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1. Introduction

Certain finiteness questions in the field of celestial mechanics have been effectively
tackled by employing techniques form Bernstein-Khovanskii-Kushnirenko (BKK)
theory. Most notable is the work of Moeckel [11], introducing these concepts to
the field while proving Saari’s conjecture for the planar, three-body problem, as
well as that of Hampton and Moeckel [5], showing finiteness for the number of
relative equilibria (up to symmetry) in the four-body problem. In [16], it is shown
that no solution to the planar, circular, restricted three-body problem can travel
along a level curve of the amended potential function (Saari’s conjecture modified
to the restricted case). This is accomplished by applying a theorem of Bernstein’s
and performing all the required calculations by hand. Using similar methods, this
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result has recently been extended by Bruder [3] to the planar, circular, restricted
four-body problem.

The finiteness questions referred to above can each be described as a com-
plicated system of polynomial equations in a small (between 2 and 6) number of
variables, whose coefficients depend on parameters (eg. the values of the masses).
The typical goal is to show that the given system has a finite number of solutions
for all choices of masses and to obtain an upper bound on the number of physically
relevant solutions. BKK theory provides a relatively straight-forward approach for
determining if a system of polynomial equations has a finite number of solutions
for which all variables are nonzero. The techniques utilized involve computational
questions in algebraic geometry, such as the computation of Newton polytopes.
The distinct advantage of using these techniques, as opposed to applying Gröbner
bases or resultants, is that they work for generic systems of polynomials. This
allows for deeper conclusions and more profound results.

In this paper we show that the number of equilibria in the planar, circular,
restricted four-body problem (PCR4BP) is finite for any choice of masses. Alter-
natively, the number of central configurations in the 3 + 1-body problem is finite.
Our intention is to demonstrate the usefulness of BKK theory in studying this
slippery problem. For the general n-body problem, finiteness is often quite diffi-
cult to verify. For example, if a negative mass is allowed, a continuum of relative
equilibria exists in the planar five-body problem [15].

Our main result differs from that of Hampton and Moeckel since m4 = 0
in our problem, a case necessarily excluded in [5]. Although there has been a
substantial amount of analytic and numerical work involving the equilibria of the
PCR4BP [1, 7, 13, 18], our generic result on finiteness appears to be new. A nice
summary of results on the problem is given in the introduction of Leandro’s recent
paper [7]. We also obtain an upper bound of 196 for the number of equilibria using
BKK estimates. Most of these solutions are complex or physically meaningless (for
example, a negative distance) as our numerical work indicates the true number is
between 8 and 10 depending on the values of the masses. These lower estimates
are confirmed by many researchers in the field, in particular by Pedersen [13] and
Simó [18].

When necessary, symbolic and numerical calculations were performed using
Maple [9] and Matlab [10], and confirmed utilizing the free mathematics software
Sage [17]. Two Sage worksheets containing all the pertinent computations are
available at http://mathcs.holycross.edu/∼groberts/Papers/papers.html

2. The Planar, Circular, Restricted Four-body Problem

There are two possible circular, restricted four-body problems, depending upon
which two of the three-body relative equilibria, Euler’s collinear or Lagrange’s
equilateral triangle, is chosen. Palmore [12] studied the collinear case in general,
showing that there are always n + 3 locations to continue a collinear relative
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equilibrium of the n-body problem into the full n+1-body problem. For n = 3, four
of these points lie on the line containing the collinear relative equilibrium while
the other two are positioned symmetrically about this line. The more difficult
problem arises when choosing the Lagrange equilateral triangle solution as the
orbit for the three large masses [6]. We will refer to this problem as the planar,
circular, restricted four-body problem (PCR4BP).

