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Importance of the Oceans

Oceans play a critical role in the Earth’s climate system. They
cover around 71% of the surface area of the planet.

Two important functions:
1 Heat transport (e.g., the C(T − T ) term in Budyko’s EBM)

2 Absorb large amounts of CO2 from atmosphere

CO2 in ocean consumed by tiny single-cell organisms
(phytoplankton) through photosynthesis. They are eventually food
for larger species or sink to the bottom of the ocean once the
plankton dies.
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Figure: The Conveyor Belt (Broecker) indicating the global ocean circulation
pattern. Source: JPL-CalTech/NASA
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surfaces of equal density (diapycnal mixing). Munk and
Wunsch [1998] described this mechanism in detail. The
action of winds and tides generates internal waves in the
oceans. These waves dissipate into small-scale motion that
causes turbulent mixing. This mixing of heat lightens water
masses in the deep ocean and causes them to rise in low
latitudes. Resulting surface and intermediate waters are then
advected poleward into the North Atlantic where they are
transformed into dense waters by atmospheric cooling and
salt rejection during sea ice growth. These waters sink to
depth and spread, setting up the deepwater mass of the
ocean. Thereby a meridional density gradient between high
and low latitudes is established. A sketch of the involved
processes and their locations is given in Figure 2.
[5] The second candidate is wind-driven upwelling, as

put forward by Toggweiler and Samuels [1993b, 1995,
1998]. On the basis of observational radiocarbon constraints
they concluded that the actual amount of upwelling of
abyssal water caused by diapycnal mixing is insufficient
to sustain an estimated overturning of about 15 Sv (1 Sv = 1
Sverdrup = 106 m3 s!1) in the Atlantic Ocean. As an
alternative they suggested that most of the oceanic upwell-
ing is wind-driven and occurs in the Southern Ocean. The
strong westerly circumpolar winds induce a vigorous north-
ward transport of waters, called Ekman transport, near the
ocean surface. Since there is a horizontal divergence of the

Ekman transport, an upwelling from depth is induced that is
associated with the so-called Drake Passage effect (see
Figure 2). In this view it is the strength of Southern Ocean
winds rather than the oceanic diapycnal mixing that governs
the strength of the AMOC. Note that in this theory the
winds induce large-scale motion of the water masses in
the Southern Ocean, which enter the Atlantic and flow to
the northern deepwater formation sites. Wind-driven mix-
ing, i.e., small-scale turbulent motion that is induced by
surface wind stress, is part of the mixing processes and is
not considered as a direct wind-driven upwelling.
[6] Determining which of these two processes is the main

driving mechanism of the MOC is of great interest, even
beyond the mere aim of physical understanding. The two
could imply different sensitivities to variations in external
forcing [Schmittner and Weaver, 2001; Prange et al., 2003]
and thus a different evolution of the MOC under continued
global climate change. In the present paper we review work
on theory, modeling, and observations that argue for either
or both of the possible driving mechanisms.
[7] We wish to emphasize that the driving processes do

not fully determine the AMOC’s spatial extent and strength.
The amount of water that actually sinks in the North
Atlantic is controlled by a variety of processes including
the horizontal gyre circulation, atmospheric cooling, pre-
cipitation, evaporation, and ice melting. These processes

Figure 1. Strongly simplified sketch of the global overturning circulation system. In the Atlantic, warm
and saline waters flow northward all the way from the Southern Ocean into the Labrador and Nordic
Seas. By contrast, there is no deepwater formation in the North Pacific, and its surface waters are fresher.
Deep waters formed in the Southern Ocean become denser and thus spread in deeper levels than those
from the North Atlantic. Note the small, localized deepwater formation areas in comparison with the
widespread zones of mixing-driven upwelling. Wind-driven upwelling occurs along the Antarctic
Circumpolar Current (ACC). After Rahmstorf [2002].

RG2001 Kuhlbrodt et al.: DRIVERS OF THE AMOC
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Figure: A more detailed sketch of the ocean circulation system including
salinity concentrations (ACC = Antarctic Circumpolar Current). The entire
loop takes many decades to complete. Source: “On the Driving Processes of the
Atlantic Meridional Overturning Circulation,” Kuhlbrodt, et. al., Reviews of Geophysics
45 (2007) RG2001 (32 pp.).

Roberts (Holy Cross) Oceans and Climate Math and Climate 4 / 22



Thermohaline Circulation (THC)
Differences in density drive the flow in the oceans. Flow rate
measured in sverdrups (Sv): 1 Sv = one million m3/sec.

The rate of ocean circulation is a function of temperature (thermo)
and salinity (haline).

