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Holomorphic, noninvertible dynamical systems of the Riemann sphere are 
surprisingly intricate and beautiful. Often the indecomposable, completely 
invariant sets are fractals (à la Mandelbrot [Ml]) because, in fact, they are 
quasi-self-similar (see Sullivan [S3] and (8.5)). Sometimes they are nowhere 
differentiable Jordan curves whose Hausdorff dimension is greater than one 
(Sullivan [S4] and Ruelle [R]). Yet these sets are determined by a single 
analytic fynction zn+1 = R(zn) of a single complex variable. 

The study of this subject began during the First World War. Both P. Fatou 
and G. Julia independently published a number of Compte Rendu notes, and 
then both wrote long memoires—Julia [J] in 1918 and Fatou [F1-F3] in 1919 
and 1920. At that time, they had at their disposal a new theorem of Montel 
(see (4.1)) which gave a sufficient condition for the normality of a family of 
meromorphic functions. They applied the theory of normal families to the 
dynamical system to prove some remarkable results. 
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Recently there has been an explosion of interest in the subject, and many 
mathematicians have made substantial contributions. In fact, significant pro­
gress is still being made, and it is impossible to predict where and when it will 
end. The aim here is to give a rapid introduction to the subject in light of these 
achievements. We do not intend to survey most of the new work since much of 
it is still in progress, but we do include bibliographic notes (§12) which can 
serve as a reader's guide to those results with which we are familiar. However, 
no claims of completeness are implied or intended. 

A large part of this paper is an exposition of the classical work of Fatou and 
Julia. We give a complete proof of the fundamental result (Theorem (5.15)) 
that the Riemann sphere disjointly splits into two sets—the closure of the 
repelling periodic points and the open set of normal (i.e. stable) points. Along 
the way, we discuss the dynamics in a neighborhood of a periodic point (§3) 
and the global consequences of Montel's Theorem (§4). The decomposition 
theorem is proven in §5. §§6 and 8 contain other noteworthy classical results. 
The theorems in §9 were also known classically, although they were not 
formulated in quite the same manner. 

§§7, 10 and 11 contain expositions of recent work. Sullivan [SI, S2] has 
completed a classification of the dynamics in the domains of normality. We 
summarize this classification in §7 and briefly indicate how the theory of 
quasi-conformal homeomorphisms plays a crucial role in §11. §10 is an 
exposition of the recent work of Douady and Hubbard [DH] and Mandelbrot 
[Ml, M2] on the dynamics of quadratic polynomials. A brief survey of this 
work has been included because it is a wonderful example of how "simple" 
dynamical systems can have complicated dynamics. Moreover, the family of 
quadratic polynomials is varied enough to illustrate most of the ideas presented 
here as well as many other surprising phenomena. Although the material in 
§§7, 9 and 10 depends on the previous sections, the reader may find it helpful 
to read these sections before tackling some of the more involved proofs in the 
preceding ones. 

The first section simply establishes notation and recalls theorems from 
complex analysis and the theory of Riemann surfaces which will be used freely 
throughout the article. A Hst of notation has been provided for readers who 
would like to skip this section. 
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1. Background and notation. We are interested in studying the dynamics of a 
discrete dynamical system of the Riemann sphere C generated by a holomor-
phic transformation 

(1.1) R.C^C. 

In other words, our phase space will be the unique, simply connected, closed 
Riemann surface C = C U {oo} which is homeomorphic to the two-dimensional 
sphere 

S2 = {(xl9x2,x3) e R3 |;c2 + x\ + x2 = 1}. 

We shall usually use the variables z and w = \/z to represent the two standard 
coordinate charts on C determined by stereographic projection. Then any 
holomorphic (analytic) map R of C can be written in the form 

(1.2) R(z)=p(z)/q(z), 

where p(z) and q(z) are polynomials with complex coefficients and no 
common factors. Hence, there is a one-to-one correspondence between rational 
functions (1.2) and holomorphic maps (1.1). The poles of the rational function 
are simply the points of C which are mapped to infinity. The reader should 
consult Hille [Hi], Ahlfors [Al], Narasimhan [N], or Farkas and Kra [FK] for 
more details. 

The degree, deg(i^), of any continuous map R: S2 -> S2 is a homotopy 
invariant which measures how many times R wraps S2 around itself. In our 
context the degree of R can be calculated in two ways. If R(z) is written in the 
form (1.2), then 

deg(#) = max{deg(/?), deg(#)}. 

Also, the degree of R is the number (counted with multiphcity) of inverse 
images of any point of C. The Fat ou-Julia theory applies to rational maps R 
whose degree is at least two. 

A dynamical system is formed by the repeated application (iteration) of the 
map R from C to itself. 

DEFINITION. Given a point zQ e C, the sequence { zn} is inductively defined 
by 

Zn + l = * ( * „ ) • 

This sequence is called the forward orbit of z0 and is denoted O+(z0). 
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There are many questions that one could ask about any given orbit O+(z0). 
What are the limit points of 0+(zo)? What are the topological and analytic 
properties of the set of all limit points of 0+(zo)? What is the limiting 
distribution of 0+(zo)? How do the set of iterated preimages O~(z0) distribute 
themselves? In this paper we shall mostly confine our attention to topological 
questions. 

An elementary way to distinguish different orbits is to count the number of 
points in the orbit. 

DEFINITION. If zn = z0 for some n, then z0 is a, periodic point and O+(z0) is a 
periodic orbit (often called a periodic cycle or simply a cycle). If n is the first 
natural number such that zn = z0, then n is called the period of the orbit. 
Usually, if the period of an orbit is one, we call z0 a fixed point rather than a 
periodic point. 

It is surprising how much of the theory in question is related to the 
distribution of periodic points. To illustrate the dynamical concepts we have 
just introduced, we make a few observations about the example z ^> z1 which 
(in many ways) is the simplest example in the subject. 

(1.3) EXAMPLE. Let R(z) = z2. The behavior of the orbits depends upon 
where they he relative to the unit circle S1. The orbit of any point inside the 
circle approaches the origin (which is a fixed point), and any orbit outside the 
circle approaches oo. Moreover, R(oo) = oo, so oo is another fixed point of the 
map R. Finally, to completely describe the dynamics of R, we need to describe 
the action of R on the unit circle. But on the unit circle, R(ew) = ei29

9 J e R , 
so even though the map has a rich orbit structure, it is still a system which is 
amenable to computation. The reader who is unfamiliar with R\SX should try 
to describe this rich structure. It is not trivial. 

Before we continue with our review, we should introduce the following 
notation, which can be the source of some confusion in this subject. 

NOTATION. The symbol Rn denotes the n-fold composition Rn = R ° R ° 
• • • ° R of the function R with itself. Since we can multiply functions as well as 
compose them, we must be careful not to confuse R2 with the function 
S(z) = [R(z)]\ 

In the theory of dynamical systems, the equivalence relation conjugation is 
often very useful. If R(z) and S(z) are two rational functions and M(z) is a 
Möbius transformation (= bijective rational map) such that the diagram 

c A c 
Ml lM 

c -> c 
s 

commutes, then R and S are (analytically) conjugate. Note that if R and S are 
conjugate by Af, then Rn and Sn are also conjugate by M. So R and S are 
holomorphically the "same" dynamical system. Hence, the answer to any 
topological or conformai question about the system generated by S can be 
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obtained from the answer to the same question applied to R by applying the 
map Af. 

(1.4) EXAMPLE. TO illustrate this notion, we consider an arbitrary quadratic 
polynomial R(z) = az2 + 2bz + d. We can conjugate R(z) to some quadratic 
polynomialp(z) of the form/?(z) = z2 + c. Let M(z) = az + b and c = ad + 
6 - ft2. Then we compute 

M~l o p o M(z) = M " 1 ^ + fc)2 + c) = M " 1 ^ V + 2afe + ft2 + c) 

(a2z2 + 2afez + fc2 + c) - ft „ , , = - - = R(z). 
a v ' 

As a result, we find that we need only study the class of quadratic polynomials 
of the form z •-> z2 + c to understand the dynamics of all quadratic polynomi­
als. Hence, the space of "all" dynamical systems of quadratic polynomials is 
really C rather than C3 as it might at first appear. Moreover, as we shall see in 
§10, there are technical reasons why this formulation is useful. 

This is all we need to say in terms of background to the dynamical theory we 
will present. For convenience, we review a few essential concepts from complex 
analysis. 

The notion of a normal family is closely connected with compactness of a set 
of analytic maps in the topology of uniform convergence on compact subsets. 
The following definition uses the spherical metric on C. 

DEFINITION. Let U be an open subset of C and J*j= { ft \ i e ƒ } a family of 
meromorphic functions defined on U with values in C ( ƒ is any index set). The 
family ^"is a normal family if every sequence fn contains a subsequence fn. 
which converges uniformly on compact subsets of U. 

It is awkward to relate this definition to any dynamical property, but 
Arzela's Theorem, relating normal famihes to equicontinuous ones, shows there 
are quite a few connections. 

DEFINITION. Let X be a metric space with metric d. A family of functions 
{ ƒ• : X -> X) is an equicontinuous family if, given e > 0, there exists a 8 > 0 
such that d(xv x2) < S implies d{fi{xx\ fi(x2)) < e for all i. 

(1.5) THEOREM. The family {ƒ: U -* C} of meromorphic functions is a 
normal family if and only if it is an equicontinuous family on every compact subset 
ofU. D 

Hence, normal famihes have values which do not diverge under iteration. In 
§2 we will be more precise about this connection. 

In §6 we shall also need the following sufficient condition for normality. 

(1.6) THEOREM. Let {f: U -> C} be a holomorphic family of functions. If the 
family is locally uniformly bounded on U9 then it is a normal family. D 

In particular, any family of holomorphic mappings to the unit disk is 
normal. The reader is referred to Ahlfors' book [Al] for a proof of both of 
these theorems and a more complete discussion of normal famihes. 
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We recall the elementary version of Schwarz's lemma. 
NOTATION. Given z e C and r > 0, we denote the open disk centered at z of 

radius r (in the Euclidean metric) by Dr(z)9 and the symbol Dr will represent 
the same set as Dr(Q). 

(1.7) THEOREM. Let ƒ: Dx -> Dx be an analytic function such that /(O) = 0. 
Then 

(a) \f(z)\ < \z\ for allz e Dx and 
(b) |/'(0)| < 1. 

If equality holds in either (a) for any z e Dx — {0} or in (b), then f(z) = elBz 
where 0 e R. D 

On the whole, we shall not need much of the theory of Riemann surfaces. 
However, in §3, we use the uniformization theorem—the cornerstone of the 
classification of Riemann surfaces. Recall that a Riemann surface is a one 
(complex) dimensional manifold. The uniformization theorem classifies all 
simply connected Riemann surfaces. 

(1.8) THEOREM. Every simply connected Riemann surface is conformally equiv­
alent to either C, Dl9 or C. D 

In our context we will only encounter Riemann surfaces which are open 
subsets of C or which are C/L, where L is a lattice. The reader should use the 
uniformization theorem to show that if U is a domain in C which has at least 
three boundary points, then its universal cover U is conformally equivalent 
toDv 

There are many good references on the subject of Riemann surfaces. Abikoff 
[Abl, Ab2], Ahlfors [A2], and Farkas and Kra [FK] are particularly appropriate 
for the uniformization theorem. 

2. The dynamical dichotomy jof Fatou and Julia. Fatou and Julia studied the 
iteration of rational maps R: C -> C under the assumption that deg(it) > 2. 
Basically they focused on a disjoint invariant decomposition of C into two sets. 
One of these sets is often called the Julia set. The other set does not have a 
standard name, and in this paper, we shall refer to it as the Fatou set. 

DEFINITION. A point z e C is an element of the Fatou set F(R) of R if there 
exists a neighborhood U of z in C such that the family of iterates {Rn\U} is a 
normal family. The Julia set J(R) is the complement of the Fatou set. 

The classical papers denote the Julia set by &, but since the term "Julia set" 
is now commonly used, we shall denote it by J(R). The Fatou set did not have 
an explicit name classically, and it is now sometimes referred to as the domain 
of equicontinuity. Often we use F and / if there is no confusion about the map. 

In this section we shall prove that the Julia set is always nonempty, but the 
reader should beware that the Fatou set can be void. In §3 we will show that 
the Julia set of the map z -> (z2 + l)2/4z(z2 - 1) is the entire Riemann 
Sphere (this is Lattes' example—see (3.2)). 

The Fatou set is open by definition, and since R is both continuous and an 
open mapping, proving that F is completely invariant is straightforward. In 
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other words, if z e F then R(z) e F and R~\z) c F. Consequently, the Julia 
set is also completely invariant and compact. 

If we consider the example R(z) = z2 again and take a point z0 inside the 
unit circle, then there exists an open disk U around z0 on which the sequence 
Rn\U converges to the constant function C(z) = 0 for all z e U. Hence, the 
interior of the unit circle is a subset of the Fatou set. Likewise, the exterior is 
also a subset of the Fatou set although the limit function is different. The unit 
circle is, however, equal to the Julia set because the family {Rn} is not 
equicontinuous on any open set which intersects the circle. 

The Julia set of the map S(z) = z 2 - 2 i s also simple to describe. It is the 
interval [ - 2,2] on the real Une. This is not so easy to see from the definitions, 
but the reader may enjoy investigating this example before we prove this later 
(see (7.12(1))). 

The above two examples are deceiving. In general, Julia sets are not smooth. 
Figures (2.1)-(2.5) illustrate the types of complexity that Julia sets usually 
possess. 

The Julia set in Figure (2.1) is a fractal (see Mandelbrot [Ml]). In fact, most 
Julia sets are fractals. 