The PCR4BP consists of three large bodies (arbitrary mass) at the vertices
of an equilateral triangle rotating on circular orbits about their common center of
mass. A fourth infinitesimal mass, subject to the gravitational attraction of the
three large “primaries”, is inserted into their plane of motion and is assumed to
have no effect on their circular orbits. Without loss of generality, we take both the
total mass and the rotational frequency of the three large primaries to be one (ie.
period 2π). Then, in order to be a solution of the three-body problem, the distance
between each primary must also be one. The equations of motion for the fourth
mass are taken in a rotating frame traveling at the same speed as the primaries
and revolving about their center of mass. In this frame, the primaries are fixed
at the positions q1 = (

√
3/3, 0), q2 = (−

√
3/6, 1/2) and q3 = (−

√
3/6,−1/2).

Their masses are m1,m2 and m3 respectively, with the additional constraint that
m1 +m2 +m3 = 1.

Let (x, y) denote the position of the fourth body in the rotating frame. We
introduce the variables a, b and c, representing the distances from the infinitesimal
particle to the first, second and third primary, respectively (see Figure 1). These
distance variables are not independent and are required to satisfy the important
constraint

F = a4 + b4 + c4 − (a2b2 + a2c2 + b2c2)− (a2 + b2 + c2) + 1 = 0 (1)

which can be derived using the Cayley-Menger determinant. Relation (1) ensures
that the values of a, b, c describe a planar, rather than a spatial configuration.
Given that the constraint is satisfied, the expressions

x =
√

3
6
(
b2 + c2 − 2a2

)
, y =

1
2
(
c2 − b2

)
return the rectangular coordinates of the infinitesimal mass.

The equations of motion describing the trajectory of the infinitesimal mass
in the rotating frame are given by

ẍ = 2ẏ + Vx

ÿ = −2ẋ+ Vy

where

V (x, y) =
1
2
(
(x− cx)2 + (y − cy)2

)
+
m1

a
+
m2

b
+
m3

c
is the amended potential and (cx, cy) is the center of mass of the three fixed
primaries. It is easy to check that the quantity E = 1

2 (ẋ2 + ẏ2)−V is conserved for
the above system. This is the equivalent of the Jacobi integral for the restricted
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Figure 1. The set up for the PCR4BP.

three-body problem. In our distance variables, the amended potential function
transforms nicely to

V =
1
2
(
m1a

2 +m2b
2 +m3c

2
)

+
m1

a
+
m2

b
+
m3

c
+K

where K is the constant (using the relation m1 +m2 +m3 = 1)

K =
1
2

(c2x + c2y)− 1
6

= −1
2

(m1m2 +m1m3 +m2m3) .

2.1. Equilibria

Any critical point of V is immediately an equilibrium point for the PCR4BP.
These special libration points can be interpreted as ideal “parking spaces” for
observational spacecraft. Each such point yields a relative equilibrium for the
3 + 1-body problem, a configuration of four bodies rigidly rotating in the plane.
More generally, given p nondegenerate critical points of V (the Hessian is invertible
at each critical point), we can apply the Implicit Function Theorem to continue
the entire configuration into the full 3 + p-body problem, generating a family of
central configurations with three large masses near the vertices of an equilateral
triangle and p small ones each close to an equilibrium point of the PCR4BP.

Our main result is the following theorem.
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Theorem 2.1. The number of equilibria in the planar, circular, restricted four-body
problem is finite for any choice of masses. In particular, there are at most 196
equilibrium points.

To find the critical points of V subject to the constraint F = 0, we solve the
system of equations {∇V + 1

2λ∇F = 0, F = 0}. This yields the system

m1(1− 1
a3

) + λ(2a2 − b2 − c2 − 1) = 0 (2)

m2(1− 1
b3

) + λ(2b2 − a2 − c2 − 1) = 0 (3)

m3(1− 1
c3

) + λ(2c2 − a2 − b2 − 1) = 0 (4)

a4 + b4 + c4 − (a2b2 + a2c2 + b2c2)− (a2 + b2 + c2) + 1 = 0.

Clearing the denominators in the first three equations above yields a polynomial
system of four equations in the four variables a, b, c and λ. We will refer to this
polynomial system as system (I).

