
FINAL PROJECT

Seminar in Complex Analytic Dynamics

Spring 2012

The final assignment of the course is to complete a substantial project focusing on some particular
aspect or application related to the course material. Your project will consist of both a typed report
(roughly 10 pages) and an in-class presentation (25 minutes) during the final week of class. Your report
can be written using Maple (which has nice word processing for mathematical symbols) or a regular
word processing program with a hand-written appendix for mathematical formulae. You will be allowed
to work in small groups (2–3 people) for the project although it is expected that each member will
contribute equally. The final project is worth 30% of your total course grade.

Timeline and Due Dates:

• March 30: Brief description of final project topic, including at least three references

• April 20: Brief progress report detailing status of the project, including results and further lines
of inquiry. By this date you should have met with me at least once to discuss the content of your
report and the plan for your presentation.

• April 27: Title of Final Project along with names of group members

• May 2–7: Project Presentations (25 minutes)

• May 7: Final Report due (typed, roughly 10 pages)

The aim of this project is for you to explore in greater detail a specific topic in complex dynamics.
Ideally, you will apply mathematical knowledge gained from this course, as well as others, to make an
in-depth investigation of your topic. This may involve reading research papers or textbooks, presenting
the results, and doing some actual mathematics, perhaps proving a few theorems along the way. This is
not expected to be a ground-breaking research paper leading to publication, but rather a chance for you
to delve deeper into a topic employing your well-developed mathematical abilities. Some sample topics
are suggested below, along with sample resources. In many cases, the exercises given in Devaney’s text
in Chapter 18 provide an excellent starting point for your analysis. Feel free to suggest your own topic
if there is something different you would like to investigate. In particular, any of the major theorem(s)
from complex analysis we have not proven in class could lead to an interesting project.

Caution: Be careful when using material found on the Internet. For example, some of the information
on Wikipedia is correct and some is not. Be sure to check your findings on the Internet thoroughly by
confirming them with at least two independent, published (ie. peer-reviewed) sources.

Sample Topics:

1. Newton’s Method as a Complex Dynamical System

There are equations that computers have a lot of trouble solving. For example, when applying
Newton’s method to certain polynomials, the iterative method may actually fail to find a root
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on an entire region of initial guesses. Such “bad” polynomials are interesting to study from a
dynamical systems perspective. Interesting Julia sets and figures in the parameter plane arise
from applying Newton’s method to complex polynomials.

Sample Resources: Chapter 13 and Section 18.5 of Devaney’s text as well as Plate 39 (nice
figure). “Newton’s versus Halley’s method: A dynamical systems approach,” G. E. Roberts and
J. Horgan-Kobelski, International Journal of Bifurcation and Chaos, Vol. 14, No. 10 (2004),
3459–3475.

2. The Dynamics of λez

How do the dynamics of the family of exponential functions Eλ(z) = λez differ from the quadratic
family Qc(z) = z2 + c? Compare and contrast the dynamical features of Eλ with those studied in
class for rational maps of degree d ≥ 2. Is their an analog of the Mandelbrot set? What type of
point is ∞? What are the interesting topological features of the Julia set? How can we study the
parameter plane? Write or use a computer program to draw the Fatou and Julia sets for different
cases.

Sample Resources: Section 18.3 and Plates 30–33 (figures) of Devaney’s text. “Hairs for the
complex exponential family,” C. Bodelón, R. L. Devaney, M. Hayes, G. E. Roberts, L. Goldberg
and J. Hubbard, International Journal of Bifurcation and Chaos, Vol. 9, No. 8 (1999), 1517–1534.

3. The Dynamics of Trig. Functions

Consider the families of trigonometric functions Sλ(z) = λ sin z, Cλ(z) = λ cos z and Tλ(z) =
λ tan z. How do the dynamics of these families differ from the quadratic family Qc(z) = z2 + c?
Compare and contrast the dynamical features of these families with those studied in class for
rational maps of degree d ≥ 2. Is there an analog of the Mandelbrot set? What type of point
is ∞? What are the interesting topological features of the Julia set? How can we study the
parameter plane? Write or use a computer program to draw the Fatou and Julia set for different
cases.

Sample Resources: Section 18.4 of Devaney’s text. Plates 25–29 and 34–35 in Devaney’s text
show some nice figures. “Parabolic perturbation of the family λ tan z,” L. Keen and S. Yuan,
Complex dynamics, Contemp. Math., Vol. 396, Amer. Math. Soc., Providence, RI, (2006),
115–128.

