on those central configurations that lie on a common circle, a co-circular
central configuration, with the additional property that the center of mass of the configuration
coincides with the center of the circle. In [6], Chenciner asked if the only solution of this type
was the regular n-gon with equal masses. The first to provide an answer to Chenciner’s question
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was Hampton, who proved that the only four-body co-circular central configuration with center of
mass coinciding with the center of the circle is the square with equal masses [8]. Llibre and Valls
have announced that the regular pentagon (again with equal masses) is the only co-circular central
configuration with this special property for n = 5 [10]. This question is listed as Problem 12 in
a collection of important open problems in celestial mechanics compiled by Albouy, Cabral and
Santos [1].

In this paper we extend Chenciner’s question to a range of potential functions that includes both
the Newtonian case and the n-vortex problem. We derive two systems of equations that completely
describe these special central configurations. Then, using a topological approach reminiscent of
Moulton’s [15], we show that for any fixed choice of masses, if there is a co-circular central config-
uration whose center of mass coincides with the center of the circle, it is unique. It follows quickly
that if the masses are assumed to be equal, then the regular n-gon is the unique solution. In the
case of n vortices, our approach yields a complete solution to Chenciner’s question: for any n, a
co-circular central configuration whose center of vorticity coincides with the center of the circle
must have equal strength vorticities, and is therefore the regular n-gon.

2 Co-Circular Central Configurations

We begin with the defining equations for a planar central configuration. Let qi ∈ R2 and mi denote
the position and mass, respectively, of the i-th body. We denote rij = ||qi − qj|| as the distance
between the i-th and j-th bodies. If M =

∑n
i=1mi denotes the sum of the masses, then the center

of mass is given by c = 1
M

∑n
i=1miqi.

2.1 The generalized Newtonian potential

Consider a family of potential functions Uα of the form

Uα =
∑
i<j

mimj

r αij
,

where α > 0 is a real parameter. The Newtonian n-body problem corresponds to the case α = 1.
A planar central configuration is a special set of distinct positions qi ∈ R2 satisfying

n∑
j 6=i

mimj(qj − qi)
r α+2
ij

+
λ

α
miqi = 0 for each i ∈ {1, . . . , n} (1)

and for some scalar λ independent of i. Given any planar central configuration, there is a corre-
sponding periodic solution, called a relative equilibrium, for which the bodies rigidly rotate about
the center of mass. Here we have assumed, without loss of generality, that the center of mass c
is at the origin. If q = (q1, . . . , qn) is a central configuration, then rotating each body about the
origin by the same angle produces a new central configuration. We follow the standard practice of
identifying configurations similar under rotational symmetry.

The system of equations defined by (1) can be written more compactly as

∇Uα(q) + λ∇I(q) = 0, (2)
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where I is one-half the moment of inertia, I = 1
2

∑n
i=1mi||qi||2. Note that I is a homogeneous

function of degree 2 while Uα is homogeneous of degree −α. Taking the dot product of equation (2)
with q then yields the useful formula

λ ≡ λ(α) =
αUα
2I

. (3)

Since α > 0 and mi > 0, we must have λ > 0. Assuming the equations of motion are in the standard
form miq̈i = ∂Uα/∂qi, the angular velocity of the corresponding relative equilibrium is given by

√
λ.

Summing all the equations in system (1) quickly gives
∑

imiqi = 0, which confirms that the center
of mass of the central configuration is at the origin.

We call a planar central configuration co-circular if all the bodies lie on a common circle. We are
interested in the co-circular central configurations whose center of mass coincides with the center
of the circle. Toward that end, suppose we have a planar central configuration where all the bodies
lie on the unit circle. Let qi = (cos θi, sin θi) where θi ∈ [0, 2π) for each i. The angles must satisfy,
for each i ∈ {1, . . . , n},

n∑
j 6=i

mj

r α+2
ij

[
cos θj − cos θi
sin θj − sin θi

]
+
λ

α

[
cos θi
sin θi

]
= 0. (4)

We will divide these equations into angular and radial components. The equations involving the
angular components are obtained by computing the dot product of the i-th equation in system (4)
with the vector [− sin θi, cos θi]

T . This yields the system

n∑
j 6=i

mj

r α+2
ij

sin(θj − θi) = 0, for each i ∈ {1, . . . , n}. (5)