Figures (2.1)-(2.5) are neither the most accurate nor the most elaborate ones 
available. There are many methods with which one can draw Julia sets, and the 
trade-offs are (as usual) quality versus computer power and time. In §3 we 
shall encounter situations where the more expensive methods seem (at our 
present state of knowledge) absolutely necessary. But for our purposes, the 
accuracy of these pictures shall suffice. The reader should, however,.seek out 
some of the more intricate pictures which have been published recently and 
which will be in forthcoming publications. This author is aware of the articles 
of Curry, Garnett, and Sullivan [CGS], Douady [D], Douady and Hubbard 
[DH], and Mandelbrot [Ml, M2], and this is probably a very incomplete Hst of 
all such publications. 

(2.1) FIGURE. Douady's Rabbit. The Julia set of the map z -> z2 + c, where c satisfies c3 + 2c2 + 
c + 1 = 0 and Im(c) > 0. The approximation c « -0.12256117 + 0.74486177 was used to gener­
ate this figure. This Julia set is connected, and the Fatou set consists of infinitely many, simply 
connected domains. 
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(2.2) FIGURE. This is the Julia set of the quadratic polynomialp(z) = z2 - 0.3125. It is a Jordan 
curve. In addition, Sullivan [S4] has shown that it is a quasi-circle (the image of the unit circle 
under a quasi-conformal homeomorphism—see Ahlfors [A3]) whose Hausdorff dimension is 
greater than one. Ruelle's results [R] on the real analytic nature of Hausdorff dimension are also 
relevant. 

f 

(2.3) FIGURE. The Julia set of p(z) - z2 + .3. Theorem (9.9) applies to this map; therefore, J(p) is 
a Cantor set. The next figure shows some of the finer detail. 

G 

k 
0\ 

*ƒ 

n j\ 

F I G U R E a F I G U R E b 

(2.4) FIGURES. These figures illustrate the fractal nature of the Julia set in the previous figure. 
Figure b is an enlargement of the small box in Figure a. 

We conclude our introduction to the dichotomy with the next theorem. 

(2.6) THEOREM. The Julia set is nonempty. 

PROOF. Suppose £{R) = 0 . Then F(R) = C and, therefore, the family 
{Rn} is normal on C. A convergent subsequence Rni converges uniformly (in 
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(2.5) FIGURE. Newton's method applied to the polynomial equation z3 - 1 = 0 yields the rational 
function N(z) - (2z3 + l ) /3z 2 . The orbit of almost any initial value will converge to a root of the 
equation. The Julia set is the set of initial values for which the method fails. 

the spherical metric) to a meromorphic limit function S. Since S is a continu­
ous function of the two-sphere, we can now derive a contradiction by consider­
ing the topological degree of S. 

deg(S) <- deg(iT') -> oo as n, -• oo. 

But degCS) is finite. D 

3. Periodic points. In this section we discuss the dynamics in a neighborhood 
of a periodic point. In particular, we give conditions which often determine in 
which set, F or / , the periodic point Hes. 

DEFINITION. Let z0 be a periodic point of period n. Then the number 
XZo = (Rn)'(z0) is the eigenvalue of the periodic orbit. 

Of course, the chain rule implies that XZo is the product of the derivatives of 
the map R along the orbit. Consequently, X2Q is an invariant of the orbit 
O+(z0) rather than the particular point z0. Whenever we discuss just one 
periodic orbit, we drop the subscripts and simply denote the eigenvalue by A. 

DEFINITION. A periodic orbit O+(z0) is: 
(1) attracting if 0 < |A| < 1, 
(2) superattracting if X = 0, 
(3) repelling if |A| > 1, or 
(4) neutral if |A| = 1. 
A. Attracting and repelling periodic points. Using the Mean Value Theorem 

and Arzela's Theorem ((1.5)), it is easy to prove 

(3.1) PROPOSITION. If O+(z0) is a (super)attracting periodic orbit, then it is 
contained in F. If it is a repelling periodic orbit, then it is contained in J. D 
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At this point it may be worthwhile for the reader to go back to the example 
z •-> z2 and check the proposition with our original analysis of the Julia set. 

DEFINITION. A point z is eventually periodic if, for some w, Rn(z) is a 
periodic point. The point z is preperiodic if it is eventually periodic but not 
periodic. _ 

(3.2) LATTES' EXAMPLES [L]. We can now sketch why J(R) = C for the map 
R(z) = (z2 + l)2/4z(z2 - 1). Let L be any discrete lattice in C consisting of 
all nxwx + n2w2, with nt G >̂ where wx and w2 are fixed complex numbers such 
that w2/wx £ R. First, note that L is invariant by multiplication by an integer, 
so any such multiplication induces an endomorphism of the complex torus 
T2 = C/L. Secondly, the Weierstrass ^-function 

z
 WŒL\ \Z - W) Z J 

can be thought of as a function from T2 to C (see [Al and Co]). Since M 
preserves the inverse images of the map p: T2 -> C, we get a rational map 
RL M which satisfies the following commutative diagram: 

pi liP 

C -> C 

To show that J(RM L) = C whenever deg(M) > 2, we exhibit a dense subset 
of C of eventually periodic points which are all in J(RM,L)- Suppose z = q^wx 

+ q2w2 with qt e Q (/ = 1,2). Then the point jp(z) in C is eventually periodic 
under the map RLM. In fact, if 

AN= f Z G C | Z = {a\/bi)w\ +{a2/^i)w2 
where ai9 bt e Z and bt < N (i = 1,2)}, 

and if BN is the finite subset of T2 defined by BN = AN/L9 then M(BN) c BN, 
and every point of BN must be eventually periodic. Moreover, the point p(z) 
belongs to J(RL>M) because the norm of any eigenvalue of any periodic point 
of M is greater than one when deg( Af ) > 2. 

The explicit formula above results from choosing M to be multiplication by 
2. See Lattes [L] or Herman [HI] for a derivation of the above rational 
function. 

We know everything about the local dynamics in the attracting case and 
everything about the behavior of successive images until they leave a neighbor­
hood of the repelling orbit. The map Rn is locally conjugate to its derivative. 

(3.3) THEOREM. Let z0 belong to an attracting periodic orbit of period n. There 
exists a neighborhood U of z0 and a unique analytic homeomorphism <j>: U -* Dr 
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(for some r) such that <f>(z0) = Q, <f>'(z0) = I and the diagram 

Rn 

U -> U 

Dr -» Dr 
z*-*Kz 

commutes. D 

From this theorem we see that the neighborhood U is forward invariant, i.e. 
Rn(U)(z U9 and the orbit of every point in U is asymptotic to the periodic 
orbit O+(z0). 

There are both analytic and geometric proofs of the existence of <j>. The 
oldest proof is due to Koenigs in the nineteenth century. Basically he proved 
that the sequence of functions (Rkn(z) - z0)/X

k tends uniformly to a holomor-
phic function <J>. Then it is easy to verify that <j> ° Rn(z) = X(<j>(z)). The reader 
is referred to Siegel and Moser [SM, p. 188] for the technical details. 

Theorem (3.3) also yields a local conjugacy in the repelling case. If O+(z0) is 
a repelling periodic orbit, then (3.3) can be applied to the inverse of Rn which 
has O+(z0) as an attracting periodic orbit. However, we get less information 
because the orbit of every point z £ [ / , except z0, eventually leaves the 
neighborhood U. 

Finally, it is worth noting that R need only be analytic in (3.3). 
B. The superattracting case. Superattracting periodic orbits are also locally 

conjugate to simple maps. Yet the dynamics of these maps is much more 
interesting. 

The following theorem applies to any analytic function—not just a rational 
function. We use the notation (RnYk\zQ) to represent the kth derivative 
ofR". 

(3.4) THEOREM. Let O+(z0) be a superattracting periodic orbit. Suppose k > 2, 
(RnYk\z0) * 0, and 

(R»)'(z0) = (*")(2)(z0) - • • • - ( H - ^ - ^ Z o ) = 0. 

Then there exists a neighborhood U of z0 and an analytic homeomorphism 
<f>: U -* Dr (for some r) such that <t>(zo) = 0> ^ ' ( z o) = 1> an^ tne following 
diagram commutes: 

Rn 

U -> U 

Dr - Dr 
Z^>Zk 

Again we have a forward invariant neighborhood, and every orbit in the 
neighborhood is asymptotic to O+(z0). But in this case, the map z •-> zk is not 
locally invertible. This gives us a great deal of information which will be 
particularly helpful in the analysis of the dynamics of polynomials. 
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This theorem is not as commonly known; consequently, we include the proof 
from Fatou [Fl, pp. 187-189]. He credits Boettcher [Bo] as the first person to 
demonstrate the existence of the conjugacy. 

Before giving the proof, we recall a few facts about fractional exponents. 
The map z •-> zk is a branched cover of C by itself. If we have a map 
S: Dr -* C, we can often find a map, which we denote (S(z))1/k, such that the 
following diagram commutes: 

For example, if 0 £ S(Dr\ then covering space theory gives us k maps 
which work. Also, if S(0) = 0 and S(z) # 0 for all z e Dr - {0}, and if the 
local degree of S around 0 is a multiple of k, then there are also k maps that 
will work. The exponential notation is used in order to summarize a few 
properties of these maps such as {S{z)f^/{S{z)f^ = (S(z))1/4. Unfor­
tunately we have chosen to use exponents in two different ways. Hence, 
(S"(z))1/» + S(z). 

The idea of the following proof of (3.4) is exactly the same as Koenig's 
proof. A sequence {^n} of maps is produced by iterating the rational function 
n times and then taking the appropriate inverse of z •-» zk\ This sequence 
converges to the conjugacy. 

PROOF OF (3.4). We prove the theorem in the case where n = 1 and z0 = 0. 
The power series expansion of R(z) is akz

k + ak+lz
k+1 + • • •. If we 

conjugate R(z) by the map z >-> bz, where bk~l = (ak)~
l, we get the map 

S(z) = zk + bk+lz
k+1+ . . . . 

Proving the result for S(z) will suffice. 
We always work inside a disk Dr such that S(Dr) c int(Dr) and 

l im5 w (z ) = 0 for all z€EZ)r. 
/I->00 

We define 

*„(*) = (S"(z))1/k", 

choosing <^(0) = 1. If we prove that the sequence {<J>n } converges uniformly to 
a map <J>, we have the desired conjugacy because 

* o S = lim [Sn+1(z)]l/k" 
n-+ao 

and 

[*(z)]*= lim[(5"+^))1A"+1]=*°S-
n—* m L J 
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To prove that {>„} converges uniformly on some neighborhood of 0, we 
introduce the function 

H(z) = *!(*)/*. 

Note that H(0) = 1. Using this function we see that 

* . + i ( * ) 
S»(z) 

i/k* 
= [H(S"(z))]l'k\ 

Using the notation <j>0(z) = z, we have 

/-o 9/U; i-o 
The uniform convergence of {<f>„ } can now be established by proving that the 
infinite product converges uniformly. This, in turn, is established by taking the 
logarithm of the infinite product (using the principal branch). We get the 
infinite series 

(3.5) L £ \og{H{S"{z))). 
w = 0 

Using the above-mentioned dynamical properties of S in Dn we know that 
\H(S"(z)) - 1| < 1/2 and \H(Sn(z)) - 1| < C\Sn(z)\ for some constant C. If 
\a\ < 1/2, 

|log(l + a) |< |« | + |«| + . . . <2|a| , 

so 
\logH(S»(z))\^2C\S"(z)\. 

Rather than (3.5), we consider the series 
oo i C « 

2 c E Ö i * < 2 C Ê i 
n = 0 n = 0 

which clearly converges. D 

(3.7) FIGURE. The Julia set of z -* z1 - 1. The two shaded components of the Fatou set are 
mapped one to the other. 
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(3.6) REMARK. Douady's Rabbit (Figure (2.1)) has a superattractive period 3 
point at the origin. In fact, the choice of c was made so that the origin (which is 
the critical point) is a periodic point of period 3. 

Figure (3.7) has a period 2 superattracting orbit contained in the shaded 
regions of the Fatou set. 

C. Neutral orbits. The local dynamics in a neighborhood of a neutral periodic 
orbit is not so easy to describe. In fact, as we shall see, there are open questions 
relating to this case. 

Again it is enough to describe the situation where z0 is a fixed point. So we 
assume R(z0) = z0 and |X| = \R(z0)\ = 1. If we try to conjugate R\U to its 
derivative, then the diagram 

R 
U -» U 

$1 1$ 

yields a functional equation 

(SFE) • • « ( * ) - A ( * ( z ) ) . 

This equation is called the Schroder Functional Equation. Fatou related solu­
tions <f> of (SFE) to membership in the Fatou set. Geometrically this equation 
means that z0 is the center of a disk on which the map is a rotation (see 
(7.3(4))). 

(3.8) THEOREM. Let z0 be a neutral fixed point. Then z0 e F if and only if 
(SFE) has an analytic solution in some neighborhood ofz0. 

Obviously the same statement holds for a neutral periodic orbit of period n 
once R is replaced by Rn in (SFE). We prove this theorem here, although it is 
logically out of order. In the proof we shall use the fact that the Julia set 
contains at least three points. In fact, it is always uncountable because it is 
always a perfect set (see (4.8)). 

PROOF. If (SFE) has a solution, then membership of z0 in F can be verified 
directly from the definitions. 