Summing equations (2), (3) and (4) yields an expression for λ given by

λ =
1
3

(
1− m1

a3
− m2

b3
− m3

c3

)
. (5)

Substituting (5) into equations (2) and (3) and clearing denominators produces a
system of three polynomial equations in the three distance variables a, b and c.

2a5b3c3 − 2m3a
5b3 − 2m2a

5c3 − a3b5c3 + m3a
3b5 − a3b3c5

+ (3m1 − 1)a3b3c3 + m3a
3b3c2 + m3a

3b3 + m2a
3b2c3 + m2a

3c5 (6)
+ m2a

3c3 − 2m1a
2b3c3 + m1b

5c3 + m1b
3c5 − 2m1b

3c3 = 0

2a3b5c3 − 2m3a
3b5 − 2m1b

5c3 − a5b3c3 + m3a
5b3 − a3b3c5

+ (3m2 − 1)a3b3c3 + m3a
3b3c2 + m3a

3b3 + m1a
2b3c3 + m1b

3c5 (7)
+ m1b

3c3 − 2m2a
3b2c3 + m2a

5c3 + m2a
3c5 − 2m2a

3c3 = 0

a4 + b4 + c4 − (a2b2 + a2c2 + b2c2) − (a2 + b2 + c2) + 1 = 0. (8)

We will refer to the system of equations (6), (7) and (8) as system (II). The first two
equations have been written in order to display an important symmetry whereby
interchanging a and b as well as m1 and m2 in equation (6) yields equation (7)
and vice versa.

Since our variables correspond to distances from the primaries, we can ignore
solutions to the above systems for which one or more of a, b, c vanish. We will
refer to any solution with at least one variable equal to zero as trivial. Denote
C∗ = C−{0}. It is straight-forward to show that systems (I) and (II) are equivalent.
Specifically, (a, b, c) ∈ (C∗)3 is a solution to system (II) if and only if (a, b, c, λ) ∈
(C∗)4 is a solution to system (I), where λ is given by equation (5). The only
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subtlety to the argument lies in showing that λ 6= 0. This is taken care of by the
following lemma.

Lemma 2.2. There are no solutions (real or complex) to system (I) with λ = 0.

Proof. Substituting λ = 0 into equations (2), (3) and (4) implies that a, b and c
are each cube roots of unity, ζj = ei(2πj/3). Using Gröbner bases, one can check
that the polynomial ideal I =< a3−1, b3−1, c3−1, F > in C[a, b, c] is actually the
entire polynomial ring. This implies that the variety is empty and thus no such
solution to system (I) can exist with λ = 0.

Alternatively, a more direct approach is to show that F does not vanish
on each of the 27 possible three-tuples of ζj ’s. The fact that F is a symmetric
polynomial simplifies the computations greatly. If a, b and c are distinct cube
roots of unity, then F = 1 6= 0 follows quickly. If at least two of the variables are
equal (without loss of generality take a = b), then F reduces to

a4 + c4 − 2a2c2 − 2a2 − c2 + 1 = (a2 − c2 − 1)2 − 3c2. (9)

By substituting c = ζj into (9) for each j, we obtain three simple polynomials in
a, none of which vanishes at a cube root of unity. �

2.2. Equal Masses

As a relatively simple example, we consider the case m1 = m2 = m3 = 1/3
and show that there are precisely 10 equilibria, all lying on an axis of symmetry.
According to Leandro, this was first proven by Lindow [8] in 1922. The result also
appears, without proof, in Arenstorf [1].

We begin by showing that all real, positive solutions to system (I) lie on a
line of symmetry, that is, either a = b, a = c or b = c. Consider the polynomial
g = (a− b)(a− c)(b− c) · g1 where

g1 = c2(a2 + ab+ b2)(a+ b+ c) + ab(a+ b)(ab+ ac+ bc).

