MATH 392: Seminar in Celestial Mechanics

Homework Assignment #2

Solution to Problem #3

Theorem: Suppose that \(\mathbf{q}_0 \times \mathbf{v}_0 = \mathbf{c} \neq 0 \) where \(\mathbf{q}_0 = \mathbf{q}(0) \) and \(\mathbf{v}_0 = \mathbf{v}(0) \) are the initial position and velocity, respectively. Letting \(c = ||\mathbf{c}|| \), there exists an orthogonal matrix \(A \) and a change of variables \(\mathbf{x} = A\mathbf{q} \) such that the central force problem is converted to

\[
\ddot{\mathbf{x}} = -\frac{f(r)}{r} \mathbf{x}
\]

where \(r = ||\mathbf{x}|| \) and the new angular momentum is simply \((0,0,c)\).

Proof:

We will construct the \(3 \times 3\) matrix \(A \) using the vectors \(\mathbf{q}_0 \) and \(\mathbf{c} \). First, we explain the importance of \(A \) being orthogonal. Recall that an orthogonal matrix \(A \) is one for which \(A^T A = A A^T = I \). This is equivalent to having the rows and columns each forming an orthonormal basis for \(\mathbb{R}^3 \) (length one and mutually orthogonal). The key fact about orthogonal matrices is that they preserve lengths of vectors and angles between vectors. In other words, thinking of \(A \) as representing a linear map, the image of vectors under this map preserves lengths and angles.

To see this, write the dot product \(\mathbf{v} \cdot \mathbf{w} \) between any two vectors \(\mathbf{v} \) and \(\mathbf{w} \) as

\[
\mathbf{v} \cdot \mathbf{w} = \mathbf{v}^T \mathbf{w}
\]

interpreting the resulting \(1 \times 1\) matrix as a scalar. Then we have, for any orthogonal matrix \(A \),

\[
||A\mathbf{v}||^2 = (\mathbf{v} \cdot \mathbf{v}) = (A\mathbf{v})^T (A\mathbf{v}) = \mathbf{v}^T A^T A \mathbf{v} = \mathbf{v}^T \mathbf{v} = ||\mathbf{v}||^2
\]

so that \(||A\mathbf{v}|| = ||\mathbf{v}|| \) and the length of \(\mathbf{v} \) is unchanged under the linear map \(A \). Furthermore, using the fact that \(\mathbf{v} \cdot \mathbf{w} = ||\mathbf{v}|| ||\mathbf{w}|| \cos(\theta) \) where \(\theta \in [0, \pi] \) is the angle between \(\mathbf{v} \) and \(\mathbf{w} \), we see that

\[
\cos(\theta) = \frac{(A\mathbf{v}) \cdot (A\mathbf{w})}{||A\mathbf{v}|| ||A\mathbf{w}||} = \frac{\mathbf{v} \cdot \mathbf{w}}{||\mathbf{v}|| ||\mathbf{w}||}.
\]

This shows that the angle between \(A\mathbf{v} \) and \(A\mathbf{w} \) is the same as the angle between \(\mathbf{v} \) and \(\mathbf{w} \), although the orientation may be reversed if \(\det(A) = -1 \).

Using these properties, it is easy to see why the change of variables \(\mathbf{x} = A\mathbf{q} \) leads to the identical Kepler problem but with \(\mathbf{x} \) replacing \(\mathbf{q} \). Since \(A^T = A^{-1} \), we have

\[
\ddot{\mathbf{x}} = A \dot{\mathbf{q}} = A \left(-\frac{f(r)}{r} \right) \mathbf{q} = -\frac{f(r)}{r} A A^T \mathbf{x} = -\frac{f(r)}{r} \mathbf{x}
\]

where \(r = ||\mathbf{q}|| = ||A^T \mathbf{x}|| = ||\mathbf{x}|| \) is unchanged since the orthogonal matrix \(A^T \) preserves lengths.