4. The Tricorn

Consider the non-analytic family of functions Ac(z) = z2 + c. Due to the presence of z, these
functions are not analytic. However, the second iterate A2

c(z) is analytic since it is a fourth-degree
polynomial. The critical point of Ac turns out to be z0 = 0 and it plays a similar role here as
it did in the quadratic family Qc(z) = z2 + c. The analog of the Mandelbrot set was dubbed
by John Milnor as a tricorn, because it resembles a tricornered hat. There are now “multicorns”
and “unicorns” in complex dynamics. Explore the dynamics and derivation of the tricorn for the
family Ac, comparing and contrasting your findings with the quadratic family Qc. Write or use a
computer program to draw and investigate the tricorn.

Sample Resources: Section 18.1 and Plates 36–38 (figures) of Devaney’s text. “Connectedness
of the tricorn,” S. Nakane, Ergodic Theory Dynam. Systems, Vol. 13, No. 2 (1993), 349–356. “On
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multicorns and unicorns. I. Antiholomorphic dynamics, hyperbolic components and real cubic
polynomials,” S. Nakane and D. Schleicher, Internat. J. Bifur. Chaos Appl. Sci. Engrg., Vol. 13,
No. 10 (2003), 2825–2844.

5. Iterating Cubic Polynomials

The study of the dynamics of cubic polynomials turns out to be considerably more difficult than
the study of quadratic functions. The primary reason is that there are now two critical points
rather than just one. The critical points may have bounded orbits or they may escape to ∞.
However, a new case presents itself here; it is possible for one critical point to escape and for the
other critical point to remain bounded. This leads to a much more complicated parameter plane.
In fact, since the general cubic is conjugate to

Ca,b(z) = z3 + az + b,

the true parameter space is really C2, a four-dimensional space. Nonetheless, much of the analysis
from the quadratic family is applicable here, although the results are more complicated and new
dynamical features arise. Explore the family Ca,b paying attention to interesting bifurcations that
arise as the parameters vary. Write or use a computer program to draw the Fatou and Julia set
for different cases.

Sample Resources: Section 18.2 of Devaney’s text. “Cubic polynomial maps with periodic crit-
ical orbit,” J. Milnor, Complex Dynamics, A. K. Peters, Wellesley, MA, 2009, 333–411. “Remarks
on iterated cubic maps,” J. Milnor, Experiment. Math., Vol. 1, No. 1, (1992), 5–24.

6. Sierpinski Carpets and Gaskets as Julia Sets

There are some very interesting topological features of Julia sets that arise for the family

fλ = z2 +
λ

zd

where λ ∈ C is a complex parameter and d = 1 or d = 2. This family is a type of singular
perturbation, where turning on the parameter λ (starting with λ = 0) modifies the simple case z2

into a complicated rational map with a pole of order d at the origin. Instead of a fixed point at the
origin, we now have a “trap-door” near the origin, where points escape toward the super-attracting
fixed point at∞. If the orbit of the critical points goes to∞, then the Julia set is either a Cantor
set or a Sierpinski curve. If the finite critical points lie on the boundary of the basin of attraction
of ∞, then the Julia set is a Sierpinski gasket. Investigate the special topological properties of
the Julia sets for this family, learning about Sierpinski curves, gaskets and carpets in the process.
Write or use a computer program to draw the Fatou and Julia set for different cases.

Sample Resources: “Sierpinski carpets and gaskets as Julia sets of rational maps,” P. Blanchard,
R. L. Devaney, D. Look, M. Moreno-Rocha, P. Seal, S. Siegmund and D. Uminsky, Dynamics on
the Riemann Sphere, Eur. Math. Soc., Zürich (2006), 97–119. “Cantor and Sierpinski, Julia and
Fatou: complex topology meets complex dynamics,” R. L. Devaney, Notices Amer. Math. Soc.,
Vol. 51, No. 1 (2004), 9–15.
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7. Lattès Maps

In 1918, Lattès constructed a family of maps whose Julia sets were the entire Riemann sphere. In
this case, the set of repelling periodic points is dense in the complex plane and the dynamics on
the whole plane is chaotic. The construction involves discrete lattices and endomorphisms of the
complex torus. A special conjugacy is used to build rational maps with the desired properties.
One such conjugacy is the famous Weierstrass P-function. Investigate, explain and derive some of
the Lattès maps, learning a variety of mathematics (number theory, complex analysis, topology,
algebra) in the process.

Sample Resources: Section 3.2 of Blanchard’s article on complex dynamics. “On Lattès maps,”
J. Milnor, Dynamics on the Riemann Sphere, Eur. Math. Soc., Zürich (2006), 9–43.
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