Using Gröbner bases, one can check that g is contained in the ideal generated by
the four polynomials of system (I) when m1 = m2 = m3 = 1/3. If an element in
the variety of this ideal did not possess any symmetry, then it would necessarily
have to be a zero of g1. However, g1 can never vanish if a, b, c are each real and
positive. It follows that a = b, a = c or b = c for any physically relevant solution.
The polynomial g was found by simplifying the difference of equations (2) and (3)
as well as (2) and (4) and then eliminating λ from the resulting expressions.

In the equal mass case, the four polynomials of system (I) are invariant under
any permutation of (a, b, c). Thus, solutions come in groups of three, (η, η, ζ), (η, ζ, η)
or (η, ζ, ζ). Geometrically, this group of solutions is invariant under a 120◦ rota-
tion, with each element lying on a different altitude of the equilateral triangle
formed by the primaries. The only exception is the solution a = b = c = 1/

√
3

which gives a critical point at the origin, the center of the triangle.
To find the remaining positive, real solutions, we substitute b = a and m1 =

m2 = m3 = 1/3 into system (II). Equations (6) and (7) become identical, and the
term a3(a−c) factors out of the polynomial in equation (6). Since we have already
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Figure 2. The 10 symmetric equilibria (indicated by an ×) for
the equal mass case.

accounted for the only solution with all three variables equal, we can cancel this
factor from the first equation. The resulting system is

3a4c3 − a4 + 3a3c4 − a3c+ a2 − 2ac3 + ac− 2c4 + c2 = 0
a4 − 2a2c2 − 2a2 + c4 − c2 + 1 = 0.

Computing a Gröbner basis for this system with a lex order (a > c) produces a
polynomial in c that has 22 nonzero roots. Of these roots, five are real and posi-
tive, but only three correspond to positive a-values. The three physically relevant
solutions (a, c) are

{(0.502465683134481, 0.816308578384975), (1.55145156726892, 0.602648135699807),

(0.817298143882299, 1.51253623586187)}.

The first point lies inside the triangle formed by the primaries. Taken with the
three-fold symmetry and the solution at the origin, this yields a precise total of 10
equilibria for the equal mass case (see Figure 2). These values were computed with
Maple and confirmed using Sage. For details, see the Sage worksheet “Equal Mass
case” available at http://mathcs.holycross.edu/∼groberts/Papers/papers.html
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3. BKK Theory

To show that the number of solutions to system (I) or (II) is finite for all masses,
we utilize BKK theory, as demonstrated so effectively by Hampton and Moeckel
in [5]. We regard an element k = (k1, . . . , kn) ∈ Zn≥0 as an exponent vector of the
monomial zk11 zk22 · · · zkn

n , abbreviated simply as zk. A polynomial f ∈ C[z1, . . . zn]
is a sum of monomials, generically written as

f =
∑
k

ckz
k

where ck ∈ C for each k and there are only a finite number of terms in the sum.
The Newton polytope for f , denoted N(f), is the convex hull in Rn of the set of
all exponent vectors k occurring for f .

3.1. Bernstein’s Theorem and Puiseux Series

Suppose that r = (r1, r2, . . . , rn) is a solution to the system of m polynomial
equations

f1(z1, . . . , zn) = 0
f2(z1, . . . , zn) = 0

... (10)
fm(z1, . . . , zn) = 0,

that is, r belongs to the affine variety V(f1, . . . , fm). We say that r lies in the
algebraic torus T if ri ∈ C∗ ∀i. One of the big advantages to using distance
variables is that we are only concerned with solutions in T.

Let α = (α1, . . . , αn) be a vector of rational numbers. For a given polynomial
f , the reduced polynomial fα is the sum of all terms of f whose exponent vectors
k satisfy

α · k = min
l∈N(f)

α · l.