Suppose z0 e F and let U be the maximal domain such that z 0 e [ / and 
U c F. Since U n J = 0 , U misses three points and the uniformization 
theorem ((1.8)) implies that the universal cover Ü of U is conformally equiva­
lent to the unit disk Dv We choose a cover/?: Dl-

J> U such that/?(0) = z0 and 
we choose a lift R of R/Uso that £(0) = 0. Then R: D± -• Dx and \(R)'(0)\ = 1. 
An application of Schwarz's lemma (1.7) yields the fact that R(z) = \z. The 
universal cover/? is the solution <j> to the equation (SFE). D 

REMARKS. (1) Note that the same proof can be used to prove that the 
existence of a topological conjugacy implies the existence of an analytic 
conjugacy. 

(2) Another proof which does not use the unif ormization theorem or the fact 
that / is uncountable was shown to me by P. Collet, R. de la Llave, and 
O. Lanford. Let 



COMPLEX ANALYTIC DYNAMICS 99 

%(z)=^iy^(z)Y 
If the sequence {Rp} is normal around z0, the % converge to a map * such 
that %oR-+ \<fr. 

An easy consequence of (3.8) concerns the case where X is a root of unity. 

(3.9) COROLLARY. IfX is a root of unity, then (SFE) does not have a solution. 

PROOF. Replacing R by some iterate if necessary, we may assume z0 is a 
fixed point. Suppose A' = 1 and (SFE) has a solution in a neighborhood U of 
z0. Then <j> ° R1 ° 0"1 = _Id, and therefore Rl = Id on U. Since i£ is analytic, it 
must be the identity on C, contradicting our assumption that the degree of R is 
greater than one. D 

Both Fatou [Fl, pp. 191-221] and Julia [J, pp. 297-311] extensively dis­
cussed the root of unity case, and they both credit Leau (Thèse, 1897) with the 
initial analysis of the X = 1 case. More recently, Camacho [Ca] has classified 
the dynamics up to topological conjugacy. Without proof, we give a description 
of some of their results. 

First we state the topological result. 

(3.10) THEOREM. Letf(z) = Xz + a2z
2 + a3z

3 + • • • be an analytic map in 
the neighborhood of the origin. Suppose Xn = 1 and Xm # 1 for 1 < m < n. Then 
either fn = Id or there is a local homeomorphism h and an integer k > 1 such 
that h(0) = 0andhofo h'\z) = Xz(l + zkn\ D 

In order to understand what this means, it is necessary to analyze the 
dynamics of the map z -> Xz(l + zkn). The condition zkn e R describes a set 
of lines through the origin. Note that the map g(z) = z(l + zkn) leaves these 
lines invariant. Then z •-> Xz(l + zkn) is the composition of g with the periodic 
rotation z ^ Xz. The dynamics of the standard form g in the cases k = 1, 2, 
and 3 are illustrated in Figures (3.11a)-(3.11c). 

(3.11a) FIGURE. 13 partial orbits of the map z -> z(l + z). 
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(3.11b) FIGURE. 21 partial orbits of the map z -» z(l + z2). 

• v , - • • > / 

i 

/ / 
(3.11c) FIGURE. 37 partial orbits of the map z -> z(l + z3). 

Using techniques similar to Camacho, Fatou and Julia also obtained some 
analytic information. These results are usually referred to as the Flower 
Theorem. 

(3.12) THEOREM. Let f{z) = Xz + a2z
2 + • • • />e an analytic map in a 

neighborhood of the origin and suppose Xn = 1 awd Am =£ 1 for 1 < m < n. If 
fn =£ Id, fftere w aw integer k and nk analytic curves which are pairwise tangent 
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at the origin and which bound petals. The union of the petals is forward invariant, 
and any orbit in a petal is asymptotic to the origin. Any compact set inside the 
petal converges uniformly to the origin under fn. D 

These petals do not contain all the orbits which are asymptotic to the origin 
because that set does not have an analytic boundary. In the rational case, that 
set is part of the Juha set, and the Julia set does not have tangents. Figures 
(3.13)-(3.16) illustrate the relationship between the Juha set and these petals. 
The computer points are the Julia set, and the petals are hand-drawn and 
shaded. In §§4 and 5 we shall see that the Juha set must contain a sequence of 
repelling periodic points which, in this case, converge to the origin. These 
points approach the origin between the petals. Figures (3.13)—(3.15) relate 
exactly to the pictures in Figures (3.11a)-(3.11c). 

(3.13) FIGURE. The Juha set of z •-> z + z2 and the associated petal. In this case the petal is 
cardioid shaped. 

(3.14) FIGURE. The Julia set of z -* -z + z2 and the petals of the origin. 
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(3.15) FIGURE. The Julia set of z •-> e2w//3z + z2 and its petals. Compare this figure with Douady's 
Rabbit (Figure (2.1)). 

(3.16) FIGURE. The Julia set of z -> e2ni/20z + z2. Here the Julia set should approach the origin in 
twenty different directions (between twenty petals), yet it is hard to get a good picture of this 
behavior. We include the picture to inspire the reader to imagine how the Julia set of R\(z) = Xz 
+ z2, where | \ | = 1, varies with X as X approaches 1. Also the reader should be inspired to derive a 
good algorithm for plotting the Julia set in this case. 

There were two major questions left unresolved by Fatou and Julia. 
(3.17) Does (SFE) ever have a solution? 
(3.18) If so, when? 
In 1942, C. Siegel [Si] found a subset A of the unit circle of full measure 

such that, whenever the eigenvalue is in A, then (SFE) does have a solution. 
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(3.19) THEOREM. Let XZQ = e27ria where a <= R - Q. Suppose there exist 
positive constants a and b such that \<x - p/q\ > a/qb for all p,q e Z with 
q > 1. Then the Schroder Functional Equation does have a solution. D 

This condition is satisfied for a set of XZn of full measure in the unit circle. 
The original proof [Si] is an extremely difficult computation involving 

delicate number theory. A different proof, which uses a version of Newton's 
method applied to function spaces, is contained in Siegel and Moser [SM], and 
recently a relatively simple proof for a smaller class of numbers using tech­
niques of M. Herman has been circulated (see [dL and HI]). 

Rather than discuss the proof, we recall some facts about diophantine 
approximation and continued fraction expansions which explain the number 
theory condition in the hypothesis. This condition loosely says "a is badly 
approximated by rational numbers". If we write a in its continued fraction 
expansion, we can make this statement precise. Let 

1 
a = 0ft + 

ax + 
1 

a2 + 
a3 -h# 

and define the convergents pn/qn e Q of a by 

= ao + 

They are the best rational approximants to a (see Niven [Ni]), and the accuracy 
of the approximation is given by the inequality 

(3.20) 
K + i + 2)<?M

2 
9n <>n+i<lï 

For example, if the terms at stay bounded, we can verify the hypothesis of 
Siegel's Theorem. Using the mean value theorem, it is easy to show that any 
algebraic number of degree 2 has such a continued fraction expansion. 
Moreover, the same argument also shows that the hypothesis of (3.19) is 
satisfied for an algebraic number of degree n with b = n + 1 (Niven [Ni]). So 
all algebraic numbers are in A. But as mentioned above, the set A contains 
many other points because it is a set of full measure (Siegel and Moser [SM, 
p. 190]). 

We have seen that if z0 is a fixed point with derivative A2Q, where XZo = e2"ia, 
then CLG Q implies z0 e / , and a e A implies z0 e F. It would be nice to 
believe that z0 e F whenever a & Q. However, the following example of 
Cremer [C] shows that things are not this simple. 
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(3.21) EXAMPLE. Let/?(Z) = zd + • • • + Xz. Suppose X = e27ria, where a e 
R — Q, and \Xn - 1| < (l/n)d"~l for infinitely many natural numbers n. Since 
the periodic points satisfy pn(z) = z, we can calculate them by solving 

zd" + • • • + Xnz - z or zdn~l + • • • + (AM - 1) - 0 
if we ignore the fixed point at the origin. If nl9...,ndn_l3ire the dn - 1 roots 
of this equation, then 

Let m = minl/jij. We get 

m ' " - 1 < | X " - l | < ( l / a ) ' " - 1 

for infinitely many natural numbers n. Hence, there are infinitely many 
periodic points converging to the origin. Yet, if the origin is in the Fatou set, 
(SFE) has a solution by (3.8), and the map p(z) must be an irrational rotation 
near the origin. Since irrational rotations do not have periodic points (except 
the center), we conclude that the origin is in the Julia set. 

It is natural to ask if 

(3.22) i X ' - l M l / n ) ' " - 1 

is ever satisfied for infinitely many n if a £ Q. To construct such A, we use 
continued fraction expansions 

\\n - l\=\e2mn« _ l\=\e«ina _ e~«ina\= 2 | s i n ( i r i > i a ) | . 

For each n, let mn be the integer such that (TICK - mn\ < 1/2. Using the fact 
that 2x < sm(irx) < TTX < lx/2 when |x| < 1/2, we get 

\Xn - 1| = 2|sin(flri/ia)| = 2 sin(7r|«a - mn\) 

and 

4\na - mJ<|Xn - l |< l\na - mn\. 

To find a dense set of X which satisfies (3.22), we specify any initial segment 
[a0,... ,a J , and then we continue the expansion using the fact that 

i i ! 1 ! 
\<lia "" Pi \ < = \ < • 

?/+i fl/+i«/+«/-i ai+i4i 

If we inductively choose al+1 > lq\dqt)~2, then equation (3.22) is satisfied for 

The reader is encouraged to write out the decimal expansion of an a that 
satisfies this condition. This example also shows that the complement of the set 
A U {roots of unity} contains a dense subset of the unit circle. 

In fact, the set of A's which satisfy (3.22) for infinitely many n is a residual 
subset of the unit circle. 

LEMMA. Letf(x) be any positive function defined on the positive integers. Then 
the set {a < | |a — (p/q)\ < f(q) for infinitely many p and q) is a residual 
subset ofR. 
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PROOF. Let UN - {a| \<x - (p/q)\ < f(q) for some q> N}. Then UN is an 
open, dense subset of the unit circle because it is the union of open disks and 
because it contains all but finitely many rationals. Therefore, n^=1C/^ *s a 

residual subset of R. D 
Using this lemma and the above approximations, the reader can easily verify 

that the set of X's which can be used in (3.21) is indeed residual. 
We cannot yet always determine if a fixed point is in either the Julia set or 

the Fatou set because the neutral case has not been completely resolved. The 
hypothesis to Siegel's Theorem has been broadened somewhat (see Rüssman 
[Ru]), but there still are cases between Cremer's examples ((3.21)) and the 
known generalizations of Siegel's Theorem. Zehnder has also proven an 
«-dimensional version of Siegel's Theorem. These results suggest the following 
important open questions. 

(3.23) PROBLEMS. (1) Is membership in the Fatou set entirely determined by 
the eigenvalue of the fixed point? 

(2) What is the dynamics in a neighborhood of a periodic orbit if its 
eigenvalue is not a root of unity and (SFE) does not have a solution? 

4. The consequences of Montel's Theorem. The following theorem of Montel 
is fundamental to proving that the Julia set is the closure of the repelling 
periodic points. In this section we use it to prove that / is a perfect set. 
Therefore, it is uncountable. 

(4.1) THEOREM. Let & be a family of meromorphic functions defined on a 
domain U. Suppose there exist points a, b9 c in C such that [U^^r ƒ((/)] n 
{a, b, c] = 0 . Then & is a normal family on U. D 

It is interesting to see that a condition on the images of a family could 
guarantee normality. However, the result is not surprising if it is considered in 
light ofjthe uniformization theorem ((1.8)) and the Poincaré metric on the 
domain C - {a, b9c}. See [T2]. 

In this section we use Montel's Theorem to derive a few basic properties of 
the Julia set. 

(4.2) COROLLARY. Let z e J(R). If U is a neighborhood of z, then the set 
Ev = C—(Jn>0R

n(U) contains at most two points. Such points are called 
exceptional points. D 

(4.3) EXAMPLE. Consider a polynomial p(z). The point at oo is very special. 
It is a fixed point whose only inverse image is itself. Very few fixed points have 
this property. In fact, if a rational map R fixes a point z0 and R~1(z0) = {z0 }, 
then R can be conjugated by a Möbius transformation which sends oo to z0. 
The result is a polynomial because it does not have any poles in C. 

The point at infinity is always a superattractive fixed point for p(z). Hence, 
the Julia set of a polynomial is contained in C. Since [Un > 0 / ? n(Q] = C we see 
that oo is indeed an exceptional point. 
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(4.4) DEFINITION. Let z e / . W e define Ez = U EU9 where the union is taken 
over all neighborhoods U of the point z. From (4.2), it follows easily that Ev is 
independent of U, provided that Uis sufficiently small and Ez contains at most 
two points. 

The reader should note that Ez is often empty. 

(4.5) THEOREM. Let Ez be the set of exceptional points f or some z e / . 
(A) If Ez contains two points, then R{z) is conjugate to the map z -> z±d, 

where d = deg(2£) and the sign is + if Ez contains fixed points and - if Ez 
consists of aperiodic orbit of period two. 

(B) If Ez contains exactly one point, then R(z) is conjugate to a polynomial. In 
both cases, it follows that Ez does not depend on the choice of z e ƒ. Moreover, all 
exceptional points are contained in the Fatou set. 

PROOF. First note that Ez is backwards invariant by definition. That is, 
R~1(Ez)

s= Ez. Since R is surjective, it follows that Ez either consists of one 
fixed point, two fixed points, or an orbit of period two. 

To prove (B) we argue just as in Example (4.3). Let M be a Möbius 
transformation which maps the point in Ez to the point at infinity. Then 
p(z) = M ° R° M~\z) has no poles in C. 