If equation (5) holds for some i, then the force (due to gravity for the case α = 1) acting on the
i-th body points toward the origin (the center of mass). Using the fact that

rij =
√

2− 2 cos(θj − θi) = 2 sin

(
|θj − θi|

2

)
, (6)

equation (5) simplifies to

− 1

2α+1

n∑
j 6=i

δijmj cos
(
θj−θi

2

)
[
sin
(
|θj−θi|

2

)]α+1 = 0, where δij =

{
1 if θi − θj > 0

−1 if θi − θj < 0.
(7)

It is interesting to note that equation (7) can also be derived by using a variational approach. Using
the principle of least action and beginning with a relative equilibrium solution on a circle with center
of mass equivalent to the center of the circle, a perturbing path that only varies the angles leads to
equation (7).

To derive the equations for the radial components, we take the dot product of the i-th equation
in system (4) with the vector [cos θi, sin θi]

T . In this case, we obtain the system

n∑
j 6=i

mj

r α+2
ij

(cos(θj − θi)− 1) +
λ

α
= 0, for each i ∈ {1, . . . , n}. (8)
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Using (6), equation (8) simplifies to

n∑
j 6=i

mj

r αij
=

2λ

α
, for each i ∈ {1, . . . , n}. (9)

If equation (9) holds for some i, then the magnitude of the force vector acting on the i-th body is
the correct length to satisfy equation (1).

Equations (7) and (9) define a system of 2n equations that are both necessary and sufficient for
a central configuration on the unit circle to have its center of mass at the origin.

Proposition 2.1. Suppose that q is a configuration on the unit circle with masses m1, . . . ,mn,
whose center of mass is at the origin. Then q is central if and only if its angles and masses satisfy
both equation (7) and (9) for each i ∈ {1, . . . , n}.

Proof: The fact that equations (7) and (9) are necessary follows from their derivation. To see that
they are also sufficient, suppose that they were satisfied for each i. By contradiction, suppose that
q was not a central configuration. Then, for some i,

n∑
j 6=i

mj

r α+2
ij

[
cos θj − cos θi
sin θj − sin θi

]
+
λ

α

[
cos θi
sin θi

]
= v 6= 0.

However, taking the dot product of both side of this equation with v⊥ = [− sin θi, cos θi]
T and then

again with vr = [cos θi, sin θi]
T , we see that v is orthogonal to both v⊥ and vr. It follows that v = 0,

and q is in fact central. �

2.2 The planar n-vortex problem

Many of the equations from Section 2.1 persist in the limiting case α = 0. This case corresponds
to the well-known planar n-vortex problem, where qi now represents the position of the i-th vortex
and mi = Γi is its circulation or vorticity, which may either be positive or negative. See [16] for a
nice overview of the n-vortex problem.

For the vortex case, the analog of the potential function is actually the Hamiltonian function
for the motion of the vortices. It is defined as

U0 = −
∑
i<j

ΓiΓj ln(rij),

where rij = ||qi − qj|| is the distance between the i-th and j-th vortices. Central configurations
in the planar n-vortex problem are often referred to as stationary solutions or vortex crystals (see
[3, 17]). They are found by solving

n∑
j 6=i

ΓiΓj(qj − qi)
r2
ij

+ ωΓiqi = 0 for each i ∈ {1, . . . , n} (10)
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and for some scalar ω independent of i. As with the generalized Newtonian case, the system of
equations defined by (10) can be written compactly as

∇U0(q) + ω∇I(q) = 0, (11)

where I = 1
2

∑n
i=1 Γi||qi||2 is one-half the angular impulse, but has the same meaning and definition

as in Section 2.1. Taking the dot product of equation (11) with q yields

ω =
L

2I
, where L =

∑
i<j

ΓiΓj (12)

is called the total angular vortex momentum.

Remark. 1. Note that the generalized Newtonian potential Uα does not limit on the vortex
potential U0 as α → 0. However, assuming a certain non-degeneracy condition is satisfied,
it is the case that a family of central configurations for the generalized Newtonian problem
will limit on a central configuration of the vortex problem. This follows using formulas (3)
and (12), and observing that equation (1) transforms into equation (10) as α→ 0.

