Seminar in Complex Analytic Dynamics

Sample Midterm Exam Questions

MATH 392-02

- - (a) A super-attracting period *n*-cycle

1. Give precise definitions of the following concepts:

- (b) A homeomorphism
- (c) An equicontinuous family of functions $\{f_i: U \mapsto \overline{\mathbb{C}}\}$
- 2. State and prove the Attracting Fixed Point Theorem.
- 3. Give an example of a complex dynamical system that has a dense orbit. Explain.
- 4. Find all fixed points and period 2-cycles of the function g(z) = -1/z. Classify them as attracting, repelling, neutral or super-attracting.
- 5. Consider the family of rational functions

$$f_{a,b}(z) = \frac{az^2}{bz+1}$$

where a, b are two complex parameters.

- (a) Find all the fixed points in \mathbb{C} of $f_{a,b}$ (your answer will depend on a and b).
- (b) Find conditions on a and b that guarantee all the fixed points from part (a) are attracting.
- (c) Show that ∞ is a fixed point.
- (d) Find conditions on a and b that guarantee that ∞ is a neutral fixed point.
- 6. Give an example of a linear function where the Fatou set is equal to the following set:
 - (a) $\overline{\mathbb{C}} \{0\}$
 - (b) $\overline{\mathbb{C}}$ (the entire extended complex plane).
- 7. (a) Suppose that $\{f_n(z)\}$, $f_n: U \mapsto \overline{\mathbb{C}}$, is a sequence of functions defined on a common domain U. Give a precise definition of what it means for $\{f_n(z)\}$ to converge uniformly to the constant function $f(z) = \infty$. You should do this without using the conjugacy h(z) = 1/z.
 - (b) Use your definition to prove that the sequence $\{f_n(z)\}$, where $f_n(z) = n(z^2 n)$ converges uniformly to the constant function $f(z) = \infty$ on any compact subset of $\overline{\mathbb{C}}$.
- 8. TRUE or FALSE. If the statement is true, provide a **proof**. If the statement is false, provide a **counterexample** or explain why the statement is false.
 - (a) If f and g are analytically conjugate, and f is a chaotic dynamical system, then periodic points are dense for g.
 - (b) If a sequence of complex analytic functions converges pointwise on some compact set U, then the limit function is also analytic.
 - (c) It is possible for the Julia set of a rational map of degree 2 to be the set $\{z: 1 \le |z| < 2\}$.