1 The higher the salinity, the more dense the water.

2 Cooler water is more dense than warmer water.

Figure: Mathematics and Climate, Kaper and Engler, SIAM (2013), p. 33.
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Figure: A sketch of a cross-section of the Atlantic Ocean as a function of
latitude. The temperatures are essentially constant in the top mixed layer and
the deeper abyssal zone (just above freezing). Note the absence of the mixed
layer and thermocline near the poles, where nearly fresh ice is formed.
Source: “Oceanography: Currents and Circulation,” Anthoni, J. F., Seafriends (2000),
http://www.seafriends.org.nz/oceano/current2.htm
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An Advection-Diffusion Equation

The temperature in the thermocline region (between the top layer and
the abyssal zone) is changed through advection (the transfer of heat
from upwelling cold water) and diffusion from small-scale eddies.

Figure: Upwelling: wind along the surface pushes water away allowing for
colder water to rise up from below. Source: NOAA National Ocean Service

Model: Let T = T (z, t) be the temperature at time t and depth z.

∂T
∂t

= ω
∂T
∂z

+ c
∂2T
∂z2 or Tt = ωTz + cTzz

where ω = upwelling velocity and c = diffusion coefficient.

Roberts (Holy Cross) Oceans and Climate Math and Climate 7 / 22



Stommel’s Ocean Box Model

Figure: The two-box ocean model for temperature and salinity proposed by
Henry Stommel in his paper “Thermohaline Convection with Two Stable
Regimes,” Tellus XII (1961), 224–230. Source: Kaper and Engler, p. 34.

Ti = temperature in box i
T ∗i = surrounding temperature for box i
Si = salinity level in box i
S∗i = surrounding salinity level for box i
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Stommel’s Ocean Box Model

Model Assumptions:

Density differences drive the flow between boxes: water in higher
density box wants to flow toward lower density box. This flow
happens through a pipe connecting boxes (bottom). The surface
flow pipe at the top keeps the volume in each box constant.

Boxes are assumed to be well-mixed so temperature and salinity
are uniform throughout box (i.e., Ti = Ti(t) and Si = Si(t))

The surrounding basins of each box (representing the atmosphere
and neighboring oceans) are assumed to have constant
temperatures T ∗i and salinity levels S∗i .

Heat and salinity are exchanged between each box and its
surrounding basin.
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One-Box Model

Math 5490 10/22/2014

Richard McGehee, University of Minnesota 4

Ocean Box Models
Stommel Model

Henry Stommel, Thermohaline Convection with Two Stable Regimes 
of Flow, TELLUS XII (1961), 224-230.

Kaper & Engler
Math 5490  10/22/2014
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dT
dt

= c(T ∗ − T )

dS
dt

= d(S∗ − S)

T ∗ and S∗ are the constant
temperature and salinity, re-
spectively, of the surround-
ing fluid, while c and d are
positive constants (rates).

Figure from Stommel, Tellus XII (1961).
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Solution to One-Box Model

Solve each equation with separate and integrate technique:

S(t) = S∗ + (S0 − S∗)e−dt

T (t) = T ∗ + (T0 − T ∗)e−ct

For any initial condition (S0,T0), solution heads exponentially toward
stable equilibrium (sink) at (S∗,T ∗).

Math 5490 10/27/2014

Richard McGehee, University of Minnesota 1

Topics in Applied Mathematics:
Introduction to the Mathematics of Climate

Mondays and Wednesdays 2:30 – 3:45
http://www.math.umn.edu/~mcgehee/teaching/Math5490-2014-2Fall/

Streaming video is available at
http://www.ima.umn.edu/videos/

Click on the link: "Live Streaming from 305 Lind Hall".
Participation:

https://umconnect.umn.edu/mathclimate
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Ocean Box Models
Stommel’s Model

Henry Stommel, Thermohaline Convection with Two Stable 
Regimes of Flow, TELLUS XII (1961), 224-230.
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By rescaling the temperature, salinity, and time, we reduce the 
original system with four parameters ( T*, S*,  c , and  d ), to one 

with just one parameter ( δ ).
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Dynamical Systems Approach

(1 )

1

dx x
d
dy y
d

G
W

W

 �

 �

y

xxx

y y

(1,1) (1,1)
(1,1)1G  1G ! 1G �

The equilibrium point (1,1) is always asymptotically stable.  The parameter  δ
distinguishes the relative rates at which the two variables are approaching their 

equilibrium values.
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Figure: Phase portraits in the ST -plane. Solutions approach the sink tangent
to the slower straight-line solution. Source: Dick McGehee, Univ. of Minnesota
and MCRN, lecture slides.
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Approximating Density

Figure: Density (mass/volume) increases with salinity, but decreases with
temperature. Source: Mathematics and Climate, Kaper and Engler, p. 33.

