MATH 392: Seminar in Celestial Mechanics

Homework Assignment #2
Solution to Problem #3

Theorem: Suppose that q, X vo = ¢ # 0 where qy = q(0) and vy = v(0) are the initial position
and velocity, respectively. Letting ¢ = ||c||, there exists an orthogonal matrix A and a change of
variables x = Aq such that the central force problem is converted to

where r = ||x|| and the new angular momentum is simply (0, 0, ¢).

Proof:

We will construct the 3 x 3 matrix A using the vectors qg and c. First, we explain the importance
of A being orthogonal. Recall that an orthogonal matrix A is one for which AT A = AAT = I. This
is equivalent to having the rows and columns each forming an orthonormal basis for R* (length one
and mutually orthogonal). The key fact about orthogonal matrices is that they preserve lengths of
vectors and angles between vectors. In other words, thinking of A as representing a linear map, the
image of vectors under this map preserves lengths and angles.

To see this, write the dot product v - w between any two vectors v and w as

V'W:VTW

interpreting the resulting 1 x 1 matrix as a scalar. Then we have, for any orthogonal matrix A,
|AV|]? = (Av) - (Av) = (AV)T(AV) = vTATAv = vTv = ||v]|?

so that ||Av|| = ||v|| and the length of v is unchanged under the linear map A. Furthermore, using
the fact that v -w = ||v||||w]|| cos(§) where 6 € [0, 7] is the angle between v and w, we see that
(Av) - (Aw) vV-w

cos(8) = = ]
O = AW = MW

This shows that the angle between Av and Aw is the same as the angle between v and w, although
the orientation may be reversed if det(A4) = —1.

Using these properties, it is easy to see why the change of variables x = Aq leads to the identical
Kepler problem but with x replacing q. Since AT = A~!, we have

k:AQ:A(-@) a=-10 qary = S0
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where r = ||q|| = ||ATx|| = ||x]|| is unchanged since the orthogonal matrix AT preserves lengths.
Since x = Aq, the angular momentum in the new coordinates will be the vector

x(0) x %(0) = (Aq(0)) x (4q(0)) = (Aqo) x (Avo).
Since A is orthogonal, the new angular momentum will have the same length c¢. This follows from

[1%(0) x %(0)[| = [[(Aqo) x (Avo)|| = || Aqo|| || Avo||sin f = ||qol| [|vo|[ sin = [[ao x vo|| = ¢
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where the angle f between qo and v, is unchanged under the map A. Thus if we can construct A
so that the first two coordinates of x(0) x x(0) are both zero, the third coordinate will either be ¢
or —c so that the length remains fixed at c.

To have the cross product of two vectors lying in the z-direction only, we want the vectors to be
in the zy-plane. Thinking of how matrix multiplication works, it follows that we want the third row
of A to be orthogonal to the vectors qo and vy. But c is such a vector! Choose the third row of A
to be the unit vector ¢/c. The remaining two rows of A must be orthogonal to ¢ and to themselves.
A natural choice is to choose qqo (orthogonal to ¢) and ¢ x qo (orthogonal to both ¢ and qg by the
definition of the cross product). The reason for choosing ¢ x qop and not gy x ¢ will be made clear
in a moment. Note that ||c X qo|| = ¢||qo]| since the vectors are orthogonal.

In sum, the three rows of A are given by

(each vector is really transposed so that it becomes a row rather than a column vector). By
construction, A is an orthogonal matrix with Aqy and Avy lying in the zy-plane. This implies that

Aqo X Avy =100 + d]*.

It remains to show that the third component of this vector is in fact just ¢. This can be done by
showing that det(A) = 1 or more directly by actually calculating the cross product.

Interpreting matrix multiplication via the dot product, we see that Aqy = [ro 0 o]T where
7o = ||qo||- The vector Avy is
q0°Vo
To
AVO = %
0

where the second component follows using the vector identity from question #2:
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Thus, computing the cross product of these two vectors gives
i 7k [ 0 1
AqO X AV() = To 0 0 |= 0
q0-Vo c 0 [ c J
To To

as desired. 0



