
Math/Music: Aesthetic Links

Gareth E. Roberts

Department of Mathematics and Computer Science
College of the Holy Cross

Worcester, MA

Chaos and Fractals in Music
April 20, 2011

G. Roberts (Holy Cross) Chaos and Fractals Montserrat Spring 2011 1 / 19



Chaos Theory

The theory of Dynamical Systems (more popularly known as Chaos
Theory) focuses on the behavior occurring in a system under iteration.
Graphical, numerical and analytic approaches are all important.
Computers helped launched the field.

Example: f (x) = x2. What are the fates of different orbits under
iteration of f?

xn+1 = f (xn)

x0 = 2 is called an initial seed.

x1 = f (x0) = f (2) = 4 is the next iterate in the orbit.

x2 = f (x1) = f (4) = 16 and x3 = f (x2) = f (16) = 256 are the next two
iterates.

The orbit of 2 is then 2, 4, 16, 256, . . .. It is heading off to∞.
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f (x) = x2 (cont.)

x0 = 1 has an orbit of
1, 1, 1, 1, 1, . . .

We call x0 = 1 a fixed point because it is fixed under iteration of f .

What’s another fixed point of f?

Answer: x0 = 0. The orbit of x0 = 0 is 0, 0, 0, 0, . . .

These are the only two fixed points since solving the equation f (x) = x
is equivalent to solving x2 = x .

x2 − x = 0 or x(x − 1) = 0.
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f (x) = x2 (cont.)

x0 = −1 has an orbit of −1, 1, 1, 1, 1, . . .
We call x0 = −1 an eventually fixed point.

x0 = 1/2 has an orbit of
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which converges (limits) to 0.

Any x0 satisfying −1 < x0 < 1 will have an orbit that limits on the fixed
point 0. Thus, we call x0 = 0 an attracting fixed point.

If x0 > 1 or x0 < −1, the orbit approaches∞. Since orbits starting
close to x0 = 1 move away under iteration, we call x0 = 1 a repelling
fixed point.

G. Roberts (Holy Cross) Chaos and Fractals Montserrat Spring 2011 4 / 19



f (x) = x2 − 1

Consider the dynamical system determined by f (x) = x2 − 1.

What is the orbit of 0? 0,−1, 0,−1, 0− 1, . . .

This orbit is called a period two cycle.

What about fixed points? Solving f (x) = x yields the equation

x2 − 1 = x or x2 − x − 1 = 0.

Solution:
1±
√

5
2

, the Golden ratio!
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Goals of Dynamical Systems

For a particular system, study the fate of all orbits under iteration.
Find the fixed points, period two points, attractors and repellors,
orbits that head off to∞, etc.

What is the underlying structure of the system? What does the set
of all periodic points look like? Is it simple or complicated? What
does the set of points whose orbits remain bounded (not heading
off to∞) look like?

Look at systems with a parameter. For example, Qc(x) = x2 + c,
where c can vary. What type of structural changes occur as c is
varied? Where are the bifurcations? How do we characterize the
dynamics for different c values?
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Figure: The orbit diagram for the quadratic family Qc(x) = x2 + c. For each
c-value, the orbit of x0 = 0 is computed up to 2200 iterations. The first 2000
iterations are discarded and the remaining 200 are shown.
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Fractals

Figure: Fractals at the Museum of Science.
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Figure: The first four iterations of the Koch snowflake curve (Helge von Koch,
1904), one of the earliest fractals.
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Perimeter of the Koch Snowflake
Suppose each side of the equilateral triangle has a length of 1. At the
opening stage, the perimeter is therefore 3.

At the next iterate, each “side” now contains four segments that are
1/3 the original length. Each side has a perimeter of 4/3 giving a total
perimeter of 3 · 4/3 = 4.

At the next iterate, each new “side” now contains four segments that
are 1/9 the original length, for a total of 4/9. But there are 12 such
“sides” giving a total perimeter of 12 · 4/9 = 16/3.

The perimeter is growing!

3, 4,
16
3

,
64
9

, . . .

This is a geometric sequence with a ratio r = 4/3 > 1. This goes to∞.
We have a curve enclosing finite area with infinite length — a monster!

G. Roberts (Holy Cross) Chaos and Fractals Montserrat Spring 2011 10 / 19



The Butterfly Effect

One of the hallmarks of a chaotic dynamical system is sensitive
dependence on initial conditions, more commonly known as the
Butterfly Effect. The idea is that a small change in initial conditions can
lead to a large change in the behavior of a system.

“Does the flap of a butterfly’s wings in Brazil set off a tornado in
Texas?"

Term comes from Ed Lorenz, an MIT meteorologist who accidentally
discovered it while trying to model the weather in 1961. Lorenz
truncated his data in one run-through, entering 0.506 instead of
0.506127. To his great surprise, he found that the original results were
vastly altered by this minor change in one variable. Where it was
sunny, there was now rain; a windy day was now calm, etc.

The butterfly effect is the reason that weather prediction is so difficult.
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The Butterfly Effect in Music

Examples of the butterfly effect in music:

Steve Reich — small changes in rhythmic structure (e.g., slight
phase shift) lead to big changes in the music (e.g., Clapping
Music, Violin Phase, Six Marimbas, etc.)

György Ligeti (1923-2006). Hungarian composer who used
mathematical ideas in many of his compositions. Popularly known
for the music in the Stanley Kubric films 2001: A Space Odyssey
and The Shining.

A musical depiction of the butterfly effect occurs in his piece
Désordre (“Disorder," 1985) which is the first in a set of 18
technically challenging piano pieces titled Études. The right hand
plays solely the white keys (C major) while the left hand only the
black keys (a pentatonic scale).
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Désordre (1985)

Each hand opens with identical 8-beat rhythmic patterns (3 + 5).
In the fourth measure, the right hand drops a beat, playing a
7-beat pattern rather than an 8-beat one, but continues the 8-beat
pattern for the next three measures. This small change starts to
cause a big shift, audible for the listener due to the shifting
accents in each hand.

In the eighth measure, the right hand drops another beat, playing
7 instead of 8. Now, the left hand is two beats ahead instead of
one. Again, the right hand only drops a beat in this one measure.

The “iterative” process of dropping a single beat continues, as the
right hand drops a beat approximately every four measures so
that the two hands become completely out of synch, and the
butterfly effect is realized. Each successive deletion of a beat in
the right hand is denoted by a vertical dashed line in the score.
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Désordre (cont.)

The piece reaches a dynamic and rhythmic climax a few bars
away from the golden section, after which the two hands play in
unison 8-beat rhythmic phrases again.

This time the right hand maintains the same rhythmic phrasing
while the left hand gradually adds a beat, going from an 8-beat
phrase to a 9-beat phrase on occasion.

As in the opening half, the “iterative” process of adding a single
beat continues, but this time a bit quicker, as the left hand adds a
beat approximately every three (not four) measures so that the
two hands become out of synch a bit faster.
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