A linear approximation for density ρ:

ρ = ρ0(1− αT + βS)

where ρ0 is a reference density and α, β are positive constants.
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Density anomaly for R = 2,  = 1/6

Figure: Plot of the density anomaly σ for the special solution with initial
condition x0 = y0 = 0. At first the density decreases below the starting value
ρ0 (temperature more important, δ = 1/6), but then density increases toward
a value above ρ0 as salinity effects take over (R = 2).

Roberts (Holy Cross) Oceans and Climate Math and Climate 13 / 22



Stommel’s Two-Box Model

Figure: The two-box ocean model for temperature and salinity proposed by
Henry Stommel in his paper “Thermohaline Convection with Two Stable
Regimes,” Tellus XII (1961), 224–230. Source: Kaper and Engler, p. 34.

Ti = temperature in box i
T ∗i = surrounding temperature for box i
Si = salinity level in box i
S∗i = surrounding salinity level for box i
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Four-Dimensional ODE Model

Ṫ1 = c(T ∗1 − T1) + |q|(T2 − T1) Ṡ1 = d(S∗1 − S1) + |q|(S2 − S1)

Ṫ2 = c(T ∗2 − T2) + |q|(T1 − T2) Ṡ2 = d(S∗2 − S2) + |q|(S1 − S2)

q is the flow rate (signed) between the two tanks. Why |q|?

Answer: Flow is driven by differences in density ρ1 − ρ2, but which
direction is defined as “positive” is irrelevant due to compensating
surface flow.

Suppose S1 > S2. Then water in tank 1 is more dense so flow
moves from tank 1 toward tank 2 (q positive). Thus, the water in
tank 2 becomes more salty (S2 increases) while water in tank 1 is
less salty (S1 decreases). This agrees with model equations.
Conversely, if S2 > S1, then water in tank 2 is more dense so flow
moves in opposite direction (q negative). Now tank 2 becomes
less salty (S2 decreases) while tank 1 becomes more salty (S1
increases). Need |q| instead of q to insure this agrees with model.
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Cutting the dimension in half

Define new variables u, v ,T ,S as follows:

u =
1
2
(T1 + T2) , T = T1 − T2,

v =
1
2
(S1 + S2) , S = S1 − S2.

In these variables, the system becomes

u̇ = c(u∗ − u), Ṫ = c(T ∗ − T )− 2|q|T ,
v̇ = d(v∗ − u), Ṡ = d(S∗ − S)− 2|q|S,

where q = kρ0(−αT + βS) and T ∗ = T ∗1 − T ∗2 , S∗ = S∗1 − S∗2.
The equations for u and v are easily solved, yielding

u(t) = u∗ + (u0 − u∗)e−ct , v(t) = v∗ + (v0 − v∗)e−dt ,

thereby reducing the system from four dimensions to two.
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Eliminating Parameters

As with the one-box model, define new variables and parameters

x =
S
S∗
, y =

T
T ∗
, δ =

d
c
, and τ = c t .

New system becomes (HW)

x ′ = δ(1− x)− |f |x
y ′ = 1− y − |f |y
λf = −y + Rx ,

where
f =

2q
c
, R =

βS∗

αT ∗
, λ =

c
2kρ0αT ∗

, and ′ =
d
dτ

.

f is the new flow rate and λ is a measure of the strength of the flow.

Two-dimensional ODE (coupled) with three parameters (λ,R, δ).
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Equilibrium Points

Define the function G(f ;R, δ) =
Rδ

δ + |f |
− 1

1 + |f |
.

For a fixed value of λ, suppose that f satisfies λf = G(f ). Then

(x , y) =

(
δ

δ + |f |
,

1
1 + |f |

)
is an equilibrium point.

Solutions to λf = G(f ) can be located graphically.
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Figure: Solutions to the equation G(f ) = λf when R = 2 and δ = 1/6. If
λ = 1/2 (dashed black), there is only one solution (and thus only one
equilibrium point). But if λ = 1/5 (red), there are three solutions
f1 ≈ −1.0679, f2 ≈ −0.30703, and f3 ≈ 0.21909 corresponding to three
equilibria.
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228 H E N R Y  S T O M M E L  

The solution (or real roots of the cubic) 
occur where this curve intersects the line AJ 
Two lines are drawn, one for 1 = I and one 
for 1 = 'Is. 2 is defined as positive. 

In the case R=2, S=l / , ,  A=l/b there are 
three intersections, located at points a, b and c; 
the corres onding approximate values of the 
roots are = - 1.1, -0.30, +0.23. These re - 

e simple convection can occur between the - 
coupled vessels without change in time. With a 
a somewhat larger value of 1 the line cuts the 
function 4 (fi 2, '/J in o d y  one point- ' 
in the case 1 =I, it cuts at d only. 