Since \(\dot{\mathbf{x}} = A \dot{\mathbf{q}} \), the angular momentum in the new coordinates will be the vector

\[
\mathbf{x}(0) \times \dot{\mathbf{x}}(0) = (A\mathbf{q}(0)) \times (A \dot{\mathbf{q}}(0)) = (A\mathbf{q}_0) \times (A \mathbf{v}_0).
\]

Since \(A \) is orthogonal, the new angular momentum will have the same length \(c \). This follows from

\[
||\mathbf{x}(0) \times \dot{\mathbf{x}}(0)|| = ||(A\mathbf{q}_0) \times (A \mathbf{v}_0)|| = ||A\mathbf{q}_0|| ||A \mathbf{v}_0|| \sin \theta = ||\mathbf{q}_0|| ||\mathbf{v}_0|| \sin \theta = ||\mathbf{q}_0 \times \mathbf{v}_0|| = c
\]
where the angle θ between \(\mathbf{q}_0 \) and \(\mathbf{v}_0 \) is unchanged under the map \(A \). Thus if we can construct \(A \) so that the first two coordinates of \(\mathbf{x}(0) \times \hat{\mathbf{x}}(0) \) are both zero, the third coordinate will either be \(c \) or \(-c\) so that the length remains fixed at \(c \).

To have the cross product of two vectors lying in the \(z \)-direction only, we want the vectors to be in the \(xy \)-plane. Thinking of how matrix multiplication works, it follows that we want the third row of \(A \) to be orthogonal to the vectors \(\mathbf{q}_0 \) and \(\mathbf{v}_0 \). But \(c \) is such a vector! Choose the third row of \(A \) to be the unit vector \(\mathbf{c}/c \). The remaining two rows of \(A \) must be orthogonal to \(c \) and to themselves. A natural choice is to choose \(\mathbf{q}_0 \) (orthogonal to \(c \)) and \(c \times \mathbf{q}_0 \) (orthogonal to both \(c \) and \(\mathbf{q}_0 \) by the definition of the cross product). The reason for choosing \(c \times \mathbf{q}_0 \) and not \(\mathbf{q}_0 \times c \) will be made clear in a moment. Note that \(||c \times \mathbf{q}_0|| \) is the same as \(c ||\mathbf{q}_0|| \) since the vectors are orthogonal.

In sum, the three rows of \(A \) are given by

\[
A = \begin{bmatrix}
\frac{\mathbf{q}_0}{||\mathbf{q}_0||} \\
\frac{c \times \mathbf{q}_0}{||\mathbf{q}_0||} \\
c/c
\end{bmatrix}
\]

(each vector is really transposed so that it becomes a row rather than a column vector). By construction, \(A \) is an orthogonal matrix with \(A\mathbf{q}_0 \) and \(A\mathbf{v}_0 \) lying in the \(xy \)-plane. This implies that

\[
A\mathbf{q}_0 \times A\mathbf{v}_0 = [0 \ 0 \ \pm c]^T.
\]

It remains to show that the third component of this vector is in fact just \(c \). This can be done by showing that \(\det(A) = 1 \) or more directly by actually calculating the cross product.

Interpreting matrix multiplication via the dot product, we see that \(A\mathbf{q}_0 = [r_0 \ 0 \ 0]^T \) where \(r_0 = ||\mathbf{q}_0|| \). The vector \(A\mathbf{v}_0 \) is

\[
A\mathbf{v}_0 = \begin{bmatrix}
\frac{\mathbf{q}_0 \times \mathbf{v}_0}{r_0} \\
\frac{c}{r_0} \\
0
\end{bmatrix}
\]

where the second component follows using the vector identity from question #2:

\[
\left(\frac{\mathbf{c}}{c} \frac{\mathbf{q}_0}{r_0}\right) \cdot \mathbf{v}_0 = \frac{c}{c} \left(\frac{\mathbf{q}_0}{r_0} \times \mathbf{v}_0\right) = \frac{c}{r_0} = \frac{c}{r_0}.
\]

Thus, computing the cross product of these two vectors gives

\[
A\mathbf{q}_0 \times A\mathbf{v}_0 = \begin{bmatrix}
\frac{\mathbf{q}_0 \times \mathbf{v}_0}{r_0} \\
r_0 \quad 0 \\
r_0 \quad 0
\end{bmatrix}
\begin{bmatrix}
0 \\
0 \\
c
\end{bmatrix}
\]

as desired. \(\square \)