To prove (A) we use a Möbius transformation which moves one point of Ez 
to oo and the other point to 0. In this case the conjugated map/?(z) can be one 
of two forms. Suppose both 0 and oo are fixed by p(z). Then (as above) p(z) 
will be a polynomial. Moreover, 0 will be a zero of multiplicity d because no 
other points can map to 0. Hence, p(z) = Kzd, and the constant K can be 
eliminated by conjugation with an expansion or a contraction. If 0 and oo form 
an orbit whose period is two, similar arguments show that/?(z) = Kz~d. 

To prove that Ez n / = 0 , we observe that, in case (A), the set Ez consists 
of either two superattractive fixed points or a superattractive orbit of period 
two. In case (B), Ez is a superattractive fixed point. 

If Ez ¥* 0 for any z, we know that R is conjugate Jo either (A) the map 
z -> z ± d or (B) a polynomial. If in case (A) we let U = C - {0, oo}, and in case 
(B) we let U = C, then Ev = Ez for any z e / . Consequently, Ez is indepen­
dent of z. D 

NOTATION. This theorem lets us simplify notation. The set of exceptional 
points will be denoted E(R) or simply E if the map is understood. 

An easy consequence of (4.5) is the fact that / does not usually have interior. 

(4.6) COROLLARY. If int(/) * 0 , then J = C. 

PROOF. Let U be a domain contained in the interior of / . Since / is forward 
invariant, 

J-D \jRn(U) = C-E. 

Moreover, since / is closed and E contains at most two points, / = C. D 
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Another corollary is an inexpensive way to generate computer pictures of the 
Julia set. 

(4.7) COROLLARY. If z e C — E, then the Julia set is contained in the set of 
accumulation points of the full backwards orbit of z. That is, 

ƒ c [accumulation points of (J R~n(z)\. 

Consequently, if z e ƒ, then 

/ = closured U *""(*))• 

PROOF. The first statement follows immediately from the definition of E and 
the fact that the iterates of any neighborhood of any point w e / must 
eventually hit z. 

If z G / , then [Jn>0R~n(z)c: J because / is backwards invariant. Moreover, 
since J is closed, 

ƒ D closure! U R~n(z)Y 
Wo ' 

The opposite inclusion follows from the first conclusion. D 
Almost all of the pictures in the preceding sections were generated by 

finding a repelling fixed point and then calculating its inverse orbit. This gives 
a dense subset of / . However, dense subsets can be deceiving, and conse­
quently the more expensive methods of Mandelbrot and others often give 
better pictures. 

PROBLEM. Design good algorithms to generate pictures of Julia sets. 
In all the pictures we have seen, the Julia set appears to be infinite. We are 

now able to verify that it is uncountable. 

(4.8) THEOREM. The Julia set is a perfect set. 

Before proving the theorem, we establish a helpful lemma. 

(4.9) LEMMA. If a e / , then there exists è e ƒ such that a e 0+(b) but 
b <£ 0+(a). 

PROOF OF LEMMA. If a is not periodic, then b can be any inverse image of a. 
If a is periodic with period n, consider the map S = Rn and the equation 

(4.10) S(z) = a. 

If a is the only solution to (4.10), we may conjugate S to a polynomial as in 
Example (4.3). Since oo is in the Fatou set of a polynomial, we have a e F(5), 
contradicting our assumption. Consequently, another solution b to (4.10) 
exists, and b £ 0+(a) because a is the only solution to (4.10) in 0+(a). D 
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PROOF OF THEOREM (4.8). Given a e / , we prove that a is an accumulation 
point of J. Let U be a neighborhood of a. Choose b as in Lemma (4.9). Since 
b G J,b £\E and there exists an integer k such that b e Rk(U). Let c denote a 
point in U such that Rk(c) = ft. Then c # a because b £ 0+(a), and c e / 
because / is i? "x invariant. D 

5. The Julia set is the closure of the set of repelling periodic points. Every 
repelling periodic point is contained in the Julia set, and since the Julia set is 
closed, the closure of the set of repelling periodic points is a subset of the Julia 
set. In this section we show that these two sets are equal. The proof has two 
parts. First, we show that ƒ is a subset of the closure of all periodic points. 
Then we derive a finite bound on the number of nonrepelling periodic orbits. 

(5.1) DEFINITION. The value v is a critical value of R if the equation R(z) = v 
has a solution whose multiplicity is greater than one. Such a solution c is called 
a critical point. The set C will denote the set of all critical points of R9 and V 
will denote the set of critical values. Note that R(C) = V. 

(5.2) REMARK. Using local coordinates, this is equivalent to the condition 
R'(c) = 0 (at least when c ¥= oo). Topologically we can characterize the critical 
points as the points where the map R: C -> C is not locally injective. In other 
words, they are branch points of the branched cover R: C -> C. Recall that d is 
the degree of R. 

(5.3) DEFINITIONS. Given z e C, the deficiency dz of z is the number 
d — (the cardinality of R~\z)). Then dz # 0 if_and j>nly if z is a critical value 
of R. The total deficiency of the map R: C -> C is the sum of all the 
deficiencies for all values of R. 

(5.4) LEMMA. The number of critical points of R is at most 2d - 2. 

In the following proof, we actually prove that the total deficiency of R is 
always 2d - 2. Therefore, dz is usually 0. 

PROOF. Let S be C - Fand S beC-R-\V). The map R: S -+ S is a d-Md 
covering space. Therefore, we have the following relationship between their 
Euler characteristics: 

x(s) = dx(s). 
This yields 

2-(ll(d-dv)) = d(2-nD), 

where nv equals the number of critical values. We get 

dnv-(Z(d-dv))-2d-2. 

So 

£ d„ = 2d - 2. 
vsV 
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Since each critical point causes at least one deficiency, we conclude that the 
cardinality of C is at most 2d - 2. D 

REMARK. The equation 2 - (LveV(d - dv)) = d(2 - nv) is often called the 
Riemann-Hurewicz formula. 

Now we can prove that the Julia set is contained in the closure of the 
periodic points. 

(5.5) THEOREM, ƒ c clos\xre{ periodic points}. 

We give one proof that works for polynomials and then we show how to 
modify it to include rational functions. 

PROOF. Let p: C -> C be a polynomial. Consider the subset K oî J defined 
by 

K = J - {critical values of/?}. 

Since J is perfect and K differs from J by only a finite subset, we can prove the 
theorem by showing that K c closure{periodic points}. 

Let w e £ There exists a neighborhood U of w such that the polynomial p 
has at least one local inverse / : U -> C - U. Form the family of meromorphic 
functions { gn } by 

gn(z) = (p»(z)-z)/(l(z)-z). 

Note that { gn } is a normal family if and only if the family { pn } is normal. 
Since w e / , the family { gn} cannot be normal on any open subset V of U. 
However, if w were not in the closure of the set of periodic points, then { gn } 
would omit 0,1, and oo on some neighborhood of w. This contradicts Montel's 
Theorem ((4.1)). D 

To generalize this proof to the case of rational functions we must use a 
slightly different family gn(z) and a slightly smaller set K. In that case we 
define 

K = ƒ - { oo, critical values of R\, poles of JR2 }. 

Then, given i v e ^ w e define 

where Il9 72, and 73 are three possible inverses to R2 in a neighborhood U of w. 
Since 

R» = I2 + Q((I2 - I1)/(g„ - Q)), 

where 

e = {h - h)Ah - hl 
we see that { gn} is a normal family if and only if { Rn } is a normal family. 

To finish proving that the Julia set is the closure of the set of repelling 
periodic points, we will use the theorem just proved along with the fact that the 
number of nonrepelling periodic points is finite. Since the Julia set is perfect 
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((4.8)), every point in it will be the accumulation point of some sequence of 
repelling periodic points. 

(5.6) DEFINITION. Let/? be an attractive fixed point of R. Then the stable set 
(attractive basin) of p is the set 

W(p)= {z\Rn(z)->paisn-» oo}. 

The immediate stable set A(p) of p is the maximal domain containing p on 
which the family { Rn } is normal. 

To prove the next proposition, the reader should note that there are no 
proper, closed, completely invariant subsets of / . 

(5.7) PROPOSITION. The set A(p) is the component of W\p) containing p. 
Moreover, the frontier ofA(p) is contained in J and the frontier of Ws{p) is J. 

(5.8) THEOREM. The immediate attractive setA(p) contains at least one critical 
value. 

To prove (5.8) we use the following lemma, which is an easy consequence of 
the monodromy theorem. 

(5.9) LEMMA. Suppose S is a rational function and D is a simply connected 
domain which does not contain any of the critical values of S. Given any d e D 
and any c e S~1(d)9 there exists a unique analytic inverse I to S defined on D 
such that 1(d) — c. D 

PROOF OF THEOREM (5.8). Suppose A(p) does not contain any critical value. 
Take a simply connected open neighborhood Uofp contained in A(p). Apply 
the lemma to R\U to get an inverse map Sx such that Sx(p) = p. Then S^U) is 
a subset of A(p\ and it is simply connected (note that R and Sx are analytic 
inverse homeomorphisms between U and S^U)). Therefore, this process can 
be repeated infinitely often to get a family of functions { Sk} on the set U. The 
family is a normal family by Montel's Theorem because Sk(U) c A(p) for all 
k. This contradicts the fact that p is a repelling fixed point for the 
maps Sk. D 

Of course, we may conclude that the number of attracting fixed points is at 
most 2d- 2. Actually, using this reasoning, we can prove 

(5.10) COROLLARY. The number of attracting periodic orbits is at most 2d — 2. 

To prove this, one applies the same argument as above with the following 
(5.11) DEFINITION. Let p be an attracting periodic point of period n. Then 

the immediate attractive set A(p) is the set \JkZo A(Rk(p), Rn\ where A(x9 S) 
represents the immediate attractive set of the attractive fixed point x of the 
map 5. 

How do the neutral points relate to the attractive points? We get a bound on 
the number of neutral orbits by considering the following one-parameter 
family of rational functions. Let 

R(z9w) = (1 - w)R(z) + w. 
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(5.12) THEOREM. Suppose R has N neutral periodic points. There exist an 
e > 0 and a direction 0 in the w plane such that, /ƒ 0 < p < e, the rational map 

Rp(z) = R(z,pe™°) 

has at least N/2 attracting periodic points which are continuations of neutral 
orbits of R. 

PROOF. For each periodic point zt we let nt denote its period and st its 
eigenvalue. The pair (zi90) satisfies the equation 

Fi(z,w) = Rniz,w)-z = 0. 
Since Ft(z9 w) is a rational function of z and w, there is an algebraic equation 

A,(z9w) ^pQ(w)zn+pl(w)zn-1 + • • • +pn(w) = 0 

(where the/^(w) are polynomials) which is equivalent to Ft(z9 w) = 0. Apply­
ing the theory of algebraic functions to each equation At(z9 w) = 0, we can 
introduce new variables wt and analytic functions ^(w,-) such that 

w = w[tli, z = zl {wt ) where mi is a positive integer, 

and 

^(z /(w /),<') = ^ (^(^) ,<0 = 0 

(see [N, pp. 47-55] for more details). Note that, when st * 1, this is the usual 
implicit function theorem. We can define derivative functions by 

Let m be the least common multiple of all the mi corresponding to the N 
neutral orbits. We introduce a new variable v such that vm = w. Then v(m/mi) 

= wt. The angle 0 is obtained by calculating an angle 0X in the v plane. 
To find 0X write 

Si(y) = Sj + atv
ki + • • • whereat # 0. 

A nonzero higher order term exists because the map z »-» 1 does not have any 
neutral periodic orbits. Let 

Sj(v) = s( + atv
ki. 

(5.13) Claim. If we find ex > 0 and tfx such that at least half of the values 
satisfy \Si(pe2iri$1)\ < 1, then we can use 6X as our appropriate direction, which 
will yield the same result for st. 

We shall verify the hypothesis of the Claim and leave the rest to the reader. 
Let 2' be the highest power of two that divides any of the mt. For each st on 

the unit circle, consider the tangent direction and the directions which differ 
from the tangent by an angle which is a multiple of ir/2l. Figure (5.13a) 
illustrates the case where / = 1 and there are three neutral orbits. 

By considering all such si9 we obtain a finite set of directions (at most N 
times 2/+2; see Figure (5.13b)). 
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(5.13a) FIGURE 

(5.13b) FIGURE 

Choose any angle 02 which is not one of these directions. The angle $1 that 
we seek will be 0X = 62 + 03, where 03 is determined in an inductive fashion. 
The angle 

03 - *(*o + *i/2 + •'• + V 2 ' ) 
where fc, e (0,1}. We determine ft,_i after we have calculated bi9... ,*,. 

Consider all periodic points z, whose periods «, are divisible by 2'. Then 

Si(pe2wi$l) = 5,. + f/*ie29i<kt$2+"bi\ 

Since fc,02 is a direction which is not tangent to the unit circle, we choose bl 
such that at least half of the st(v) go inside the unit circle. 

To determine bt_l9 repeat this calculation on all orbits zt for which kt is 
divisible by 2l~1 but not by 2'. Then 

£ | . (pe 2 , r ' ( ' 2 + ' 3 ) ) = Si + f/cte
2wilkt$t+"bi-i-*<«/2>«bi') 

where ̂ r is some odd number. 
Since kfil + {q/l)mbl is not tangent to the unit circle, we choose bt_x so 

that at least half of these orbits go inside the circle. We just continue this 
induction until the angle 0X is determined. D 

When a rational map with (super)attractive periodic orbits is varied along a 
one-parameter family, these orbits will remain for, at least, some small interval. 
Therefore, we can combine (5.10) with (5.12) to get the classical bound stated 
below. 
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(5.14) COROLLARY. The number of attracting periodic orbits plus half the 
number of neutral periodic orbits is at most 2d — 2. 