This equation defines a face of the polytope N(f) with inward pointing normal α,
although this face is not necessarily of codimension one. For all exponent vectors
k on this face, the dot product α · k will be strictly smaller than the dot product
of α with any exponent vector elsewhere in N(f). For example, for the vectors
α = (1, 1, 0), β = (2, 1, 0) and γ = (1, 1, 1), the reduced polynomials for the
constraint F are

Fα = Fβ = c4 − c2 + 1 and Fγ = 1.

The reduced polynomials are considerably easier to handle than the original ones.
Note also that different choices of α can induce the same polynomial.
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For a given rational vector α = (α1, . . . , αn), the reduced equations for sys-
tem (10) are defined using the reduced polynomials corresponding to α:

f1α(z1, . . . , zn) = 0
f2α(z1, . . . , zn) = 0

... (11)
fmα(z1, . . . , zn) = 0.

Bernstein makes use of these reduced equations in the following theorem [2]. A
readable proof using algebraic geometry and Puiseux series can be found in [11].

Theorem 3.1. Suppose that system (10) has infinitely many solutions in T. Then
there exists a vector α = (α1, . . . , αn) with αi ∈ Q and αj = 1 for some j, such
that the system of reduced equations (11) also has a solution in T.

To apply this theorem successfully, we must rule out all possible rational
vectors α. Fortunately, although there are an infinite number of choices for α,
there are only a finite number of reduced systems to check. This is due to the fact
that different vectors give rise to the same system of reduced equations. To ensure
that all possible systems are considered, we first compute the normal fan of the
Minkowski sum polytope

MS = P1 + P2 + · · ·+ Pm = {q ∈ Rn : q = q1 + q2 + · · ·+ qm, qi ∈ Pi}
where Pi = N(fi) is the Newton polytope for fi. It then suffices to check all
inward normals α of facets of MS as well as those vectors corresponding to lower
dimensional faces (eg. edges, vertices, etc.) See [5] and [11] for details.

While Theorem 3.1 is often sufficient to prove finiteness (as is the case with
the problems considered in [3], [11] and [16]), it could be the case that some vector
α yields a reduced system that actually has a solution in T, that is, a nontrivial
solution. Such a difficulty occurs in [5] as well as for our problem. In this case, we
introduce complex Puiseux series in order to rule out these problematic vectors.
Such a series is defined as

z(t) =
∞∑
i=i0

ait
i
q

where ai ∈ C, and q ∈ N, i0 ∈ Z are fixed. For example,

z1(t) = t (12)

z2(t) = −2 + t1/3 − 5i t2/3 + · · · (13)

z3(t) = 5t−1/2 − 4 + 3t1/2 + · · · (14)

are each complex Puiseux series. The key fact, proved in [5], is that if system (10)
has an infinite variety in T, then it contains a Puiseux series solution zj(t), j =
1, . . . n, convergent in some punctured neighborhood of t = 0. Moreover, at least
one of the variables is simply zj(t) = t. The order of this solution is the vector of
rationals α formed by the fractional exponent of the first term in each series. For
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the three series z1(t), z2(t), z3(t) described in equations (12), (13) and (14), the
order is the vector α = (1, 0,−1/2). For the case when a Puiseux series solution
exists, the vector α generates a system of reduced equations (11) that will have a
nontrivial solution given by the coefficients ai0 of the first term in each series.

3.2. Proof of Theorem 2.1
Proof. To prove Theorem 2.1, we first show that the number of solutions to system
(II) is finite. Since our two systems are equivalent, this will prove finiteness for the
number of equilibria in the PCR4BP. We will show that for all choices of vectors α
with at least one component positive, either the reduced equations have only trivial
solutions (at least one component zero) or if a nontrivial solution does exist, then
there is no Puiseux series solution to the original system with order α. Fortunately,
as described above, we only need to consider those vectors representing a facet (as
an inward normal) or lower dimensional face (edges or vertices) of the Minkowski
sum polytope MS. Remarkably, the only assumption on the masses required for
finiteness is mj 6= 0. In other words, Theorem 2.1 holds for any set of masses in
C∗ provided m1 +m2 +m3 = 1.

