Gareth E. Roberts

Department of Mathematics and Computer Science College of the Holy Cross Worcester, MA

Math/Music: Aesthetic Links
Montserrat Seminar Spring 2012
February 6 and 8, 2012

Change Ringing (Bell Ringing)

Figure: A typical church bell rung in the belfry.

Figure: Bell ringing practice in Stoke Gabriel parish church, south Devon, England.

Change ringing is a non-competitive and non-violent team activity that is highly stimulating intellectually and mildly demanding physically, and makes a beautiful sound. It develops mental and physical skills in a context of communal effort. The intense concentration required brings euphoric detachment that cleanses the mind of the day's petty demands and frustrations.

North American Guild of Change Ringers

Figure: The Swan Bells Tower in Perth, Australia, a unique icon for Western Australia. Contains 12 royal bells from England (St. Martin-in-the-Fields).

Figure: Bell ringing demonstration in Swan Bell Tower.

Change Ringing: An Example

1234	1342	1423
2 1 4 3	3 <mark>1</mark> 2 4	4 1 3 2
2413	3 2 <mark>1</mark> 4	4312
2 4 3 1	3 2 4 1	4321
4 2 3 <mark>1</mark>	2341	3 4 2 <mark>1</mark>
4213	2314	3 4 1 2
4 1 2 3	2 1 3 4	3 1 4 2
1432	1243	<u>1324</u>
		1234

Canterbury Minimus (true extent on 4 bells)

Change Ringing: An Example

1234	1342	1423
2 1 4 3	3 <mark>1</mark> 2 4	4 1 3 2
2413	3 2 <mark>1</mark> 4	4312
2 4 3 <mark>1</mark>	3 2 4 1	4321
4 2 3 <mark>1</mark>	2341	3 4 2 <mark>1</mark>
4213	2314	3 4 1 2
4 1 2 3	2 <mark>1</mark> 3 4	3 1 4 2
1432	1243	<u>1324</u>
		1234

Canterbury Minimus (true extent on 4 bells)

There are 4! = 24 different possible rows. Each must be rung exactly once starting and ending with rounds (1 2 3 4).

Rules to ring an extent on *n* bells:

• The first and last changes (rows) are rounds (1 2 3 4 \cdots n).

- The first and last changes (rows) are rounds (1 2 3 4 \cdots n).
- ② Other than rounds, all of the other n! changes occur exactly once.

- The first and last changes (rows) are rounds (1 2 3 4 \cdots n).
- ② Other than rounds, all of the other n! changes occur exactly once.
- Between successive changes, no bell moves more than one position.

- The first and last changes (rows) are rounds (1 2 3 4 \cdots n).
- ② Other than rounds, all of the other n! changes occur exactly once.
- Between successive changes, no bell moves more than one position.
- No bell rests for more than 2 (sometimes relaxed further to 4) positions.

- The first and last changes (rows) are rounds (1 2 3 4 \cdots n).
- ② Other than rounds, all of the other n! changes occur exactly once.
- Between successive changes, no bell moves more than one position.
- No bell rests for more than 2 (sometimes relaxed further to 4) positions.
- Each working bell should do the same amount of "work" (obey the same overall pattern).

- The first and last changes (rows) are rounds (1 2 3 4 \cdots n).
- ② Other than rounds, all of the other n! changes occur exactly once.
- Between successive changes, no bell moves more than one position.
- No bell rests for more than 2 (sometimes relaxed further to 4) positions.
- Each working bell should do the same amount of "work" (obey the same overall pattern).
- Horizontal symmetry should be present in the extent to help the ringers learn the path of their respective bell. This is called the palindrome property.

Rules to ring an extent on *n* bells:

- The first and last changes (rows) are rounds (1 2 3 4 \cdots n).
- ② Other than rounds, all of the other n! changes occur exactly once.
- Between successive changes, no bell moves more than one position.
- No bell rests for more than 2 (sometimes relaxed further to 4) positions.
- Each working bell should do the same amount of "work" (obey the same overall pattern).
- Horizontal symmetry should be present in the extent to help the ringers learn the path of their respective bell. This is called the palindrome property.

Note: Rules 1 - 3 are mandatory for an extent while Rules 4 - 6 are optional though often satisfied.

• A reordering of the numbers 1 2 3 4 \cdots *n* is called a permutation.

- A reordering of the numbers 1 2 3 4 \cdots *n* is called a permutation.
- How many possible changes on n bells?