These estimates are not the whole story. Douady and Hubbard (using their 
theory of polynomial-like functions) have improved them in many cases (see 
(11.12)). But (5.14), when combined with (5.5), is enough to prove the following 
fundamental decomposition theorem. 

(5.15) THEOREM. The Julia set equals the closure of the repelling periodic 
points. 

One immediate consequence of (5.15) is the property that neighborhoods of 
points in / are eventually surjective (i.e. / is "locally, eventually onto" (leo)). 

(5.16) COROLLARY. Let A be a closed subset of C such that A n E = 0 . Given 
a neighborhood U of a point p e / , there exists an integer Nsuch that A c RN(U). 
Therefore, if D is a domain such that D C\J =£ 0 , then there exists an N such 
that RN(D n J) = / . 

PROOF. Let q e U be a repelling periodic point of period n. Choose a 
neighborhood V of q such that V c U and Rn(V) D V. Since A n E = 0 and 

00 

Ac\J Rkn(V). 
k = l 

By construction, 

Rn(V) c R2n(V) c R3n(V) c • . . . 

Since A is compact, A c RN(V) c RN(U) for some N = kn. D 
In the classical papers this result is often referred to as local homogeneity. 

Sullivan (see (8.6)) has strengthened this result when R\J is expanding. 

6. Classical results concerning the Fatou set. The papers of Fatou and Julia 
contain many results beyond the fundamental decomposition theorem. In this 
section we mention two of their theorems regarding the components of the 
Fatou set. 

Recall that a set D is completely invariant if both R(D) = D and 
R-\D) = D. 

(6.1) PROPOSITION. Let D be a simply connected, completely invariant compo­
nent of the Fatou set. Then the total deficiency (see (5.3)) of the map R: D -> D 
is d - 1. 

PROOF. This is proven using the same covering space theory as in the proof 
of Lemma (5.4). Viewing R: D -> D as a rf-fold branched cover, we get 

l - ( E {d-dv)) = d{\-nv) 
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and conclude that 

( E d„)-d-l. D 

(6.2) COROLLARY. The Fatou set cannot contain more than two different, 
completely invariant, simply connected components. 

With this observation we can count the number of components in the Fatou 
set. 

(6.3) LEMMA. The frontier of any completely invariant component of the Fatou 
set is the Julia set. 

PROOF. The frontier is a nonempty, closed, completely invariant subset of J. 
Therefore, it must be all of / . D 

(6.4) DEFINITIONS. Let Dt be a component of the Fatou set. If there exists an 
integer nt such that Rni(Dt) = Dt, then Dt is periodic. Another component Dj is 
eventually periodic if there exists nj such that Rnj(Dj) is periodic. The domain 
Dj is preperiodic if it is eventually periodic but not periodic. 

(6.5) REMARK. Since R must be surjective, the existence of one preperiodic 
component in the Fatou set implies the existence of infinitely many preperiodic 
components. 

(6.6) THEOREM. If the number of components of F is finite, then there are at 
most two. 

PROOF. Assume that the number of components is finite but greater than 
two. Using (6.5) we obtain an integer n such that the rational map Sx = Rn 

setwise fixes each component of F. Therefore, each component is completely 
invariant, and one (denoted A) is not simply connected. Choose a point z in 
another component D and a Möbius transformation M moving z to oo. Then 
conjugate Sx by M to get the rational map S2 which has oo in a completely 
invariant component of F. The Fatou set of S2 also contains a multiply 
connected, completely invariant component A' in C. 

Take a loop / in A' which does not bound a disk in A'. Since I a A' and A' is 
invariant, the iterates S% are uniformly bounded on /. Since these iterates are 
analytic on the finite component K of C - /, we can use the Cauchy integral 
formula to conclude that the family S£ is uniformly bounded on K. Using (1.6) 
we see that this contradicts the fact that K C\J # 0 . D 

In §2 we saw examples of all possibilities except F * 0 . Figure (2.3) 
illustrates a Fatou set which is equal to ^4(oo). The Julia set in Figure (2.2) 
divides C into two simply connected, completely invariant domains, and the 
Fatou set of Douady's Rabbit (Figure (2.1)) contains preperiodic domains. 

In §3 the Weierstrass p function was used to construct an example where 
F = 0 , and in the next section Sullivan's classification theorem will be used to 
find more examples where F = 0 (see (7.9)). 

The immediate attractive set A(oo) in Figure (2.3) is of infinite connectivity, 
and A(0) in Figure (2.2) is simply connected. This is all that can happen. 
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dEN dEN 

(6.8) FIGURE. A typical EN. 

(6.7) THEOREM. Let p be an attractive fixed point. Then A(p) is either simply 
connected or of infinite connectivity. 

PROOF. Choose a simply connected, closed disk D c A(p) such that/? e D, 
R(D) c int(2>), and 

(3D)n( U O+(c)] = 0. 
\ all critical / 

points c 

Inductively define Et by E0 = D and En = R-\En_x) n ,4(/?). Then 

00 

EQcEx<z ••• and ^(/?) = (J £„. 
w = 0 

If A(p) is not simply connected, there exists an integer N such that £# is not 
simply connected. Choose N to be the first integer such that EN is not simply 
connected. Then EN is an orientable, two-dimensional manifold with boundary, 
and 3/i^ has at least two components. See Figure (6.8). 

The boundary of EN separates C-EN into at least two components. Re­
peatedly consider the branched covers R: EN+k+1 -* EN+k (k = 0,1,2,...). 
They are actually covering spaces if (EN+k+1 - EN+k) does not contain any 
critical points, but nonetheless the number of boundary curves of EN+k is at 
least 2k+\ See Figure (6.9). 

Consequently, dA(p) will have infinitely many components and A(p) is of 
infinite connectivity. D 

i j n u j i_j EN+2~EN+I 

EN " E N - I 

EN-1 

(6.9) FIGURE. A typical EN+2. 
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7. Sullivan's classification of the Fatou set. Recently Sullivan has completed 
a classification of the dynamical possibilities of R\F [SI, S2]. His theorems 
combine results of Fatou, Julia, Siegel [Si, SM], Arnold [Ar], Moser, and 
Herman on complex analytic dynamics with the theory of quasi-conformal 
homeomorphisms (see Ahlfors [A3] and Lehto and Virtanen [LV]) to yield a 
simple picture of R\F. The classification can be summarized in two theorems 
((7.1) and (7.7)) which we will not prove (see (6.4) for relevant definitions). A 
discussion of quasi-conformality and dynamics is contained in §11. 

(7.1) THEOREM. Every component of the Fatou set is eventually periodic. 

The Fatou set often contains preperiodic components in addition to the 
periodic ones (see (6.5) and (6.6)). However, we usually focus our attention on 
the periodic components. To make this distinction easier to discuss, we 
introduce the following terminology. 

(7.2) DEFINITION. A Sullivan domain of R: C -> C is a periodic component 
of the Fatou set. 

So we need only consider the dynamics in the Sullivan domains in order to 
understand the dynamics of R\F. 

Sullivan's second theorem classifies the dynamics of R restricted to a 
Sullivan domain. Five kinds of dynamics are possible. 

(7.3) DEFINITIONS. Let D be a Sullivan domain of period n and let S = R". 
(1) D is an attracting domain if D contains a periodic point p such that 

0 < \S'(p)\ < 1 and D = A(p, S). 
(2) D is a superattracting domain if D contains a periodic point p such that p 

is a critical point of S (i.e. S\p) = 0) and D = A(p, S). 
(3) D is a parabolic domain if there exists a periodic point p in dD whose 

period divides n and Sk(z) -+ p as k -> oo for all z e D. 
(4) D is a Siegel disk if D is simply connected and S\D is analytically 

conjugate to a rotation. In other words, there exists an analytic homeomor-
phism h: D -* Dr such that the diagram 

s 
D -» D 

hi I h h(p) = Q9 

Dr -> Dr 

commutes. 
(5) D is a Herman ring if D is conformally equivalent to an annulus 

A = {z e C | rx < \z\ < r2} (where rl9 r2 G R, rx ^ 0, r2 > 0) and the map S\D 
is analytically conjugate to a rigid rotation of the annulus. 

Siegel disks and Herman rings are often referred to as rotation domains. 
(7.4) REMARKS. (1) In the definitions of Siegel disk and Herman ring, it is 

enough to specify that the maps be topologically conjugate to rotations. 
Topological conjugacy implies analytic conjugacy. 
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(2) Since deg(Z£) > 2 and R is analytic, S\D can never be conjugate to a 
rotation z »-> ei$z where 0 is rational (see (3.9)). 

The Sullivan domains in Figure (2.1) are superattracting, and the finite 
Sullivan domain in Figure (2.2) is a typical attracting domain. Parabolic 
domains are intimately connected with the Flower Theorem ((3.12)) (see 
Figures (3.13)-(3.16)). Because the rotation domains exist in maps which 
satisfy delicate number theory conditions, we have not made any computer 
pictures of them. However, using Siegel's Theorem ((3.19)), it is easy to exhibit 
polynomial examples which have Siegel disks as Sullivan domains. Let p(z) = 
e2™iaz + • • • + zd

9 where a satisfies the number-theoretic condition in (3.19). 
Then the origin is a neutral fixed point which is the center of a Siegel disk. 

Finding examples of rational maps which have Herman rings as Sullivan 
domains is more difficult. Using Arnold's theorems [Ar] on the existence of 
analytic conjugaties to irrational rotations, it is possible to find values of a and 
a such that the map 

has a Herman ring which contains the unit circle. For more examples, see 
Herman [HI]. 

Figures (7.5)-(7.6) give some idea of how these rotation domains should 
look. 

(7.5) FIGURE. A Siegel disk. The disk has a "foliation" by invariant curves. The boundary of the 
disk is contained in the closure of the forward orbits of the critical points. The x 's in the figure 
represent points in these orbits. 

(7.6) FIGURE. A Herman ring. There are many properties of Herman rings which are analogous to 
those of Siegel disks. The domain is foliated by invariant curves and the boundary of the ring is 
contained in the closure of the forward orbits of the critical points (again marked with x 's). 
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Sullivan's second theorem combines his work with the results referred to in 
the first paragraph of this section to finish the classification of the Fatou set. 

(7.7) THEOREM. Every Sullivan domain is either attracting, superattracting, 
parabolic, a Siegel disk, or a Herman ring. Furthermore, there are finitely many 
such domains. In the parabolic case, S'(p) = 1. The attracting and parabolic 
domains both contain infinite forward orbits of critical points, and the boundaries 
of rotation domains are contained in the closure of the forward orbits of the 
critical points. 

One very important problem concerning the number of Sullivan domains 
remains. 

(7.8) PROBLEM. Given a rational map of degree d, can it have more than 
2d - 2 orbits of Sullivan domains? 

The classification has many interesting consequences. 

(7.9) COROLLARY. Suppose every critical point of R is preperiodic. Then 
J(R) = C. 

PROOF. Since every Sullivan domain except the superattracting ones requires 
critical points with infinite orbits, and since superattracting domains contain 
periodic critical points, F(R) does not contain any Sullivan domains. D 

EXAMPLE. The rational function R(z) = (z - 2)2/z2 satisfies the hypothesis 
of (7.9). 

REMARK. Mary Rees [Re2] has proven a measure-theoretic version of (7.9). 
She has shown that, if all the critical points of R are preperiodic and are 
eventually mapped onto repelling periodic points, then R is ergodic. 

In the polynomial case the argument in (7.9) can be used to show that F 
consists of exactly one simply connected component ^4(oo). 

(7.10) COROLLARY. Let p(z)J?e a polynomial and suppose all critical points 
except oo are preperiodic. Then C = / U A(oo). 

4 

(7.13) FIGURE. The Julia set of z2 + /. 
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PROOF. The argument in (7.9) proves that C = / U Ws(oo). But since 
Ws(oo) = A(oo) for polynomials, the result follows. D 

(7.11) DEFINITION. Whenever F consists of exactly one connected, simply 
connected set and J is locally connected (for definition see (10.12)), we say that 
ƒ is a dendrite. 

(7.12) EXAMPLES. (1) The polynomial z -> z2 - 2 satisfies the hypothesis of 
Corollary (7.10) and / = {z\z e Rand - 2 < z < 2}. 

(2) The Julia set of the polynomial z -> z2 + i is also a dendrite. See Figure 
(7.13). 

(7.14) EXAMPLE. Let/?(z) = Xz + z2, where X = e2mie and 6 <£ Q but is very 
nearly approximated by rationals (the exact diophantine condition is given in 
(3.21)). Then F(p) also only has one component. However, J(p) is not locally 
connected. To prove this, one needs results of Douady and Hubbard regarding 
polynomial-like maps as well as the classification of F. See (9.4) for more 
details. 

8. A condition for expansion on the Julia set. Given the success of the last 
twenty years in the study of expanding and hyperbolic systems, it would be 
useful to know if R \J is expanding. In our context there is a relevant classical 
result. We shall need it in the next section, and it is also related to the 
structural stability results of Mane, Sad, and Sullivan [MSS]. 

(8.1) THEOREM. Let Q+(C) denote the closure of the forward orbits of the 
critical points. If 0+ (C) n J = 0, then, given K > 1, there exists an integer N 
such that \(Rn)'(z)\ > Kifn> Nandz e J. 

To prove this, we consider sequences of inverse functions of the family 
{Rn}. Recall ((5.9)) that if D is a simply connected domain which does not 
contain a critical value of R9 then there exist at least two inverse functions to R 
defined on D. Suppose, in addition, D is disjoint from the forward orbits 
0+(C) of all critical points of R. Then all the iterates Rn can be inverted on D. 
In the proof of the theorem, we use this observation and consider sequences 
{Ij,: D -» C} of inverse functions defined on simply connected domains D 
which are disjoint from 0+(C) and which satisfy I0 = Id and R° Ij = i,-_i. 