I 

resent three P different ways in which t R e g 

For certain choices of the parameters R 
and S there are forms of 4 (j R, 6) for which 
no choice of 1 can produce three real roots. 
For example, the choice R = 2, 6 = I gives ody  
one intersection (e or g) for any one choice 
of 1. It can be seen that this is always true 
when 4 (f; R, S) has no zeros. To explore 
the limitation on zeros of the 4 function, we 
note that if 4 = o then 

I I -=R- 
1 + If1 

(I - R) 6 = ( R 6 -  I)  I f 1  

1 + IflP 
or 

Thus the necessary condition for three inter- 
sections is 

R S < I  i f R > I  
or R ~ > I  i f o < R < I  

To be a sufficient condition A must also be 
small enough. 

Proceeding now to the x, y 
sionless, S, T diagram) we can 
the lines of equal density. These, of course, 
coincide with the lines of equal flow f in the 
capillary. In figure 7, the three equilibrium 
points a, b, c, are located for the particular 
case R=z, a='/,, The locations are 
computed from the values of fluxfas deter- 
mined in figure 6. The paths which temperature 
and salinity follow in the course of ap roaching 
equilibrium points can be plottecf by the 
method of isoclines as given in STOKER (IgSO), 
a few are sketched in figure 7. 

Both a and c are stable equilibrium points. 
U on detailed examination by the method 
o P PoincarC it can be shown that point a 

Salinity 

Fig. 7. The three equilibria a, b, and c for the two vessel 
convection experiment with R = 2, 6 = 116, 1=1 / s .  
A few sample integral curves are sketched to show the 

stable node (I, the saddle 6, and the stable spiral c. 

is a stable node, whereas point c is a stable 
spiral. Point b on the other hand is a saddle 
point, so that the system would not stay in 
that state if perturbed ever so slightly. 

A similar sketch for the system where only 
one equllibrium point (g in figure 6) in the 
system where R=z, 6=1, A = 1 / 5  is shown in 
figure 8. It is a single stable node. 

The fact that even in a very simple convec- 
tive system, such as here described, two 
distinct stable regimes can occur (as in figure 
7)-one (point a) where temperature differ- 
ences dominate the deiai differences and 

is from the 
cold to the warm vessel, and the other where 
salinity dominates the density difference so that 
the flow in the capillary is opposite, from 
warm to cold-suggests that a similar situation 
may exist somewhere in nature. One wonders 
whether other quite different states of flow 
are permissible in the ocean or some estuaries 
and if such a system might jump into on 
of these with a sufficient perturbation. If 
so, the system is inherently frought with 
possibilities for speculation about climatic 
change. Such a perturbation could be in the 
momentary state of the system-with all 
parameters remaining constant, or it could 

the flow through the capilary 7 

Tellus XI11 (1961). 2 

Figure: The phase plane for Stommel’s reduced two-box model for parameter
values R = 2, δ = 1/6, and λ = 1/5. There are three equilibria: a is a sink,
b is a saddle, and c is a spiral sink. Source: “Thermohaline Convection with Two
Stable Regimes,” H. Stommel, Tellus XII (1961), 224–230.
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Interpretation of Stable Equilibria

Recall: f = 2q
c and q = k(ρ1 − ρ2) = ρ0(−αT + βS). T = T1 − T2 and

S = S1 − S2 are temperature and salinity differences, respectively,
between the two tanks.

At equilibrium point a, f < 0 so q < 0. This implies ρ2 > ρ1 so flow
is going from tank 2 to tank 1. Since q < 0, temperature
differences are more important than salinity differences. Flow
moves from colder to warmer tank, even though tank 1 has higher
salinity levels (S1 > S2).

At equilibrium point c, f > 0 so q > 0. This implies ρ1 > ρ2 so flow
is going from tank 1 to tank 2. Since q > 0, salinity differences are
more important than temperature differences. Flow moves from
warmer to colder tank (T1 > T2).

The two equilibria have opposite flow directions.
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Implications for Climate System

The fact that even in a very simple convective system, such
as here described, two distinct stable regimes can occur ...
suggests that a similar situation may exist somewhere in
nature. One wonders whether other quite different states of
flow are permissible in the ocean or some estuaries and if
such a system might jump into one of these with a sufficient
perturbation. If so, the system is inherently frought with
possibilities for speculation about climatic change.

Stommel, “Thermohaline Convection with Two Stable Regimes,” p. 228.

Bifurcation: If λ becomes large enough, system loses two equilibria
and a solution could jump from equilibrium point a to c, flipping its flow
direction and changing the primary mechanism driving the flow from
temperature to salinity.
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