2. Any central configuration of the planar n-vortex problem also begets a rigidly rotating solution
(relative equilibrium). Here, ω 6= 0 gives the corresponding angular velocity and since Γi < 0
is allowed, we may have ω < 0. An example of a one-parameter family of solutions where
ω flips sign occurs for a particular rhombus configuration, where two pairs of equal-strength
vortices are positioned opposite each other on different axes of symmetry. If Γ1 = Γ2 = 1 and
Γ3 = Γ4 = m, then as m decreases through −2+

√
3, the family passes through an equilibrium

configuration (L = 0) and the direction of rotation of the relative equilibrium reverses (see
Section 7.4 of [9]).

In the vortex problem, the analog of the center of mass is the center of vorticity given by
c = 1

Γ

∑n
i=1 Γiqi, where Γ =

∑n
i=1 Γi is the total circulation. A co-circular central configuration of

vortices lying on the unit circle and whose center of vorticity is at the origin satisfies

n∑
j 6=i

Γj
r2
ij

[
cos θj − cos θi
sin θj − sin θi

]
+ ω

[
cos θi
sin θi

]
= 0, for each i ∈ {1, . . . , n}. (13)

As in Section 2.1, we derive two useful equations by taking the dot product of the i-th equation
in system (13) with the vectors [− sin θi, cos θi]

T and [cos θi, sin θi]
T , respectively. In the first case,

we obtain
n∑
j 6=i

Γj
r2
ij

sin(θj − θi) = 0, for each i ∈ {1, . . . , n}, (14)

which is precisely equation (5) with α = 0. For the second case, using identity (6), we discover the
simple relation

n∑
j 6=i

Γj = 2ω, for each i ∈ {1, . . . , n}. (15)
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We note that equation (14) is similar to equation (16) in [4], where relative equilibria consisting of
one vortex of large vorticity and n identical vortices of small vorticity are studied. As shown in [4],
the positions of the n smaller vortices limit on a circle as their common vorticity approaches zero.

Equation (15) simplifies to Γi = Γ− 2ω for each i, which quickly yields the following fact.

Proposition 2.2. In the planar n-vortex problem with arbitrary vorticities, a co-circular central
configuration whose center of vorticity is located at the center of the circle containing the vortices
must have equal-strength circulations.

Proof: Without loss of generality, we may assume the circle containing the central configuration
is the unit circle. As shown above, the circulation of the i-th vortex must be Γi = Γ − 2ω. Since
the vortices lie on the unit circle, we have that I = 1

2
Γ, and thus ω = L/Γ. It follows that

Γ− 2ω =
1

Γ

(
Γ2 − 2L

)
=

1

Γ

n∑
i=1

Γ2
i 6= 0.

Since Γ− 2ω is independent of i, the circulations must all be equal and nonzero. �

3 Main Results

3.1 Restricting Vα to the unit circle

An important observation concerning equation (7) is to recognize that, for α > 0, the left-hand side

is precisely
1

αmi

· ∂Vα
∂θi

, where

Vα = Vα(θ1, . . . , θn) =
n∑
i<j

mimj[
2 sin

(
|θj−θi|

2

)]α
is the restriction of Uα to the unit circle. For the vortex case α = 0, the key equation (14) reduces
to

− 1

2

n∑
j 6=i

δij Γj cos
(
θj−θi

2

)
sin
(
|θj−θi|

2

) = 0, where δij =

{
1 if θi − θj > 0

−1 if θi − θj < 0.
(16)

The left-hand side of equation (16) is equivalent to
1

Γi
· ∂V0

∂θi
, where

V0 = −
n∑
i<j

ΓiΓj ln

[
2 sin

(
|θj − θi|

2

)]
is the restriction of U0 to the unit circle. This shows the following lemma, one that is reminiscent
of an approach introduced by Hall to study central configurations with one large body and n small
bodies (see [7], as well as [4, 5, 13]).
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Lemma 3.1. Fix α ≥ 0 and suppose that q = (q1, . . . , qn) is a central configuration on the unit circle
with center of mass (or vorticity) at the origin. Then the set of angles θ = (θ1, . . . , θn) defining the
positions of q must be a critical point of Vα.