(8.2) LEMMA. Let D n 0+(C) = 0 and let {Ij} be a sequence of inverse 
functions as defined above. If J n 0+(C) = 0 , then any convergent subse­
quence of {Ij} converges to a constant function. 

PROOF OF (8.2). First we prove that the set {Ij} is a normal family on D. 
Choose a repelling periodic orbit 0+(p). Since/? is not an exceptional point, 
there are two distinct points/?! and/?2 which are also distinct from/? such that 
R(Pi) = P and R(Pi) = Pv To prove that {/y} is a normal family on 
Dp = D - 0+(/?), note that Ij\Dp must omit {/?, pv p2] if y > 2. That is, if 
Ij(z) = P> then z = RJ(Ij(z)) = RJ(p) e 0+(p). To prove normality on all of 
Z>, choose a different repelling periodic orbit 0+(q) and prove normality on 
Dq = D - 0\q). Since D = Dp U Dq, the family {I} } must be normal on D. 
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The assumption ƒ n 0+(C) = 0 implies F ^ 0 and the Sullivan domains 
are either attracting or superattracting domains. Consequently, the forward 
orbits of all points in D n F accumulate on a finite set of periodic points 
which are contained in <?+(C). 

Now, let D_k denote Ik(D). We show that D_k converges uniformly to J as 
k -* oo. If not, there would exist two sequences kt and zt such that Rki(zt) e D, 
yet all of the z{ are outside some neighborhood of/. Let z* be an accumulation 
point of the zt. Then {Rk} is a normal family on some neighborhood of z*. 
Choose a convergent subsequence { Rki} of the sequence { Rki} and consider 
the images Rki(z+). Since the sequence converges uniformly, we can conclude 
that Rki(z+) converges to some point in D. But this contradicts the fact that 

D n {attracting and superattracting periodic orbits} = 0. 
We have a normal family {/,} whose images D_j are converging uniformly 

to the Julia set. However, the Juha set does not contain interior. Therefore, any 
limit function has to be a constant function since its image does not contain 
interior. D 

Given this lemma, it is not difficult to prove the theorem. 
PROOF OF THEOREM (8.1). Cover the Juha set / with a finite number of 

simply connected domains Dt whose closures are disjoint from 0+(C). By the 
lemma, any sequence of inverse functions If Dt -> C must limit to a constant 
function. Therefore, the derivatives Ij limit to zero. From this, the result 
follows because we can obtain an N such that l/\(Rn)'(z)\ < 1/K for all 
n > N and all z e Dt. D 

The proof of the lemma is useful in the actual classification theorem. We 
stated that the boundary of a rotation domain D is contained in the closure of 
the forward orbits of the critical points. We now briefly show why the proof of 
this fact is essentially the same as the argument in the proof of Lemma (8.2). 

PROOF OF PART OF THEOREM (7.7). Suppose z0 is a point in dD but not in the 
closure of the forward orbits of the critical points. Using the leo property 
((5.16)) of the Juha set and the fact that the inverse images of rotation domains 
contain preperiodic domains, we can find a path / from inside the rotation 
domain to a point zx in a preperiodic component of the Fatou set such that 
/ O 0+(C) - 0 . See Figure(8.3). 

Using / find a simply connected domain Dx containing / but disjoint from 
0+(C). We define a sequence of inverse functions If. Dx -> C such that 
7;(z2)€E/Morally. 

(8.3) FIGURE. The rotation domain D and the path I. The point zx is in a preperiodic component of 
F; the point z0 is in the boundary of D\ and the point z2 is an element of the rotation domain. 
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A contradiction is derived using the limit functions of the Ij. Consider 
If D2 -> C and If D3 -> C, where D2 and D3 are subsets of Dl9 but D2c D 
and Z>3 n 2) = 0 . See Figure (8.4). 

Consequently, the functions limit to constant functions. However, If D2 -> C 
is determined by an irrational rotation and therefore the limits are never 
constants. Since a constant function can never be analytically continued to a 
nonconstant one, we derive a contradiction. D 

In §5 we referred to the leo property as a justification of the statement "Julia 
sets are fractals". This statement is not precisely true all the time, but Sullivan 
has a simple description of the self-similarity when R\J is expanding. 

(8.5) DEFINITIONS. A function/: X -» X of a metric space X with metric d is 
a K-quasi-isometry if (1/K)d(x, y) < d(f(x% f(y)) < Kd(x, y) for all x9 y in 
X. The Julia set J(R) is quasi-self-similar if there exists a K and r0 such that 
<j>r(J n Dr(x)) maps into / by a 2£-quasi-isometry for all r < r0 and all x e ƒ 
(here <J>r is multiplication by 1/r). 

In other words, a set is quasi-self-similar if there exists a K such that every 
small piece can be expanded to full size and then placed onto ƒ by a 
£-quasi-isometry. 

(8.6) THEOREM (SULLIVAN [S3, S4]). If J n 0+(C) = 0, then J is quasi-
self-similar. D 

9. The dynamics of polynomials. Some of the special characteristics of the 
dynamics of polynomials have already been described, but since they form a 
particularly important class of systems, they are worthy of more attention. In 
this section, we discuss results which apply to all polynomials regardless of 
their degree. 

Let/?(z) be a polynomial of degree d. As we have frequently mentioned, the 
point at infinity plays a distinguished role. It is both an exceptional point and 
a superattractive fixed point whose deficiency (see (5.3)) is d - 1. Conse­
quently, F(p)¥* 0 always; J(p) is contained in a bounded subset of the 
complex plane; and the immediate stable set̂ 4(oo) equals the entire stable set 
Ws(oo). Moreover, there is a neighborhood U of infinity and a real number 
r > 1 such that p\U is analytically conjugate to the map z -» zd restricted to 
thesetC-D r. 

Since infinity is a critical value whose deficiency is d - 1, the proof of 
Lemma (5.4) tells us there are at most d-\ finite critical points. The behavior 

(8.4) FIGURE. The disks Dv D2, and D3 in a subset of thejregion shown in (8.3). The proof and, 
therefore, the conclusion of Lemma (8.2) apply to If. D3 -» C. 
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of these critical points often determines a great deal about the dynamics. As a 
result it is handy to distinguish between the set of all critical points C and the 
set of finite critical points C'. Because there are at most d - 1 points in C', we 
can conclude (using (5.8) and (5.12)) that the number of finite attracting 
periodic orbits plus half of the number of neutral periodic orbits is at most 
d-\. 

(9.1) REMARK. Douady and Hubbard (see [D]), using the theory of poly­
nomial-like functions, have sharpened this count of nonrepelüng orbits. There 
are at most d - 1 such orbits. See §11. 

The Fatou set of a polynomial is somewhat simpler than the general case. 

(9.2) THEOREM. The Sullivan domains of a polynomial are never Herman rings. 

PROOF. We prove the theorem by applying the maximum principle to the 
family of functions {pn}. Suppose one of the Sullivan domains A was a 
Herman ring. Let / denote any of the invariant Jordan curves in A. See Figure 
(9.3). Let U be the open disk bounded by / and not containing infinity. Since 
U n J(p)=t 0 and we are not dealing with the case where the cardinality of 
E(p) is two, we conclude that U pn(U) = C. However, this conclusion con­
tradicts the maximum principle applied to the functions pn\U because 
ƒ?"(/) = /. D 

(9.4) REMARK. Douady's improved bound of the number of nonrepelüng 
periodic orbits ((9.1)) is the missing ingredient necessary to prove (7.14). If 
fx(z) = Xz + z2 and |A| = 1, but A is not a root of unity, then either fx is 
linearizable in a neighborhood of 0 (i.e. (SFE) has a solution) or F(fx) is 
connected. Like (7.10) we prove this by analyzing the possible Sullivan 
domains. Since 0 is nonrepelüng, (9.1) impües there are no (super)attracting 
domains, except the one containing infinity, and there are no paraboüc 
domains. The only available candidate for a finite Sulüvan domain is a Siegel 
disk. Then/x would be linearizable around 0 (see (3.20)). 

In the beginning of this section we mentioned that there is a conjugacy 
between p(z) and z -> zd in some neighborhood of infinity. A great deal of 
information can be derived from attempting to extend this conjugacy over as 
large a region as possible. In fact, the rest of this section is essentially a 
treatment of this question. 

(9.3) FIGURE. The possible Herman ring. 



COMPLEX ANALYTIC DYNAMICS 123 

(9.5) THEOREM. The following statements are equivalent. 
1. The map p\A(oo) is analytically conjugate to the map z -> zd restricted to 

the exterior of the unit circle. 
2. The setA(oo) is simply connected. 
3. The Julia set J(p) is connected. 
4. The sets A(oo) and C' are disjoint. In other words, for every finite critical 

point z, the sequence of successive images pn(z) remains bounded. 

PROOF. 1 => 2. The conjugacy is a homeomorphism between a disk and 
,4(oo). 

2 => 3. A plane set is simply connected if and only if its frontier is connected 
(see Newman [Ne]). The implication follows since dA(oo) = dWs(oo) = J(p). 

3 => 4. We prove this implication by showing that A(oo) n C' ¥> 0 implies 
J(p) is disconnected. Let h: U -> Dr denote the conjugacy between p(z) and 
z - > z d i n a neighborhood of oo, and let A0 be the annulus h~l(D d - Dr). 
Using the conjugacy, we construct an orthogonal coordinate system on U 
where circles concentric to dU are wrapped by p(z) onto other such circles in a 
d-to-1 fashion. Radii are mapped to other radii. See Figure (9.6). 

(9.6) FIGURE. The orthogonal coordinate system on U and the annulus A0. 

(9.7) FIGURE. The s e t s / ? - 1 ^ ) andAN. 
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We try to extend the conjugacy by taking inverse images by p(z). Let 
A_x = P~1(AQ). If A0 n p(C') = 0 , then p: A_x -» y40 is a d-fold covering 
space and A_x is an annulus. Hence, we can pull back the coordinate system 
and define a conjugacy h: A_x -> Ds where ^ = r1^. We repeat this process 
inductively by defining^.^ = p~l(A_k+l) as long àsA__k+1 n ƒ>(£") = 0 . 

Our assumption implies the existence of an integer N such that p(c)e AN 
for some c e C". In this case the map p: p~\AN) -> AN is not a covering 
space but is a branched cover. See Figure (9.7). 

The inverse image of the Jordan curve / through p{c) is a pinched curve 
which bounds at least two finite, open sets, and these sets disconnect J(p). 

4 => 1. This implication is proved using exactly the same observations as in 
the proof of 3 => 4. We are able to use the same notation for the annuli A_k, 
and our assumption implies that/?: A_k-+ A_k+lis always a d-fold covering 
space. Since ̂ 4(oo) = U U (U^_! A _„), the conclusion follows immediately. D 

The other extreme—all the finite critical points have orbits asymptotic to 
infinity—has behavior which is quite different from the type described above. 
The Julia set is totally disconnected. In fact, we can give a complete topological 
description of the dynamics on the Julia set. 

(9.8) DEFINITION. Let 

The shift map o: 2„ -> 2„ is defined by 

[ a({ J /}o ))]/-^+i-

The dynamical system a: 2„ -> 2n is called a onesided shift on n symbols. 
If one has not encountered this system before, one should note that it has 

rather complicated dynamics. It has lots of periodic orbits, and there are also 
dense orbits. 

(9.9) THEOREM. Suppose C c ,4(oo). Then J is totally disconnected and p\J is 
isomorphic to the onesided shift on d symbols. 

Figure (2.3) is a picture of the Julia set of a quadratic polynomial whose 
finite critical point (namely 0 in this case) has an orbit asymptotic to infinity. 

The proof of this theorem is based on the same idea as the last proof—at­
tempting to extend the conjugacy near infinity. Finite critical values cause 
pinching of the coordinate system. Actually there is so much pinching that / 
must be totally disconnected. 

PROOF. We could simply give a proof that works in the general case, but to 
illustrate the above observations concerning extending conjugacies, we give a 
proof that works in the quadratic case before we do the general case. 

Suppose deg(/?) = 2. Just as in the last proof, we start with a conjugacy 
h: U ^> Dr between p(z) and z •-> z2 in a neighborhood of infinity, and we 
consider the annulus A0 = h~\Dri - Dr). We can inductively define annuli 
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A_k = p~\A_k+l) as long as A_k+1 does not contain the finite critical value 
of p(z). If p(c) e AN for c e C", then/j"1^^) is a disk minus two holes. See 
Figure (9.10). 

Another way to view this is to regard the coordinate system as a height 
function. Then we have Figure (9.11). 
_ The two holes in p~\AN) yield two inverse functions defined on B = 
C-[U U öklNAk]. See Figure (9.12). 

The inverse function It: B -* Dt is an analytic homeomorphism. Conse­
quently, Ii(p~1(AN)) is also a disk minus two holes (i = 1 and 2). See Figure 
(9.13). 

Given any element {st} e 2 2 we can define <t>({s(}) to be the constant in the 
constant limit function of the normal family {I5l9 IS2°ISl9IS3°Is °IS,...}. 
This family limits to a constant function because the hypothesis to Lemma 

(9.10) FIGURE. The pinched foliation. Infinity is not in the picture. 

(9.11) FIGURE. A pair of pants with a cap. 

(9.12) FIGURE. The disk B with the two disks Dx and D2 contained in it. 
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(9.13) FIGURE. Four eyes. 

(8.2) is satisfied. We leave it to the reader to verify that <j> is a topological 
conjugacy betweenp\Jand a|22, i.e. <j>is ahomeomorphismand o °<t> = <j>° p. 