We compute the Minkowski sum polytope MS for the three polynomials in
system (II) using Matlab, which calls the software Qhull [14]. Calculations were
also confirmed with Sage. The three-dimensional polytope MS has 12 vertices, 24
edges and 14 facets (see Figure 3). Due to symmetry, the inward pointing normals
come in pairs ±α. By Theorem 3.1, we can exclude any inward normals with all
components nonpositive. This results in the following list of inward normals:

(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1).

Since system (II) is invariant under the symmetry transformation a ↔ b, m1 ↔
m2, we can exclude the vectors (0, 1, 0) and (1, 0, 1) by studying their symmetric
counterparts (1, 0, 0) and (0, 1, 1), respectively. This symmetry also reduces the
number of edges that have to be considered. Of the five inward normals left to be
studied, two of them, (1, 0, 0) and (0, 0, 1), have reduced equations with nontrivial
solutions. The others give rise to reduced systems that have no solutions in T.

For example, the reduced equations (factored) for the inward normal (0, 1, 1)
are

a4 − a2 + 1 = 0
−a3(2a2 − 1)(m3b

3 +m2c
3) = 0 (15)

a3(m3a
2b3 +m2a

2c3 +m3b
3 − 2m2c

3) = 0. (16)

The polynomials a4−a2 +1 and 2a2−1 have no common roots. By equation (15),
this implies that m3b

3 = −m2c
3. Substituting this relation into equation (16) gives

−3m2a
3c3 = 0 which implies c = 0 and therefore b = 0. Alternatively, computing a

Gröbner basis with a standard lexicographic order gives {m2c
3,m3b

3, a4− a2 + 1}
which quickly yields b = c = 0. Either argument serves to eliminate the inward
normal vector (0, 1, 1). A similar calculation eliminates the vector (1, 1, 0). The
inward normal vector α = (1, 1, 1) yields an inconsistent reduced system Fα =
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Figure 3. The Minkowski sum polytope MS for the three poly-
nomials of system (II).

1 = 0. In addition to eliminating (1, 1, 1) from contention, this also serves to
eliminate any edge contained in this facet. As Moeckel points out in [11], for any
vector α corresponding to a lower dimensional face contained in a trivial facet (one
for which some reduced equation contains only one term), the reduced equations
corresponding to α will also be trivial. In this case, any edge or vertex lying on
the facet with inward normal (1, 1, 1) yields the inconsistent reduced equation
Fα = 1 = 0.

To rule out the remaining inward normals (1, 0, 0) and (0, 0, 1), we must
show that no Puiseux series solution to system (II) exists having these orders. We
give the argument for (1, 0, 0). The calculations excluding the vector (0, 0, 1) are
essentially identical.

The reduced equations for the inward normal vector (1, 0, 0) contain all mono-
mials missing the variable a. In factored form they are

b4 − b2c2 − b2 + c4 − c2 + 1 = 0
m1b

3c3(b2 + c2 − 2) = 0
m1b

3c3(−2b2 + c2 + 1) = 0
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Given that m1 6= 0, the only solutions for these equations in T are of the form
(a,±1,±1) for any a ∈ C∗. Thus, if there were an infinite number of solutions to
system (II) in T with order (1, 0, 0), then there would be a Puiseux series solution
of the form a = t, b = ±1 + · · · , c = ±1 + · · · .

