Math/Music: Aesthetic Links Group Theory

Definition: The set G is a **group** under the operation * if the following four properties are satisfied:

- 1. Closure: If $a \in G$ and $b \in G$, then $a * b \in G$. This must be true for all elements a and b in the group G.
- 2. Associativity: (a * b) * c = a * (b * c) for any elements $a, b, c \in G$.
- 3. Identity: There must exist an element $e \in G$ called the **identity element** such that a * e = a and e * a = a. (e preserves the "identity" of the element it is being multiplied by.)
- 4. Inverse: For every element $a \in G$, there must exist an element $a^{-1} \in G$ called the **inverse of** a, such that $a * a^{-1} = e$ and $a^{-1} * a = e$. Note that the inverse of each element must be in the group G.

Some Examples

- $G = \mathbb{Z}$ (the integers) with * = +, the usual addition of two integers. In this case, the identity element is e = 0 and $a^{-1} = -a$ since $a * a^{-1} = a + (-a) = 0 = e$.
- $G = \mathbb{R} \{0\}$ (all real numbers except for 0) with $* = \times$, the usual multiplication of two real numbers. Here, e = 1 and $a^{-1} = 1/a$. Why did we have to exclude 0 from G?

Note: The set $G = \mathbb{Z}$ (the integers) is **not** a group under multiplication. How come?

- $G = \{0, 1, 2, ..., 10, 11\}$ with $* = + \mod 12$ (modular arithmetic). Here, e = 0 and $a^{-1} = 12 a$ since 12 is equivalent to 0 in this group ($13 \equiv 1, 14 \equiv 2$, etc.). This group is identical to the group of twelve notes in a chromatic scale. When musicians identify a note with the same note in a different octave, they are doing group theory!
- Symmetries of the Square: D_4 , the Dihedral Group of Degree 4

The eight possible symmetries of the square form a group with * = composition.

*	e	R_{90}	R_{180}	R_{270}	H	V	D_{13}	D_{24}
е	e	R_{90}	R_{180}	R_{270}	Н	V	D_{13}	D_{24}
R_{90}								
R_{180}								
R_{270}								
Н	Н	D_{13}	V	D_{24}	e	R_{180}	R_{90}	R_{270}
V								
D_{13}								
D_{24}								

Table 1: Multiplication table for the 8 symmetries of the square. When composing transformations together, do the column element first, then the row element. Complete the table for HW 1, #8.