In the general case there can be more than one critical point in C'. Connect 
p(C') to infinity by disjoint paths—one for each element of p(C')—with the 
property that, if B = C - {paths}, then p~l(B) c B. The set B is simply 
connected, and d inverse functions Jz: B -> B (i = 1,... ,w) can be defined. A 
conjugacy <J>: / -> 2^ is defined just as above. D 

10. The Mandelbrot set and the work of Douady and Hubbard. Even a 
rational function as simple as a quadratic polynomial can be the source of 
complicated and intriguing dynamics, and there remain important unresolved 
questions regarding their dynamics. In this section we sketch the recent 
computer work of Mandelbrot and the results of Douady and Hubbard. These 
surprising results have been a major element in the explosion of interest in the 
subject during the last two years. 

In Example (1.4) we showed how every quadratic polynomial is analytically 
conjugate to one of the form 

(10.1) pc(z) = z2 + c. 

Hence, the family of quadratics is really a one complex-dimensional family of 
dynamical systems. This normal form (10.1) is particularly handy because it 
permits accurate and complete computer studies relying on computer graphics. 
Another useful representation of the family of quadratics is 

(10.2) fx(z) « \z + z2. 

Whereas the quadratic (10.1) always has the finite critical point located at the 
origin (so (10.1) is the best representation of the family to use if one is 
investigating questions concerning the forward orbits of critical points), the 
function (10.2) always has a fixed point at the origin whose eigenvalue is A. 
Therefore, the form (10.2) is useful when studying bifurcation questions when 
|A| is near 1. The reader should review the relationship between (10.1) and 
(10.2). 

Theorems (9.5) and (9.9) yield a useful dichotomy between c values for the 
family (10.1). If 0 e A{oo) or, equivalently, if the sequence O+(0)—0, c, c2 + 
c, (c2 + c)2 + c,... —converges to infinity, then J(pc) is totally disconnected 
and pc\J is a one-sided shift on two symbols. On the other hand, if 0 £ ^4(oo), 
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then A(oo) is simply connected and J is connected. Mandelbrot [M2] investi­
gated this dichotomy and found that it resulted in an unusual fractal. 

(10.3) DEFINITION. The Mandelbrot set M is the subset of C defined as 
(c e C | J(pc) is connected}. 

The reader should note that this is the first set we have defined in a 
parameter space. Each point represents a different dynamical system. Figure 
(10.4) is the author's humble attempt to reproduce Mandelbrot's spectacular 
picture in [Ml]. 

The reader may find it interesting to go back to the previous figures of Julia 
sets of quadratics and locate their c values in (10.4). Many important open 
questions regarding quadratics are best phrased in terms of the Mandelbrot set, 
and some of these will be discussed in this section. 

Computing pictures of the Mandelbrot set M is tricky business. Initial 
computer studies indicated that M had more than one "main body" and that it 
might be disconnected. In fact, it is connected. 

(10.5) THEOREM (DOUADY AND HUBBARD [DH]). The Mandelbrot set is 
connected. D 

Douady and Hubbard prove (10.5)_by constructing, using dynamics, a 
conformai automorphism $: C — Dx-* C - M. Hence, the complement of M in 
the Riemann sphere is conformally equivalent to a disk in a dynamically 
natural way. 

Douady and Hubbard have also analyzed the components of the interior of 
M.Let 

H = { c | pc has a finite (super)attractive periodic orbit}. 

Theorems (5.8) and (8,1) imply that, if c e H, pc\J is expanding. It is routine 
to prove that H c int(Af) and H is open. The following conjecture has been 
the subject of much work in the last fifteen years. 

(10.6) CONJECTURE. H = int(M). 
Most workers believe (10.6) is true. However, until the problem is resolved, 

we must use some annoying terminology. 
(10.7) DEFINITION. A component K of the interior of M is hyperbolic if 

K<zH. 

(10.4) FIGURE. The Mandelbrot set. 



128 PAUL BLANCHARD 

Douady and Hubbard [DH] have also constructed a conformai represen­
tation of the hyperbolic components. 

(10.8) THEOREM. Let Kbea hyperbolic component of the interior ofM. Then K 
is conformally equivalent to the disk Dv and the equivalence may be given by the 
map p: K -> Dx where pK(c) = Xc and \c is the eigenvalue of the unique finite 
(super) attracting periodic orbit ofpc. D 

The existence of such a simple conformai equivalence is quite surprising. It 
determines a center p^\0) of each K, and we shall also talk about the root of K 
which is the point lim/eR_>1p^1(0. (Douady and Hubbard prove that such a 
limit exists.) 

Now we take a tour through M, and at each stop we describe the Julia set 
and its relationship with the Julia sets of other points in M. The tour starts at 
the origin, which is contained in a hyperbolic component that is actually the 
interior of a cardioid. SincepQ(z) = z2, we are starting with the simplest Julia 
set in M. For c =£ 0 but small, Sullivan [S4] proved that J is still a Jordan 
curve, but its Hausdorff dimension must be greater than one. As we mentioned 
in (2.2), Ruelle [R] has shown that this dimension varies real analytically in the 
norm of the parameter if the parameter remains in a hyperbolic component of 
M. Figure (2.2) illustrates a typical Julia set in this component. Sullivan also 
established that ƒ is a quasi-circle. 

We now move along the negative real axis until we stop at c = - 3/4. We 
are at a boundary point between two hyperbolic components. This point is the 
root of the hyperbolic component containing c = —1. Figure (3.14) shows the 
Julia set of ^-3/4. This map does not have any (super)attracting periodic 
orbits. Oddly enough, it is the only quadratic polynomial of the form (10.1) 
with no periodic orbits of period two. The finite Sullivan domains are the two 
parabolic domains whose boundaries contain the neutral fixed point. They 
form a cycle of period two. 

At c = - 1 we are at the center of this hyperbolic component. Its Julia set is 
pictured in Figure (3.7). Since the centers of hyperbolic components are the c 
values for which pc has a finite superattractive periodic orbit, the origin in/?_! 
is part of a superattractive periodic orbit. The one-parameter family we have 
described so far (i.e. t -* pt with t varying from 0 to -1) contains exactly one 
period doubling bifurcation. In other words, the period of the finite (super)at-
tractive cycle has doubled. 

If we continue along the negative real axis we encounter an infinite sequence 
of period doubling bifurcations—the Feigenbaum bifurcations. The reader 
should consult the book by Collet and Eckmann [CE] to learn more about 
these bifurcations. 

Now we backtrack for a moment. Suppose, instead of leaving the origin 
along the negative real axis, we approached the boundary of the cardioid at the 
c value 

(10.8) c = A/2 - A2/4, 
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where X = e2wi/3
9 so that/?c is conjugate to fx. Figure (3.15) is a picture of the 

Julia set of/x. See Figure (10.9). 
Our journey so far has been entirely in the primary region of Af. This 

primary region is inductively formed by starting with the cardioid M0. At each 
successive step, an infinite number of hyperbolic components and their roots 
are added to Mt to form Mi+V A component K is added to Mt if its root is in 
the boundary of Mt. The primary region is the union U£L0

 Mt- We do not get 
all of M (by any means!) with this method. Suppose we had continued along 
the negative real axis. The corresponding systems would have undergone an 
infinite number of period doubling bifurcations. Yet, we would still be far 
from the end of M n R — [ -2 ,1/4] . Values of c intervene where pc\J has 
"aperiodic" behavior. Then new secondary regions develop. Each of these has a 
main body which is something like a cardioid, and its structure is very similar 
to the primary body. Figures (10.10) and (10.11) locate one such secondary 
body and show it in more detail. 

This computer evidence strongly suggests that the Mandelbrot set is also a 
fractal and that the dynamics always bifurcates according to the same "pat­
tern". This is often referred to as " universality". Douady and Hubbard have 
results for polynomial-like mappings which support these ideas. 

If_c G M then A{vo) is simply connected and there exists a conjugacy 
<t>c: C-Di:» A(oo) such that <f>c(oo) = oo, #(oo) = 1, and <J>c(z

2) = pc(<t>c(z)) 
for all z e C-Dx (see (9.5)). Much information can be gained by extending </> 
to the unit circle S1. Extending Riemann maps is a classical aspect of complex 
analysis, and Carathéodory [Cd] obtained the relevant result. 

(10.12) DEFINITION. A subset S c C is locally connected at p e S if, given 
any e > 0, there exists an e' such that 0 < e' < e and De,(p) n S is a subset of 
one component of De(p) n S. 

(10.13) THEOREM (CARATHÉODORY). Let D be a simply connected domain 
which is conformally equivalent to the disk Dv The boundary of D is locally 
connected if and only if the conformai equivalence extends to a continuous map 
from Dx to D. D 

(10.9) FIGURE. The Julia set of pa where a = .9c and c is defined by equation (10.8). This is the 
Julia set just before a period trebling bifurcation. We can see how the rabbit-like features of (2.1) 
evolve continuously from the Jordan curves of the main cardioid. 
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(10.10) FIGURE. A secondary body in the Mandelbrot set. This is M with an additional small box 
centered on the negative real axis. This box encloses a secondary body. The box is magnified in 
Figure (10.11). 

(10.11) FIGURE. An enlargement of the secondary body in (10.10). 

Often the Julia set of a polynomial is locally connected and the map <f> 
extends [D, DH, Tl]. For example, if c e H, then J{pc) is locally connected. 
Also, if c is preperiodic, then J(pc) is a dendrite (see (7.11)). So there is a 
continuous map <J>C: S

1 -> J(pc) such that the diagram 

S1 

A Pc) 

sl 

J(PC) 
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commutes. Since the map <f>c is not injective, it is not a conjugacy. Usually, it is 
called a semiconjugacy. Describing the map on the Julia set amounts to 
establishing the identifications made by the map <f>c. 

However, the Julia set is not always locally connected. 

(10.14) THEOREM (DOUADY AND SULLIVAN [S4]). If pc has a neutral fixed 
point whose eigenvalue is not a root of unity andpc is not locally conjugate to its 
derivative, then J(pc) is not locally connected. D 

The proof requires a local analysis of "radial limits" to the fixed point. The 
arguments are similar to those Sullivan uses to show that orbits in parabolic 
domains are asymptotic to periodic points whose derivatives are roots of unity. 
The interested reader should consult [S4 and S2]. 

Since the exterior of M in C is also simply connected, the same questions 
apply to C-Af. Douady and Hubbard [DH] have partial results regarding the 
Riemann map on the exterior of the Mandelbrot set. 

(10.15) THEOREM. For all J G Q , the radial arc r -> \p(re2wi0)9 with r > 1, has 
a limit as r -* 1. D 

Given a map pc which is such a limit, Douady and Hubbard [DH] also 
construct an associated tree Hc and a map on the tree. They give a combina­
torial algorithm for determining 6 from the map on Hc. 

We conclude with one of the basic problems in the dynamical theory of 
quadratics. 

(10.16) PROBLEM. IS M locally connected*} 

11. The Measurable Riemann Mapping Theorem and analytic dynamics. In 
this section we sketch how the theory of quasi-conformal homeomorphisms has 
been applied to the study of one-dimensional, analytic dynamics. To do this we 
introduce (without proofs) the relevant ideas from the theory of quasi-conf or­
mal mappings and show how these notions can be used to create conformai 
maps with prescribed dynamics. These constructions are usually the key to any 
successful application of the Measurable Riemann Mapping Theorem. 

We will need enough of the ideas from the theory of quasi-conformal 
homeomorphisms to be able to make sense of the statement: 

(11.1) Any bounded measurable conformai structure on C is quasi-conformally 
equivalent to the standard structure. 

The fundamental underlying concept is the dilatation oî a homeomorphism. 
If the map is also C1, the dilatation is easy to define and its geometric 
interpretation is straightforward, so we do this case first. 

Let ƒ: C -» C be an orientation preserving C1 diffeomorphism. We can 
expand ƒ as 

f(z) =f(z0) +fz(z0)(z - zQ) +fr(z0)(z - z0) + o(\z - z0|), 
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where 

ƒ , - * ( / , - ' / , ) and / f - i ( / , + 'ƒ,)• 

Note that, if f(z) is analytic, then / f = 0. With this notation the dilatation 
Df(z0) of ƒ at z0 is the quotient 

D ( ) l/,(*o)l + l/r(*o)l 
/ V o ' tó(x0)i-i/,(*o)r 

This quantity can be geometrically interpreted as follows. The derivative df(z0) 
takes a circle in the tangent space of C at z0 to an ellipse in the tangent space 
of C at f(z0). The dilatation is a measure of this distortion because it is the 
ratio of the length of the major axis to the length of the minor axis. The 
quantity 

Kf = s\xp Df(z) 
zeC 

is called the maximal dilatation of ƒ on C, and the map ƒ is called quasi-confor-
mal iîKf< oo. Note that ƒ is conformai if and only if Ay = 1. 

In our context, it will be useful to use the quantity 

One can verify that 

Ityl = {Df- l)/(Df + 1 ) < 1 . 

If ƒ is quasi-conformal, then 

| f i / | < ( A / - l ) / ( A / + l ) < l . 

We have introduced fif because the differential equation 

(H.2) / f - (M/) / , 

is crucial to our discussion. It is called the Beltrami equation, and we need 
quasi-conformal homeomorphisms in order to solve it whenever /A is a measura­
ble function with WfiW^ < 1. 

The definition of the dilatation of a homeomorphism ((11.4)) is a great deal 
more complicated, and it is not immediately clear that it agrees with Df in the 
differentiable case. The two notions are related by Theorem (11.6). 

(11.3) DEFINITION. A quadrilateral Q(zv z2, z3, z4) is a Jordan domain in C 
with four distinguished boundary points: zv z2, z3, and z4. 