Lemma 3.1 gives a particularly useful topological approach to studying solutions to equations
(7) and (16). Note that if θ = (θ1, . . . , θn) is a critical point of Vα, then so is any translation
(θ1 + β, . . . , θn + β) (taken mod 2π) for any β. This is due to the SO(2) symmetry of equations
(1) and (10). We can specify a unique member of this one-parameter family of critical points by
requiring θ1 = 0.

Theorem 3.2. Fix α ≥ 0. Given a set of positive masses mi (or positive circulations Γi if α = 0),
for each ordering of the bodies on the unit circle, Vα has a unique critical point up to translation.
This critical point is a minimum.

Proof: Our arguments follow the approach used by Moulton for collinear central configurations in
the n-body problem [12, 15]. Without loss of generality, suppose the bodies are arranged so that

0 ≤ θ1 < θ2 < · · · < θn < 2π. (17)

On the sub-region of [0, 2π]n determined by the inequalities in (17), the function Vα is continuous,
bounded below and approaches∞ on the boundary. Thus, Vα attains a minimum on this region. To
see that this critical point is unique up to translation, we examine the quadratic form uTD2Vα(θ)w,
where D2Vα is the Hessian matrix of Vα. We compute, for α > 0, that

∂2Vα
∂θi∂θj

=
−αmimj

(
1 + α cos2

(
θj−θi

2

))
[
2 sin

(
|θj−θi|

2

)]α+2 if i 6= j,

∂2Vα
∂θ2

i

= −
n∑
j 6=i

∂2Vα
∂θi∂θj

.

The vortex problem has the same structure, but with

∂2V0

∂θi∂θj
= −1

4
ΓiΓj csc2

(
θj − θi

2

)
.

Suppose that φ = (φ1, . . . , φn) is a critical point of Vα and let u = [u1 u2 . . . un]T , w =
[w1w2 . . . wn]T be arbitrary vectors. Then we have

uTD2Vα(φ)w =
n∑
i<j

αmimj

(
1 + α cos2

(
φj−φi

2

))
[
2 sin

(
|φj−φi|

2

)]α+2 (ui − uj)(wi − wj), for α > 0,

uTD2V0(φ)w =
1

4

n∑
i<j

ΓiΓj csc2

(
φj − φi

2

)
(ui − uj)(wi − wj), for α = 0.
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Since the masses or circulations are assumed to be positive and |φj − φi| /2 < π for all i and j,
it follows that uTD2Vα(φ)u ≥ 0 ∀α ≥ 0, with equality if and only if u is a scalar multiple of
[1 1 . . . 1]T . This vector corresponds to the translational invariance of the critical point, which can
be removed by specifying φ1 = 0. In this case, the quadratic form uTD2Vα(φ)u is strictly positive
on the tangent space so any critical point of Vα must be a minimum, and consequently, unique. �

It is straight-forward to check that for any α ≥ 0, if the masses (or circulations) are identical,
then the regular n-gon is a central configuration on the unit circle whose center of mass is at the
origin. Using this fact, Theorem 3.2 has two nice corollaries with simple proofs.

Corollary 3.3. For any α > 0 and for the case of equal masses, the regular n-gon is the only co-
circular central configuration with center of mass coinciding with the center of the circle containing
the bodies.

Proof: Since the masses are all fixed, Theorem 3.2 implies that there can only be one such central
configuration, and this has to be the regular n-gon. �

3.2 Solving the vortex case completely

Corollary 3.4. In the planar n-vortex problem with arbitrary vorticities, the only co-circular central
configuration with center of vorticity coinciding with the center of the circle is the regular n-gon with
equal vorticities.

Proof: By Proposition 2.2, the circulations of the central configuration must all be equal. Without
loss of generality, we can take this common circulation to be positive. By Theorem 3.2, there can
only be one such possible central configuration, and this has to be the regular n-gon. �

Remark. 1. Using a different approach, featuring a clever application of the fundamental theo-
rem of algebra, Aref has shown that when the circulations are assumed to be equal, the only
central configuration with center of vorticity coinciding with the center of the circle is the
regular n-gon [2].

2. Corollary 3.4 contrasts with some results in the 1 + n-vortex problem (n small vortices on a
circle with a sufficiently large central vortex), as studied by Barry, Hall and Wayne [4]. In
particular, the 1 +n-vortex problem always has at least three central configurations, although
the large central vortex is not necessarily located at the origin.
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1211675).
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