If we make the substitution (a, b, c) = (t, z2, z3) into system (II), we obtain a
system of three polynomial equations in two variables z = (z2, z3) with coefficients
that are polynomials in t. This system can be written compactly as

G(t, z) = G0(z) +G2(z)t2 + · · ·+G5(z)t5 = 0

(there are no terms having just t as a coefficient.) The system G0(z) is precisely the
reduced equations corresponding to α = (1, 0, 0). A hand computation (checked
using Maple as well as Sage) shows that the Jacobian matrix DG0(±1,±1) has
rank two (full rank). By the Implicit Function Theorem, there exists a C∞ function
h : B 7→ C2 and a neighborhood B of 0, such that G(t, h(t)) = 0 ∀t ∈ B. Since h
has derivatives of all orders, it follows that our Puiseux series solution is actually a
power series. Substituting z2 = ±1 +ut2 + · · · and z3 = ±1 + vt2 + · · · into G = 0
yields an inconsistent system as the constraint equation becomes −3t2 + · · · = 0.
This shows that no Puiseux series solution of order α = (1, 0, 0) exists.

We must also check the lower dimensional faces to rule out all possible vectors
α. Only edges of the Minkoswki sum polytope MS need be considered since each
vertex will yield reduced equations containing just a single monomial. Since the
coefficients of all monomials obtained only vanish if mj = 0, only trivial solutions
are possible for the reduced equations corresponding to vertices of MS. This holds
even though the choices m1 = 1/3 and m2 = 1/3 cause the monomial a3b3c3 in
equations (6) and (7) respectively, to vanish. This case never materializes however,
because the exponent vector (3, 3, 3) lies strictly inside the Newton polytope of each
polynomial.

To find representative vectors for the edges of MS, we sum the inward nor-
mals on adjoining facets. Excluding those edges that have no representative vectors
with at least one positive component reduces the list of 24 down to 15. Three of
these remaining edges are part of the facet with inward normal (1, 1, 1) and by the
argument above, lead to an inconsistent set of reduced equations. Of the remaining
12 edges, 5 can be eliminated due to the symmetry between the first two variables.
This leaves the following 7 edges, described by the sum of the inward normals of
the two adjoining facets:

(2, 1, 0) = (1, 0, 0) + (1, 1, 0), (1,−1,−1) = (1, 0, 0) + (0,−1,−1)
(2, 0, 1) = (1, 0, 0) + (1, 0, 1), (−1,−1, 1) = (0, 0, 1) + (−1,−1, 0)
(1, 0, 2) = (0, 0, 1) + (1, 0, 1), (1,−1, 1) = (1, 0, 1) + (0,−1, 0)

(1, 1,−1) = (1, 1, 0) + (0, 0,−1).
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The reduced equations corresponding to each of the above vectors lead to only
trivial solutions. For example, taking α = (2, 1, 0) gives the reduced equations

c4 − c2 + 1 = 0
m1b

3c3(c2 − 2) = 0
m1b

3c3(c2 + 1) = 0

which requires b = 0. Similarly, the vector α = (1,−1,−1) yields the reduced
system

b4 − b2c2 + c4 = 0
m1b

3c3(b2 + c2) = 0
−m1b

3c3(2b2 − c2) = 0

which necessitates b = c = 0. As a final example, for the vector α = (1, 1,−1), the
constraint equation (8) is simply c4 = 0 and thus only trivial solutions occur. The
calculations to eliminate the remaining vectors are quite similar. This concludes
the proof of finiteness.

To obtain an upper bound on the number of possible equilibria, we return to
system (I) and compute the mixed volume of the given four polynomials in four
variables. A mixed volume of 196 was computed with both Qhull and Sage. This
value gives an upper bound on the number of solutions in T (real or complex)
to system (I) and for generic coefficients, it is precisely the total number of solu-
tions [4]. We have not missed any possible real solutions with a, b, c positive and
λ = 0 due to Lemma 2.2. This completes the proof of Theorem 2.1. �

Remark 3.2. The mixed volume for system (II) is 268, giving a slightly higher upper
bound than 196. The reason for the larger number is due to the fact that there are
relations between the coefficients of the polynomials in system (II). Cancellations
can occur in the corresponding ideal that will lead to a system with smaller mixed
volume. For example, one such system was found with a mixed volume of 220.
However, applying BKK theory to prove finiteness was far easier for system (II)
than system (I).
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