- A reordering of the numbers 1 2 3 4 \cdots *n* is called a permutation.
- How many possible changes on n bells? Answer: n!

$$n! = n \cdot (n-1) \cdot (n-2) \cdots 3 \cdot 2 \cdot 1$$

- A reordering of the numbers 1 2 3 4 \cdots *n* is called a permutation.
- How many possible changes on *n* bells? **Answer**: *n*!

$$n! = n \cdot (n-1) \cdot (n-2) \cdot \cdot \cdot 3 \cdot 2 \cdot 1$$

• For *n* bells, how many "moves" are allowed?

$$n = 2$$
 (12) 1 move

- A reordering of the numbers 1 2 3 4 \cdots *n* is called a permutation.
- How many possible changes on *n* bells? **Answer**: *n*!

$$n! = n \cdot (n-1) \cdot (n-2) \cdot \cdot \cdot 3 \cdot 2 \cdot 1$$

• For *n* bells, how many "moves" are allowed?

$$n = 2$$
 (12) 1 move

$$n = 3$$
 (12), (23) 2 moves

- A reordering of the numbers 1 2 3 4 \cdots *n* is called a permutation.
- How many possible changes on *n* bells? **Answer**: *n*!

$$n! = n \cdot (n-1) \cdot (n-2) \cdot \cdot \cdot 3 \cdot 2 \cdot 1$$

• For *n* bells, how many "moves" are allowed?

$$n = 2$$
 (12) 1 move

$$n = 3$$
 (12), (23) 2 moves

$$n = 4$$
 (12), (23), (34), (12)(34) 4 moves

- A reordering of the numbers 1 2 3 4 \cdots *n* is called a permutation.
- How many possible changes on n bells? Answer: n!

$$n! = n \cdot (n-1) \cdot (n-2) \cdots 3 \cdot 2 \cdot 1$$

• For *n* bells, how many "moves" are allowed?

$$n = 2$$
 (12) 1 move

$$n = 3$$
 (12), (23) 2 moves

$$n = 4$$
 (12), (23), (34), (12)(34) 4 moves

HW #2: List the moves for n = 5 and n = 6 bells. Find the pattern in the sequence of the number of allowable moves.

	n	n!	Approximate Duration	Name
	3	6	15 secs.	Singles
	4	24	1 mins.	Minimus
	5	120	5 mins.	Doubles
	6	720	30 mins.	Minor
	7	5,040	3 hrs.	Triples
	8	40,320	24 hrs.	Major
	9	362,880	9 days	Caters
	10	3,628,800	3 months	Royal
	11	39,916,800	3 years	Cinques
	12	479,001,600	36 years	Maximus
1	I	1	I	l l

Table: Approximate duration to ring an extent on *n* bells and the names given to such an extent. Compositions: *Plain Bob Minimus*, *Grandshire Triples*

Change Ringing: 3 bells

The two extents on 3 bells:

Change Ringing: 3 bells

The two extents on 3 bells:

123	123
1 2 3	123
2 1 3	132
231	3 1 2
3 2 1	3 2 1
3 1 2	231
<u>132</u>	<u>2 1 3</u>
123	123

Change Ringing: 3 bells

The two extents on 3 bells:

123	123
2 1 3	132
231	3 1 2
3 2 1	3 2 1
3 1 2	231
<u>132</u>	<u>2 1 3</u>
123	123

Note the simple zig-zag pattern of Bell 1 in the first extent, sweeping easily from position 1 to position 3 and back again. We say that Bell 1 is *plain hunting*. It only needs to do this once to complete the extent. In this case, we say that the bell is "not working." Notice that in the second extent, Bell 1 follows a similar zig-zag path except that this begins on the second change.

Plain Bob Minimus (read down first, then hop to next column)

1234	
2143	
2413	
4 2 3 1	
4321	
3412	
3 1 4 2	
1324	

1342
3 1 2 4
3214
2341
2 4 3 <mark>1</mark>
4 2 <mark>1</mark> 3
4 1 2 3
1432

1	4	2	3
4	1	3	2
4	3	1	2
3	4	2	1
3	2	4	1
2	3	1	4
2	1	3	4
1	2	4	3
1	2	3	4

Plain Bob Minimus (read down first, then hop to next column)

1234	1342	1423
2 1 4 3	3 <mark>1</mark> 2 4	4 1 3 2
2413	3 2 <mark>1</mark> 4	4312
4 2 3 <mark>1</mark>	2341	3 4 2 1
4 3 2 <mark>1</mark>	2 4 3 1	3 2 4 1
3 4 1 2	4 2 <mark>1</mark> 3	2314
3 1 4 2	4 1 2 3	2134
1324	1 4 3 2	<u>1243</u>
		1234

Let a = (12)(34), b = (23), c = (34). The above sequence of 24 permutations can be "factored" as

Plain Bob Minimus (read down first, then hop to next column)

1234	1342	1423
2 1 4 3	3 <mark>1</mark> 2 4	4 1 3 2
2413	3 2 <mark>1</mark> 4	4312
4 2 3 <mark>1</mark>	2341	3 4 2 1
4 3 2 <mark>1</mark>	2 4 3 1	3 2 4 <mark>1</mark>
3 4 1 2	4 2 <mark>1</mark> 3	2314
3 1 4 2	4 1 2 3	2 1 3 4
1324	1 4 3 2	<u>1243</u>
		1234

Let a = (12)(34), b = (23), c = (34). The above sequence of 24 permutations can be "factored" as

$$[(ab)^3ac]^3 = [abababac]^3$$
 Palindrome!