Using the theory of conformai mappings, one can assign a modulus M(Q)to 
each quadrilateral Q. Choose a conformai map <p of Q to a rectangle R such 
that (p takes the distinguished points to the vertices of R. Then the modulus 
^ ( 0 ) of Q is the modulus M(R), which is a/b. The modulus M(Q) is well 
defined, and if ƒ: C -> C is conformai, M(f(Q)) = M(Ô). See Figure (11.3a). 
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(11.3a) FIGURE 

(11.4) DEFINITION. Suppose ƒ : C -> C is an orientation-preserving homeo­
morphism. The quantity 

M(f{Q)) 
QcC */=?UP~ M(Q) 

where the g's range over all quadrilaterals, is the (maximal) dilatation off. If 
Kf< oo, ƒ is called a quasi-conformal homeomorphism. 

(11.5) REMARK. Note that a conformai map has dilatation 1. It is also true 
that a quasi-conformal homeomorphism whose dilatation is 1 is conformai. 

(11.6) THEOREM. A quasi-conformal homeomorphism ƒ with dilatation K is 
differentiatie almost everywhere, and Df(z0) < K at each point z0 where ƒ is 
differentiatie. D 

Now we can state the Measurable Riemann Mapping Theorem. The reader 
should be aware of the fact that this theorem is commonly referred to as the 
Existence Theorem in the theory of quasi-conformal homeomorphisms. Our 
terminology is based on common usage in the study of complex dynamics 
rather than in the study of quasi-conformahty. 

(11.7) THEOREM. Let p be a measurable function with H/AĤ  < 1. Then there 
exists a quasi-conformal homeomorphism whose complex dilatation agrees with jui 
almost everywhere. D 

This theorem is the result of a great deal of work by a number of 
mathematicians. Since the author is not an expert in this subject, he does not 
feel capable of crediting everyone who should be mentioned. Moreover, the 
above discussion is far from complete, so the interested reader is referred to 
Ahlfors [A3] or Lehto and Virtanen [LV] for the details and bibliographic 
references. 

Given these tools, we can make sense of (11.1). A conformai structure on C 
can be derived from a Riemannian metric 

ds2 = Edx2 + IFdxdy + Gdy2 

because we can also write 

ds = A(z) \dz + fi(z) dz\, 

where \(z) > 0 and ju: C -* C with |/x(z)| < 1. The standard structure corre­
sponds to the choices E = G — 1 and F = 0. Then ds = \dz\ and jn = 0. A 
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bounded, measurable conformai structure corresponds to a choice of /A which 
satisfies the hypothesis of the Measurable Riemann Mapping Theorem ((11.7)). 
A map w = f(z) will be a conformai map from the standard structure to the 
bounded, measurable structure almost everywhere if ff/fz = p almost every­
where. To see this we make the following calculation. 

\dw\ = \df\ = \fzdz + f-zdz\ = \fzI \dz +(MZ) dz\. 

Applying (11.7) to a bounded, measurable /i yields a quasi-conformal homeo-
morphism ƒ which is a conformai equivalence between the measurable confor­
mai structure and the standard structure almost everywhere. 

To illustrate how (11.1) is used to study the dynamics of rational maps, we 
discuss two applications. The first is Douady's and Hubbard's theory of 
polynomial-like functions (see [D]). We shall prove their basic result that the 
dynamics of a polynomial-like map is isomorphic to the dynamics of a 
polynomial, and we shall use this result to sharpen the bound on the number of 
nonrepelling periodic orbits of a polynomial. Secondly, we give a brief sketch 
of Sullivan's proof of the nonexistence of wandering domains ((7.1)). 

Polynomial-like mappings have the same topological properties as polynomi­
als, yet they also arise as restrictions of polynomials of higher degree or as 
restrictions of transcendental entire functions. 

(11.8) DEFINITION. Let £/' c Ubc two simply connected domains in C such 
that U' is relatively compact in U. If/: U' -> U is a proper holomorphic map 
of degree d, then ƒ is à polynomial-like map of degree d of U' into U. 

Associated to any polynomial/? is a set Kp, called the filled-in Julia set of/?, 
defined by 

tf,-C-»"(oo). 

There is a corresponding notion for a polynomial-like map/: V -> U. Let 

Kf = { z e U'\fn{z)^ U'îorn = 1,2,3,...}. 

The fundamental result in the theory of polynomial-like mappings is the fact 
that these maps have the dynamics of polynomials on their filled-in Julia sets. 

(11.9) THEOREM (DOUADY AND HUBBARD [D]). Let ƒ: U' -» U be a poly­
nomial-like mapping of degree d. Then there exist a polynomial p of degree d, 
neighborhoods Nx of Kf and N2 ofKp9 and a quasi-conformal homeomorphism h: 
Nx -> N2 such that h(f(z)) = /?(/i(z)) for all z e Nx and such that hz is 
identically zero on Kf. 

PROOF. Let S be a subset of U' which is conformally equivalent to a disk and 
satisfies the following two conditions. 

(11.10) The set Kf is contained in the interior of 5. 
(11.11) The set A = f(S) - S is diffeomorphic to an annulus A' of the form 

Drd - Dr for some r > 1. In fact, if a: C-Dr-+ C-Drd denotes the map 
z •-> zd, we want to choose the diffeomorphism <p: A -» A' so that q>(f(z)) = 
a(<p(z)) for all z e 35. 
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Given (11.10) and (11.11) we define a bounded measurable structure on C 
and a map g: C -• C which preserves this structure. We view C as the 
two-sphere formed from f(S) and C-Dr by identifying z e A with <p(z) in 
C — Dr. With these identifications and (11.11), we can define a map g: C -> C 
which equals ƒ on S and a on C-Z)r, and the bounded measurable structure is 
defined to be the standard structure on C-Z>r and Kf and the pullback of the 
standard structure on A by ƒ to S - Kf. It is important to note that, since ƒ is 
conformai, the pullback structure will be bounded. The map g preserves this 
structure by definition. 

When we apply (11.1) (which, as we have seen, is justjll.7) in different 
language), we get a quasi-conformal homeomorphism h: C -» C and a map 
p = h° g°h~l which preserves the standard structure almost everywhere. 
Hence p is conformai (see Ahlfors [A3]). The map p is quasi-conformally 
conjugate to the map z •-* zd in a neighborhood of infinity, so p is a poly­
nomial of degree d. Moreover, p restricted to a neighborhood of Kp is 
quasi-conformally conjugate by h to f restricted to a neighborhood of Kf9 and 
hf = 0onKf. D 

REMARK. This proof contains the main ingredients of most applications of 
the Measurable Riemann Mapping Theorem to complex dynamics. One starts 
with a given conformai map, alters the standard structure in a bounded 
manner and, using (11.7), obtains a new conformai map quasi-conformally 
conjugate to the original with some desired property. In addition to Douady's 
paper [D], this type of argument is also found in §8 of Sullivan [SI]. 

We have previously mentioned the following result (see §9), and now we can 
see how it is an easy consequence of (11.9). 

(11.12) COROLLARY (DOUADY [D]). Letp(z) be a polynomial of degree d. The 
number of finite nonrepelling periodic orbits is at most d — 1. 

PROOF. Let N be the set of nonrepelling periodic orbits of p. Construct a 
polynomial q (of high degree) such that q\N = 0, and \(p + q)(z)\ < 1 for all 
z e N. Note that, for small e, the map ƒ = p + eq is polynomial-like of degree 
d on some neighborhood U of Kp. The points of N will be attracting periodic 
orbits of Kfy and (5.8) combined with (11.9) implies that ƒ can have no more 
than d — 1 attracting periodic orbits in Kf. Therefore, N can only consist of 
d - 1 nonrepelling orbits. D 

We end this section by sketching a special case of Sullivan's proof of (7.1). 
Suppose W is a component of F which is conformally equivalent to a disk and 
which is not eventually periodic. Since the number of critical points is finite, 
we can assume that the maps R: Wn -» Wn+V where Wn = Rn(W\ are all 
injective. Sullivan produces a real analytic family of bounded measurable 
conformai structures on C/, and the dimension of this family is larger than the 
dimension of the space of rational maps of degree d. He uses these structures 
to get a real analytic family of bounded, measurable conformai structures on C 
by pushing forward and pulling back by R on the forward and backwards 
orbits of W. The structure is extended to all of C using the standard structure. 
As in the proof of (11.9), this Measurable Riemann Mapping Theorem yields a 
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family of rational maps which are all quasi-conformally conjugate to R. 
Moreover, Sullivan constructs his family of bounded, measurable structures so 
that no two of the resulting rational maps are the same. Since the space of 
rational maps of degree d now contains a subspace of higher dimension, the 
domain W could not have existed in the first place. 

12. Bibliographic notes. This paper is neither a complete exposition of the 
classical theory nor a comprehensive survey of the latest results. Instead, we 
have tried to present enough of both to give the reader a fair understanding of 
what is known, how it fits together, and some of the important questions which 
still need to be resolved. In the references we list many articles and books that 
have not been specifically cited in the text. They are included to give the reader 
a place to start in the library. But we must again emphasize that we have not 
made an exhaustive search of the literature. Omissions are the result of 
ignorance, not judgment, by the author. We end this paper by organizing some 
of these references. 

There has been a tendency to look only at the latest or the original work 
without noting the work that took place from the thirties to the sixties. The 
reader who is interested in these results (in addition to Siegel's Theorem) can 
start by reading the papers of Cremer ([C] and others), Myrberg [My 1-3], 
Baker [Ba 1-11], and Töpfer [Tö]. Other references can be found in their 
bibliographies as well as the bibliography of Burckel [Bu]. 

We have not mentioned any of the ergodic theory of rational maps. Brolin's 
paper [B] contains some fundamental results, and recently the papers of 
Barnsley, Geronimo and Harrington [BGH 1-6] have studied the measures in 
question. The reader should definitely note the important papers of Rees [Re 
1-2] in which she shows that the set of rational maps ergodic with respect to 
Lebesgue measure is a set with positive measure. 

Rotation domains are a topic of vigorous research both by mathematicians 
and physicists. Herman [HI] has written a paper which involves the 
number-theoretic aspects of this topic. Relevant papers by physicists include 
Manton and Nauenberg [MN], Rüssman [Ru], Widom [W], and Widom, 
Bensimon, Kadinoff and Shenker [WBKS]. 

Newton's method is the source of another interesting collection of examples, 
and there is a surprising connection between Newton's method for cubics and 
the Mandelbrot set. This family is studied in depth by Curry, Garnett and 
Sullivan [CGS], and hopefully Hubbard will publish some of his amazing 
slides. 

One can also study the dynamics of transcendental entire functions with 
exactly the same approach. However, since the phase space is not compact, 
some of the main results for rational maps do not hold in this case. Fatou [F4] 
discusses this somewhat, and Töpfer [Tö] wrote a relevant paper in the thirties. 
Lately, the subject has received much more attention. Baker has several papers 
on transcendental entire functions, and Misiurewicz [Mi], Devaney and Krych 
[DK], and Devaney [De] all study the family Xez. 

Structural stability and rational maps is the topic of two important 
papers—Mane, Sad, and Sullivan [MSS], and Sullivan and Thurston [ST]. A 
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key step is the extension of quasi-conformal maps, and these papers have 
developed new tools which are also of interest in the theory of quasi-conformal 
homeomorphisms. 

This subject was essentially ignored by most researchers in the area of 
dynamical systems for forty years. This changed when the papers of 
Guckenheimer [G] and Jakobson [Jal, Ja2] were published. These three papers 
applied the modern theory of dynamical systems to the iteration of rational 
maps. 

Finally, we mention the work of Thurston [T2] who has introduced the 
theory of TeichmuQer space to this subject. He has a necessary and sufficient 
condition for the existence (in the space of rational maps) of a prescribed 
topological dynamical system. He also has quite a few new proofs of the 
classical results using the Poincaré metric. The exposition [T2] will have 
significant impact. 

List of Notation 
All notation is listed under the section in which it is introduced. 

§1 
C the Riemann sphere 
R: C -> C a rational map 
S2 the two-sphere 
deg( R ) the degree of R 
zn+l = R(zn) the iterate of zn 

O\z0) the forward orbit of zQ 

Rn the nth iterate of R (under composition) 
Dr or Dr{z) the open disk centered at the origin (or at z) 

of radius r in the Euclidean metric 

§2 
For F(R) the Fatou set (of R), otherwise known as 

the domain of equicontinuity 
/ or / ( R ) the Julia set (of R ) 

§3 
X o r X2Q the eigenvalue (of the periodic orbit z0) 
ƒ( k) the k th derivative of ƒ 
(SFE) the Schroder Functional Equation 
A the complex numbers of absolute value one 

which satisfy the hypothesis of SiegePs 
theorem 

§4 
E or Ez the exceptional points (of the point z) 
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§5 
C the set of critical points 
V the set of critical values 
dz the deficiency of the value z 
A(p) the immediate attractive basin ofp 
W\p) the stable set of p 

§8 
0+(C) the forward orbits of the set of critical 

points 

§9 
C' the set of finite critical points of a 

polynomial 
2 W the space of one-s ided sequences of n 

symbols 
o the shift map on 2„ 

§10 
M the Mandelbrot set 
H the union of hyperbolic components of M 

§11 
fz the z-derivative of ƒ: C -> C 
fz the z-derivative of ƒ: C -» C 
/>ƒ ( z0 ) the dilatation of ƒ at z0 

/A ƒ the complex dilatation of ƒ at z0 

£ƒ the maximal dilatation of ƒ 
M(Q) the modulus of the quadrilateral Q 
Kp the filled-in Julia set of the polynomial 

(or polynomial-like function)/? 
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